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Abstract

Background: Determining the spatial distribution of tree heights at the regional area scale is significant when
performing forest above-ground biomass estimates in forest resource management research. The geometric-optical
mutual shadowing (GOMS) model can be used to invert the forest canopy structural parameters at the regional
scale. However, this method can obtain only the ratios among the horizontal canopy diameter (CD), tree height,
clear height, and vertical CD. In this paper, we used a semi-variance model to calculate the CD using high spatial
resolution images and expanded this method to the regional scale. We then combined the CD results with the
forest canopy structural parameter inversion results from the GOMS model to calculate tree heights at the regional
scale.

Results: The semi-variance model can be used to calculate the CD at the regional scale that closely matches
(mainly with in a range from − 1 to 1 m) the CD derived from the canopy height model (CHM) data. The difference
between tree heights calculated by the GOMS model and the tree heights derived from the CHM data was small,
with a root mean square error (RMSE) of 1.96 for a 500-m area with high fractional vegetation cover (FVC) (i.e.,
forest area coverage index values greater than 0.8). Both the inaccuracy of the tree height derived from the CHM
data and the unmatched spatial resolution of different datasets will influence the accuracy of the inverted tree
height. And the error caused by the unmatched spatial resolution is small in dense forest.

Conclusions: The semi-variance model can be used to calculate the CD at the regional scale, together with the
canopy structure parameters inverted by the GOMS model, the mean tree height at the regional scale can be
obtained. Our study provides a new approach for calculating tree height and provides further directions for the
application of the GOMS model.

Keywords: Geometric-optical mutual shadowing (GOMS) model, Semi-variance model, Canopy diameter, Tree
height, Regional scale

Introduction
Tree height is one of the main forest vertical structural
parameters, and it can reflect the overall state of the forest
structure. Moreover, tree height is the main input param-
eter for estimating forest volume and forest above-ground
biomass (AGB). It also represents a natural characteristic of
the allometric growth mechanism and an indicator of forest

total resource utilization, biomass productivity, spatial
distribution, death, rebirth, etc. (Enquist et al. 1998; Enquist
et al. 2009; Enquist and Niklas 2001; Muller-Landau et al.
2006; West et al. 2009). Research on tree height has far-
reaching significance for the study of forest ecosystems.
The main methods of obtaining tree height in forest

studies include field measurements, statistical model
estimates, and physical model inversions based on field-
measured data or remote sensing data. A total station
device is an instrument that is often used to measure
tree height in the field and it provides direct, current,
accurate and reliable data for determining the three-
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dimensional coordinates of a tree. Although the field
measurement method can obtain tree height with high
accuracy, the detected area is limited due to the substan-
tial technical requirements and material resource costs.
In forest science studies, statistical regression methods
have been widely used to investigate vegetation parame-
ters of forests, and according to the principles of tree
growth, the tree height in a specific zone is highly corre-
lated with numerous forest parameters, including the
diameter at breast height (DBH) (Ercanlı 2020) and
stand age (Xiong et al. 2016). Richard (Carmean and
Lenthall 1989; Payandeh 1974; Payandeh and Wang
1994a), Logistic (Chen et al. 1998; Nigh and Sit 1996;
Thrower and Goudie 1992; Wang and Klinka 1995), and
Weibull (Payandeh and Wang 1994b; Yang et al. 1978)
are the most frequently used statistical models to esti-
mate tree height. However, these statistical models are
primarily based on field measurements, and obtaining
the stand age and DBH at the regional scale is unfeas-
ible. Statistical models are not well-suited for calculating
tree height at the regional scale. With the development
of remote sensing science and technology, remote sens-
ing data have been widely used to retrieve tree height.
Laser radar technology is the main method for obtain-

ing high-resolution tree height data, and researchers
have developed numerous algorithms to derive tree
height from LiDAR data (Nelson et al. 1997; Nilsson
1996). Airborne laser scanning (ALS) provides 3D struc-
ture information as well as the intensity of the reflected
light and has become established as an important instru-
ment in forestry applications (Edson 2011). ALS has
been successfully used to estimate the canopy height,
leaf area index (LAI), biomass and other variables
(Dubayah et al. 2010; Lefsky et al. 2005; Lefsky et al.
2007; Ma et al. 2014; Riaño et al. 2004). Data from ALS
can provide precise individual tree detection (ITD), and
researchers use the spectral (Breidenbach et al. 2010;
Heinzel and Koch 2012; Leckie et al. 2003) and intensity
information (Huo and Lindberg 2020) for ITD studies.
Lefsky et al. (2002) showed that together with the re-
mote sensing of topography, the three-dimensional
structure and function of vegetation canopies can be dir-
ectly measured and forest stand attributes accurately
predicted. Means et al. (1999) reported that compared
with field-measured tree height, large-footprint, airborne
scanning LiDAR can be used to precisely characterize
stand structure with R2 equal to 0.95. However, the weak
penetration of laser pulses in dense forest coverage
makes it difficult to obtain the forest canopy vertical
structural parameters using this method, and the high
cost and the lack of mapping capacity also limit the ap-
plication of ALS at regional and global scales (Sun et al.
2006; Swatantran et al. 2011). Thus, developing a
method to obtain tree height at regional and global

