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scale: a comparison of self-organizing maps
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Abstract

Background: In the last decades, everal runoff-erosion models have been proposed to estimate soil erosion, which
may lead to loss of fertile land and increase sedimentation and pollution in water bodies. Physically-based erosion
models are usually used for such purpose, but a major problem concerning their use is the difficulty to directly
measure parameters in the field. This problem can be overcome by exploring empirical models, such as so-called
Self-Organizing Maps (SOM). An SOM is a type of Artificial Neural Network (ANN) based on a competitive learning
approach for clustering and modeling a variety of databases. Since studies on soil erosion modeling based on SOM
are very incipient, we compared some structures of SOM with the purpose of estimating sediment yield based on
runoff and climatological data at the micro-watershed scale. The case study was a micro-watershed within the Sumé
Experimental Basin, which is located in a semiarid region of Brazil. Different from the conventional ANN, SOM-based
models represent a multidimensional data set by means of a bidimensional matrix of features, which may be
applied for analysis and estimation purposes. In order to calibrate and validate the proposed SOM structures, we
used data from 117 rainfall events that occurred between 1985 and 1991.

Results: Analyses of the results indicate that all SOM structures were efficiently calibrated with NASH coefficients (Nash
& Sutcliffe 1970) varying from 0.88 to 0.90. The SOM structure with 6 × 8 neurons was the most effective for estimating
sediment yields when considering the validation data set (NASH = 0.73). The generated maps showed that sediment
yields were directly related to runoff and rainfall intensity and inversely correlated to average vegetation heights. The
dry period length did not seem to influence the production of sediments.

Conclusions: SOM were shown to be very practical and meant to be applied to specific locations. This type of
methodology also demands long term data and dynamic recalibration with up-to-date information in order to account
for changes in the watershed.
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Background
Severe natural conditions together with improper man-
agement of intense erosion are sources of numerous
environmental impacts. In the Brazilian semiarid, char-
acterized by scarce but intense rainfall events, a large
production of sediments occurs only periodically, redu-
cing the storage capacity of rivers and reservoirs as well
as negatively affecting the quality of natural resources
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and agricultural productivity (Farias & Santos 2014;
Farias et al. 2010; Vanmaercke et al. 2010).

Sediment modeling is generally conducted using
physically-based erosion models. However, a major prob-
lem concerning their use is the difficulty of measuring
their parameters in the field (Farias & Santos 2014;
Vanmaercke et al. 2010). Empirical models, such as those
based on Artificial Neural Networks (ANN), are options
to tackle such difficulties.
In the last decade, many authors suggested tech-

niques based on ANN in order to understand hydro-
sedimentological processes. Cobaner et al. (2009), for
example, proposed an adaptive neuro-fuzzy approach to
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Fig. 1 Location of the Experimental Basin of Sumé, Paraíba State, Brazil
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estimate suspended sediment concentration on a daily
basis and obtained better performance when compared
with sediment rating curves. Márquez & Guevara-Pérez
(2010) investigated erosion processes in furrows and
found that an ANN-based model outperformed proce-
dures based on physical processes and linear and nonlin-
ear regressions. More recently, Farias & Santos (2014)
developed a model based on Self-Organizing Maps
Fig. 2 Contour lines of the micro-watershed of this study. Source: Adapted
(SOM), which is a type of unsupervised ANN, in order to
estimate sediment yields in an erosion plot located in a
semiarid land of Brazil and found promising results.
Although there are only a few applications of SOM

modeling within the sedimentation engineering field, this
technique has been used in other engineering areas. One
example is the study of Garcı́a & González (2004), who
applied SOM for understanding the behavior of variables
from Srinivasan & Galvão (2003)