scales is critical for improving forest studies and
developing long-term strategies for forest ecosystem
protection.
The geometric-optical mutual shadowing (GOMS)

model increases the suitability of the geometric-optic
model for highly dense canopy forests (Li and Strahler
1992) and is particularly suitable at the regional scale.
The GOMS model describes the tree canopy 3-D
structure and successfully establishes the relationship
between forest structure parameters (e.g., average vege-
tation coverage, average tree height, crown size) and the
canopy bidirectional reflection distribution function,
yielding the relationship between canopy structure
parameters (e.g., clear height, crown radius, forest
canopy distribution) and the canopy reflection character-
istics (Li and Strahler 1985). Then, forest canopy struc-
tural parameters can be inverted by the GOMS model.
However, the GOMS model can obtain only the ratio
between different canopy structural parameters, such as
b/R and h/b, in which R represents the horizontal radius
of an ellipsoidal crown, b represents the vertical half axis
of an ellipsoidal crown, and h represents the height at
which a crown center is located (Li et al. 2015). To
obtain tree height, field-measured data and LiDAR data
are required to provide the canopy diameter (CD) or
clear height (Fu et al. 2011; Ma et al. 2014). Realistically,
in tree height studies, high-accuracy field-measured data
and LiDAR data are not always available at the regional
scale. Easily and cheaply providing CD or other canopy
structure parameters as prior knowledge for the tree
height calculation process through the GOMS model is
an important and meaningful research direction in tree
height studies. Therefore, in this study, we attempted to
build a method for calculating the CD or clear height
with optical remote sensing data instead of field-
measured and LiDAR data; then, tree height at the
regional scale can be easily obtained using the GOMS
model. We learned from the research of Song et al.
(2010), who successfully calculated CD by using high-
resolution imagery, and applied the CD calculation
method to the regional scale. We chose the Dayekou
forest study site as a study area, used a semi-variance
model to calculate the CD, and then extended this
method to the regional scale. Then, combined with the
canopy structural parameters inverted by the GOMS
model, including b/R and h/b, tree height (H = h + b)
could be calculated. The accuracy of the estimated tree
height was validated using canopy height model (CHM)
data derived from LiDAR data.

Materials and methods
Study site
The study site, Dayekou forest (100° E, 38.6° N), is
located in the Qilian Mountain area of Gansu Province,
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China. The Heihe Basin is the second largest inland river
basin of the arid region in northwestern China, with
annual precipitation of 140 mm (Li and Xu 2011) in the
middle valley. Dayekou is located in the middle valley of
the Heihe River Basin, and most of the area is covered
by forest and upland meadow. The main vegetation
types in the Dayekou forest are Picea crassifolia,
shrubland and upland meadow, and the dominant forest
type is P. crassifolia.
The locations of the field measurement sample plots

are shown in Fig. 1. One super sample plot sized 100
m × 100m is located within the yellow line surrounding
the pixels as indicated within the Dayekou site. The
super sample plot was divided into 16 parts, each sized
25m × 25m. In each small sample plot (B 1–16), all
parameters related to trees were measured, including
LAI and canopy structure parameters (tree height,
canopy diameter, etc.). The field-measured canopy struc-
ture parameters measured in these super sample plots
are described in the section of field-measured data. The
super sample plots were relatively homogeneous.

Data foundation
Field-measured data
Field measurements in the super sample plots were
performed in June 2008. The measured geometrical
structural parameters included the horizontal radius of
the tree crown (R), tree height (H), clear bole height (h),
and DBH. The height of each tree in the super sample
plots was measured via a laser altimeter (TruPulse 200,
Laser Technology Inc. (LTI), Norristown, PA USA).

Field-measured data (Chen and Guo 2008) were used to
construct a prior knowledge database of the canopy
structural parameters for the GOMS model.
The protocols for each instrument used in the sample

plots and the sample-plot layouts were as described in a
previous study (Fu et al. 2011).