Table 1 Structures of the SOM models of this study

Model Structure

SOM #1 1 × 48

SOM #2 2 × 24

SOM #3 3 × 16

SOM #4 4 × 12

SOM #5 6 × 8
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from a wastewater treatment plant. Other application is
the work of Adeloye et al. (2011), who proposed an SOM
estimator for reference crop evapotranspiration and ob-
tained results superior to those from recommend empir-
ical methods. Farias et al. (2013) developed an SOM-based
rainfall-runoff model and verified it was reliable for esti-
mating streamflows in Piancó River, Brazil.
The SOM models represent a multidimensional data-

set by means of a bidimensional matrix of features,
which can be explored for analysis and estimation pur-
poses. Based on a competitive training approach, this
type of model is capable of clustering input data accord-
ing to their similarities and may be later of use for pat-
tern classifications (Haykin 1999; Kohonen 1982).
Considering the lack of studies based on SOM

networks for soil erosion modeling, we compared the
performance of five different structures of SOM with the
purpose of estimating sediment yield based on runoff
and climatological data at the micro-watershed scale.

Materials and methods
Study Area and Data
The selected study area was a micro-watershed within
the Sumé Experimental Basin, which is located in a
semiarid land of Paraíba State, Brazil. The Experimental
Basin of Sumé is placed in the Paraíba River Basin, in
latitude 7° 40’ S e longitude 37° 00’ W, and comprises a
sub-basin of 10 km2; four micro-watersheds, with areas
between 4,800 and 10,000 m2; and nine erosion plots of
100 m2. This region is characterized by a semiarid
climate, with annual mean rainfall and temperature
equal to 590 mm and 24 °C, respectively. The annual po-
tential evaporation is 2,900 mm and the native vegeta-
tion is a steppe savannah known as Caatinga (Srinivasan
& Galvão 2003). Figs. 1 and 2 depict the location of the
Experimental Basin of Sumé and the chosen micro-
watershed for this study, respectively. According to Cadier
et al. (1983) apud Srinivasan & Galvão (2003), the chosen
micro-watershed has an area of 4,800 m2, 270 m of
perimeter and an average declivity of 6.8 %.
The data of runoff, vegetation average height, duration

and intensity of rainfall, dry period, rainfall amount, and
sediment yield of 117 rainfall events between 1985 and
1991 were obtained from the study of Srinivasan &
Galvão (2003). Eight and twenty percent of the data,
which correspond to 94 and 23 rainfall events, respect-
ively, were chosen for calibrating and validating the
proposed models.

Self-Organizing Maps
Structure
The modeling using Self-Organizing Maps (SOM) con-
sists of representing multidimensional input vectors by
means of a bidimensional map (Silva et al. 2010). This
map is composed of units known as neurons that are or-
ganized in a manner that preserves neighboring relation-
ships. Therefore, the SOM network is composed of a
multidimensional input layer and a bidimensional output
layer, in which neurons compete in order to define a
winner. Each element of the input vector connects all
neurons in the output layer.
In this study, the input vectors contains seven compo-

nents: runoff, vegetation average height, duration and in-
tensity of rainfall, dry period, rainfall amount, and sediment
yield. In the output layer, hexagonal neurons with weights
of seven components were adopted, each one correspond-
ing to a specific dimension of the input layer.
According to Garcı́a & González (2004), a satisfactory

estimation of the number of neurons M may be carried
out by using the heuristic Eq. (1):

M ¼ 5
ffiffiffiffi
N

p
ð1Þ

in which N is the total number of samples in the calibra-
tion data set.
Since 94 samples were used for calibrating the SOM

models, the number (M) of neurons was equal to 48. In
this study, five structures containing 48 neurons were
tested as shown in Table 1. Fig. 3 shows an example of
an SOM structure with 6 × 8 neurons and a neighbor-
hood of three steps.

Training
The training of SOM networks is based on the calcula-
tion of Euclidian distances Ei between input vectors and
weights of each output neuron i, as shown in Eq. (2).

Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X7
j¼1

x jð Þ−wi jð Þ½ �2
vuut ; for i ¼ 1; 2; …; 48: ð2Þ

in which x(j) is the jth component of the input vector
x and wi(j) is the jth weight component of the ith output
neuron.
The neuron i whose weight vector most closely

matches the input data vector x (i.e., for which the Eu-
clidean distance is the lowest) is declared the winning
neuron. Weights associated with this neuron i* and
neighbor neurons in a certain neighborhood radius Vi*
are then updated by the Kohonen rule shown in Beale



Fig. 3 Example of an SOM structure with 6 × 8 neurons and a neighborhood of three steps. Source: Adapted from Farias & Santos (2014)
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et al. (2012). With the application of this rule, the
weights of the winning neuron and its neighbors are ad-
justed in order to have smaller Euclidean distances and,
therefore, to give the output neurons capacity for classi-
fying similar vectors.
In this research, the trainings occur in batch mode, i.e.,

the search for winning neurons is carried out for each
input vector and then the weight vector is moved to the
average position of all input vectors for which it is a win-
ner or neighbor of a winner. After several presentations
of the data set, the weights tend to stabilize. In this
study, the calibration was carried out using 200 presen-
tations of the data set.
The network trainings of this study take place in two

phases: ordering– and tuning–phases. In the ordering
phase, the trainings are limited by a number of 100 pre-
sentations of the whole data set and the radius of the
neighborhood starts with three steps that decreases to
the unit value. This choice is a way to organize the
neuron weights in the input space consistently with
neuron positions in the dimensional grids. The tuning–
phase uses the last 100 presentations, in which only
winner neuron weights are updated. At this phase, it is
expected that weights are modified relatively evenly in
input space, preserving the topology defined in the
ordering-phase (Beale et al. 2012).
The SOM models were implemented in MathWorks’

MATLAB R2012a using the Neural Network Toolbox
(Beale et al. 2012).

Estimation of Sediment Yields with a Calibrated SOM
After the calibrations, the SOM networks were used to
estimate sediment yields. In order to carry this out, we
consider the sediment yield as missing in the input
vector and followed three steps: (1) calculate the Euclid-
ean distances between the input vector and weights of
output neurons disregarding the sediment yield compo-
nent; (2) determine the winning neuron based on the
lowest Euclidean distance; (3) assume the weight compo-
nent of the winner neuron connected to the missing
value of the input vector as the estimation.
Choice of the Calibrated SOM for each Structure
Ten trainings were set for each network in order to
improve chances of achieving the best calibration. The
training map chosen for each structure was the one
that provided the greatest efficiency of Nash-Sutcliffe
(NASH) between calculated and observed sediment
yields considering the calibration data set (Nash &
Sutcliffe 1970).
Evaluation of the SOM Structures
The performance evaluation of the SOM structures for es-
timating sediment yields considered the indexes of correl-
ation (R), relative bias (VR) and efficiency of NASH. For
this, the calibration and an independent set of data (valid-
ation data set) were investigated. The NASH efficiency,
which can range from -∞ to 1, indicates a perfect match
between calculated and observed data when its value is
equal to 1 (Nash & Sutcliffe 1970).
Results and discussion
The performance of all proposed SOM structures for
estimating sediment yields considering the calibration
and validation data sets are shown in Tables 2 and 3,
respectively.



Table 3 Performances of SOM structures for estimating sediment yields considering the validation data set

SOM #1 SOM #2 SOM #3 SOM #4 SOM #5

NASH 0.71 0.72 0.64 0.67 0.73

R 0.84 0.85 0.81 0.85 0.91

RB −2.75 % −3.87 % −1.91 % −15.51 % −8.42 %

Table 2 Performances of SOM structures for estimating sediment yields considering the calibration data set

SOM #1 SOM #2 SOM #3 SOM #4 SOM #5

NASH 0.90 0.88 0.89 0.90 0.88

R 0.95 0.94 0.95 0.95 0.94

RB −1.29 % −2.54 % −2.75 % −0.97 % −3.60 %
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Analyzing the results from the calibration data set,
it was observed that the correlation, relative bias and
efficiency of NASH varied from 0.94 to 0.95, −3.60 %
to −0.97 % and 0.88 to 0.90, respectively. High cor-
relations and values of NASH together with low rela-
tive bias indicate that the models were efficiently
calibrated. The findings also suggest that all SOM
structures presented similar performance in the
calibration.
The correlation and NASH results for the validation

data set suggest that SOM #5 outperformed the other
Fig. 4 Allocation of calibration data in SOM #5
structures, indicating the better match between calcu-
lated and observed sediment yields. As for the relative
bias, the SOM #3 was the best, but presented the worst
values for NASH and correlation coefficients. Overall, it
can be assumed that the SOM #5 provided better per-
formance than the other structures when a new set of
data (validation) was presented.
Figure 4 shows the allocation of calibration data, also