Bidirectional reflectance data and high spatial remote
sensing data
In this research, both bidirectional reflectance data and
optical high spatial resolution remote sensing data were
used. The detailed information on the datasets is
provided in Table 1. Moderate-resolution Imaging
Spectro Radiometer (MODIS) and Multi-angle Imaging
Spectro radiometer (MISR) reflectance products were
used to build the multi-angle bidirectional reflectance
(BRF) datasets (Fu et al. 2011; Li et al. 2015), which were
the input data in the canopy structure parameter inver-
sion process performed by the GOMS model. SPOT-5
data can be used to acquire the spectral information (G,
C, Z and T) (Fu et al. 2011), and we also used the
SPOT-5 image to perform the supervised classification
with the Environment for Visualizing Images (ENVI;
Exelis, Inc., Boulder, CO, USA) to provide the landcover
information for the CD calculation process in the
section of tree height and CD results derived from the
CHM data (Fig. 11). Airborne CCD multi-band imagery
(Li et al. 2017; Xiao 2018) was used to calculate the
spatial variation in the study area with the semi-variance
model in the section of tree height and CD results
derived from the CHM data (Fig. 2) (Song et al. 2010).

Fig. 1 Standard false color image (SPOT-5) of the experimental sites. The super sample plot is outlined in black. The area outlined in yellow of
this map is the same as that of the CCD image shown in Fig. 2
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Airborne LiDAR data provided the CHM information to
estimate the accuracy of the tree height inversion
results.

Methods
GOMS model and inversion strategy
The GOMS model was constructed based on the Li-
Strahler geometric-optical model (Li and Strahler 1992),
which assumes that the reflectance of a pixel can be
modeled as a sum of the reflectance of its individual
scene components weighted by their respective areas
within the pixel (Li and Strahler 1985) and that the vege-
tation canopy bidirectional reflectance distribution func-
tion (BRDF) characteristics at the pixel scale can be
explained by the geometric-optical principle. The

sensors receive the ground reflection and the crown
reflection in the field of view A (“A” is the assumption
that the area of the field of view is A).
Considering the 3-D forest canopy structural parame-

ters, the influence of sky light, and multiple scattering,
the received signal of A can be defined as a combination
of the four area-weighted components:

S ¼ K gG þ K cC þ K zZ þ K tT ð1Þ

where S refers to bidirectional reflectance factor (BRF);
Kg, Kc, Kz, and Kt are the proportions of sunlit back-
ground, sunlit crown, shaded background, and shaded
crown, respectively; and G, C, Z and T are the contribu-
tions of the sunlit background, sunlit crown, shaded
background, and shaded crown, respectively (Li and
Strahler 1986).
Assuming that the tree crown shape is ellipsoidal

(Fig. 3a), Kg, Kc, Kz and Kt can be expressed by a com-
bination of the forest canopy structural parameters such
as R, b, h and n (the number of crowns per unit area).
In the GOMS model, the ellipsoid model is simplified

into a spheres model (Fig. 3b); then, Kg, Kc, Kz and Kt

can be expressed as:

Table 1 List of remote sensing data

Data Acquisition time Spatial resolution (m)

BRF datasets 1 May to 28 July 2008 500 (MODIS)

1000 (MISR)

SPOT 10 August 2008 10

Airborne CCD 26 July 2012 0.2

Airborne LiDAR data 28 June 2008 0.5

Fig. 2 CCD image of the Dayekou site
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K g ¼ exp − n� τi þ τv −O θi; θv;∅i −∅vð Þ½ �ð Þ ð2Þ
where

τi ¼ πR2= cosθi ð3Þ
τv ¼ πR2= cosθv ð4Þ

and O(θi, θv,∅i −∅v) is the shaded area in Fig. 3b. ∅i

and ∅v are the solar azimuth and view azimuth, respect-
ively, and θi and θv are the revised solar zenith angle and
view zenith angle, respectively:

θi ¼ tan − 1 b=Rð Þ tanθi 0
� �

ð5Þ

θv ¼ tan − 1 b=Rð Þ tanθv 0
� �

ð6Þ

where θi
′ and θv

′ are solar zenith angle and view zenith
angle, respectively.

K c ¼ 1 − exp − n� 1
2

1þ i
!
; v!

D E� �
τv
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ð7Þ

K t ¼ exp − n� 1
2

1þ i
!
; v!