known as hits, in the map calibrated for SOM #5. From
this map, it is possible to observe that most of the data
is concentrated in the upper right corner.
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Figure 5 illustrates the component planes for SOM
structure #5. The color scales represent the values of
neurons according to the position in the map. The yel-
low and black zones correspond to higher and lower
values of neurons weights, respectively. Analysis of Fig. 4
and the component plane for sediment yield in Fig. 5
shows that most of the rainfall events resulted in the
generation of small amounts of sediments while few pro-
duced larger amounts.
Runoff, rainfall amount and rainfall intensity were

found to be directly correlated to sediment yield, as re-
vealed by an examination of Fig. 5. This result was expected
and is coherent with those found by Farias & Santos (2014).
The color gradients of rainfall duration and intensity

confirmed an inverse correlation between these variables.
Analyzing the results from the sediment yield map of
components, it is found that high and low sediment yields
occur when there were low and high vegetation average
heights, respectively. This was also an expected outcome
since high vegetation heights tend to reduce the effects of
rainfall intensity and, consequently, the production of sed-
iments, and vice-versa.
The dry period (i.e. the number of previous days with-

out rainfall events) did not seem to directly influence
the production of sediments. This could be justified by
Fig. 5 Component planes for SOM #5
the fact that the longest dry periods coincided with low
amounts of rainfall and runoff.
It was verified that the component planes can be

used as a tool for identifying inverse and direct rela-
tionships among the study variables, mainly due to the
possibility of visual identification by means of the color
gradients.
The comparison between observed and calculated

sediment yields generated by the SOM #5 for the cali-
bration and validation data sets can be seen in Fig. 6 and
7, respectively.
For estimation purposes, hydrological models with

NASH equal to or higher than 0.75 are considered to be
accurate, and acceptable when the NASH is higher than
0.36 (Collischonn 2001). In the case of the SOM struc-
ture #5, the NASH coefficients for calibration and valid-
ation data sets 0.88 and 0.73, respectively. The
correlation values were also considered high for both
calibration (R = 0.94) and validation (R = 0.91). The
values for relative bias indicated an underestimate of
sediment yields of −3,6 % and −8,42 % for calibration
and validation data sets, respectively. These values can
be assumed as low, since their absolute magnitudes were
less than 10 %, indicating that the proposed model has
an acceptable quality.



Fig. 6 Comparison between observed and calculated sediment yields generated by the SOM #5 for the calibration data set
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The performances of the models were found to be simi-
lar to those found by Farias & Santos (2014), who devel-
oped a model based on SOM to estimate sediment yield
in an erosion plot located in a semiarid land of Brazil.
As opposed to physically-based models, the empirical

nature of SOM structures simplifies the soil erosion mod-
eling by not requiring field measurement of parameters
for their calibration. Although SOM models are very prac-
tical, they are meant to be applied to specific locations.
This type of methodology also demands long term data
and dynamic recalibration with up-to-date information in
order to take into account changes in the watershed, such
as climate and land cover changes (Farias & Santos 2014).

Conclusion
In this paper, we compared five structures of Self-
Organizing Maps (SOM) with the purpose of estimating
Fig. 7 Comparison between observed and calculated sediment yields gene
sediment yield based on runoff and climatological data
at the micro-watershed scale. The case study was a
micro-watershed within the Sumé Experimental Basin,
which is located in a semiarid region of Brazil.
An analysis of the models indicated that the proposed

SOM structures were efficiently calibrated. The SOM
structure with 6 × 8 neurons was the most effective for
estimating sediment yields when considering the valid-
ation data set. The generated maps of components en-
abled a detailed analysis and understanding of the
runoff-erosion process examined in this study.
The empirical nature of the SOM structures simplifies

the modeling of erosion processes since it only needs an
investigation of the analyzed period. This type of meth-
odology is location specific and demands long term data
and dynamic recalibration with up-to-date information
in order to take into account changes in the watershed.
rated by the SOM #5 for the validation data set
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