D E� �
τv
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− exp − n� τvð Þ

ð8Þ
K z ¼ 1 − K g − K c − K t ð9Þ

Then, the GOMS model can be expressed by the func-
tion below:

S ¼ f θi;∅i; θv;∅v; θs;∅s; nR
2; b=R; h=b;Δh=b;G;C;Z;T

� 	 ð10Þ
where nR2 represents the crown coverage condition

per unit area in the nadir observation, b/R affects the
crown coverage density in the non-nadir direction; h/b

affects the outward width of the hot spot; and Δh/b
describes the discrete degree of the crown height distri-
bution and affects the bowl-shape of the BRDF (Δh is
the variance of the h distribution in one pixel) (Li et al.
2015). θs and ∅s are the local slope and aspect, respect-
ively. θi, ∅i, θv and ∅v are the solar zenith angle, solar
azimuth, view zenith angle, and view azimuth, respect-
ively (Fu et al. 2011; Ma et al. 2014). In this study, we
assume that the reflected intensities of the shadow on
the ground and on the canopy are the same (i.e., Z
equals T). Thus, the model is simplified with three area-
weighting components (G, C and Z).
The multi-stage, sample-direction dependent, target-

decisions (MSDT) inversion method (Li et al. 1997) was
adopted to segment invert the observation data and the
parameters in the GOMS model. In this method, the
most sensitive observation data were used to invert the
most sensitive parameters; then, the previous inversion
results were used as the prior knowledge in the next par-
ameter inversion stage. The parameter inversion order is
based on the uncertainty and sensitivity matrix (USM),
which presents the sensitivity of the parameters to the
observational data in different viewing directions. The
USM function can be expressed as

USM p; qð Þ ¼ ΔBRF p; qð Þ
BRFexp pð Þ ð11Þ

where ΔBRF(p, q) is the maximum difference of BRF cal-
culated by the model when only parameter q changes in
its uncertainty and other parameters remain fixed, and
BRFexp(p) is the BRF calculated by the model at the pth
geometry of illumination and viewed with all parameters
at their expected values. Based on our previous study

Fig. 3 a Forest canopy shape as an ellipsoid. b A single sphere viewed at position v and illuminated at position i (Li and Strahler 1992). θi and θv
are the revised solar zenith angle and view zenith angle, respectively. ∅i and ∅v are the solar azimuth and view azimuth, respectively. ∅i −∅v is
the azimuthal difference between the illumination and viewing directions. τi and τv are the sunlit shadow and viewed shadow, respectively. The
shaded area is the mutual shadowing area of the sunlit shadow and viewed shadow
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(Fu et al. 2011), the inversion order of all the parameters
in the GOMS model is RC- > RG- > RZ and NIRC- > (b/
R, NIRZ, Δh/b)- > NIRG- nR2. RC-RG-RZ refers to the
BRF information of sunlit crown, sunlit background, and
shaded area in the red band, and the NIRC-NIRG-NIRZ
refers to the BRF information of the sunlit crown, sunlit
background, and shaded area in the near-infrared (NIR)
band. Then, the parameters in both the NIR and red
bands were used to calculate h/b. From the inversion
order results, R (R = CD/2) was not a very sensitive
parameter in the GOMS model; thus, using the CD pro-
vided by other data sources as prior knowledge in the
GOMS model inversion procedure to calculate tree
height would not cause substantial error.

Semi-variance model
The semi-variance model is a tool to build the relation-
ship between the underlying scene and the image spatial
properties and the image spatial properties can be mea-
sured by calculating the spatial variation of a spatial ran-
dom variable. In a remote sensing image, each digital
number (DN) is linked to a unique location on the
ground and can be considered the realization of a spatial
random function: DNi = f(xi), where DNi is the digital
number for the ith pixel, xi is the geographic location
vector for the ith pixel, and f is the random spatial func-
tion. The DNs of a remotely sensed image can be treated
as a spatial random variable. Therefore, the image spatial
properties can be estimated by calculating the spatial
variation in DN.
A semivariogram (Fig. 4) is a plot of semi-variance

against the lag that separates the points used to estimate

the semi-variance and can be used to study the spatial
properties of the underlying scene (Song 2007).
A semivariogram contains three parameters: the sill,

the range and the nugget effect. The sill is the maximum
value of semi-variance that presents the total variance of
the scene, and it can be calculated by the semi-variance
model. The range is the distance at which the semi-
variance reaches the sill value, which reflects the scale
characteristics of the scene. When the distance between
points in space is equal to or greater than the range,
these points can be considered to be independent of
each other. The nugget effect is the semi-variance at lag
zero.
The semi-variance model is defined as follows:

γ f hð Þ ¼ 1
2
E f xð Þ − f xþ hð Þð Þ2
 � ð12Þ

where γf(h) is the semi-variance for points with lag h in
space, f(x) is the realization of a spatial random function
at location x, f(x + h) is the realization of the same func-
tion at another point with lag h from x, and E(.) denotes
the mathematical expectation (Song et al. 2010).
Based on the semi-variance model and the theory of

Jupp et al. (1988, 1989), the disc scene model was devel-
oped, which simplifies the representation of a forest
scene. The model assumes a scene that is composed of
discs, and the brightness value of a disc does not change
in overlapped areas. The model is constructed from the
relationship between the scene structure and the spatial
characteristics of image DNs. Based on the disc scene
model, Song et al. (Song 2007; Song et al. 2002; Song
and Woodcock 2003) developed a model that relates the

Fig. 4 Typical shape of a semivariogram over a stationary scene (Song 2007)
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ratio of the sill at two spatial resolutions to the diameter
of the object as follows:

Cz1

Cz2
¼

R 1
0 tT tð Þ e

λAcT
tDp1
D0

− 1

� � !
dt

R 1
0 tT tð Þ e

λAcT
tDp2
D0

− 1

� � !
dt

ð13Þ

where Dp1 and Dp2 are the pixel sizes of the two spatial
resolutions; D0 is the diameter of the object (forest CD);
and Cz1 and Cz2 are the sills of the regularized semivar-
iograms at spatial resolutions Dp1 and Dp2, respectively.
γz1z2 is used to denote the ratio (Cz1/Cz2) described in
the latter part of the paper (e.g., γ12 denotes the ratio of
the image semi-variance at a spatial resolution of 1 m to
that at 2 m).
‘A’ represents the object area:

A ¼ πD0
2

4
ð14Þ

T(t) represents the overlap function for the objects in
the scene:

T sð Þ ¼ 1
0
1
π

�
t − sinð

h ¼ 0
tð ÞÞ

h≥D0

h < D0 ð15Þ

where

s ¼ h
D0

ð16Þ

cos
t
2

� �
¼ s ð17Þ

In Eq. (13), the ratio of the sill of the regularized vario-
gram of two different spatial resolutions would be solely
determined by the scene structure, which is independent
of the brightness value of the pixels. Therefore, the ratio
of image variances can be used to estimate the tree
crown size across sensors and sites.

Flowchart of the methods
Figure 5 shows a flowchart of our method, which
consists mainly of three parts: the first for the CD
calculation process based on the semi-variance model,
the second for the tree height estimation process
using the CD results from part 1 along with the in-
version results obtained from the GOMS model, and
the third for the tree height accuracy validation
process.
In the CD calculation process, we applied the CD

estimation process of Song et al. (Song 2007; Song
et al. 2002; Song and Woodcock 2003) to the Daye-
kou forest site using the regularized semi-variance
model and high spatial resolution CCD imagery. The
optimal fitting function between the sill and the field-
measured CD was constructed based on the 16 super
sample plots. We first cut the 16 sample plots out of
the CCD image employing binarization, then

Fig. 5 Flowchart of the method
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resampled the binary results to different spatial reso-
lutions (1, 2, … 6 m), and finally calculated the sill ra-
tio value of the 16 images at a different spatial
resolution. Second, we built the function between the
field-measured CD and the sill ratio value and se-
lected the best fitting relationship as the optimal fit-
ting function. Using the supervised classification
results for the SPOT-5 image, the method was ap-
plied first to the experimental small plot and then to

the whole image. We also used the CD derived from
the CHM data to analyze the accuracy of the CD data
calculated based on the CCD image.
Canopy structural parameters could be inverted by the

GOMS model, and in combination with the CD results
described above, tree height can be estimated. Finally,
we used the revised CHM data derived from LiDAR to
validate the tree height accuracy calculated by the
GOMS model.

Fig. 6 Correlation between the tree height derived from CHM data and the field-measured tree height at the single-tree scale

Fig. 7 Tree height derived from the CHM data at a 25-m spatial resolution
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Results
Tree height and CD results derived from the CHM data
Since there was not enough field-measured tree
height data for our study area, CHM data rather
than field measurement data were used to provide
the tree heights for the inversion results validation
process. Local filtering with a canopy height-based
variable window size (Popescu et al. 2002) was used
to identify a single tree to extract the single-tree
height within the super sample plot. The results
showed that the field-measured tree height and the
extracted single-tree height based on the CHM data
have a high correlation, with an R2 equals value of
0.72 (Fig. 6). The CHM data can be used to provide
single-tree scale tree height information.
We further set the sampling unit to a size of 25

m × 25 m and extracted all single-tree heights in each
sampling unit, then calculated the mean value of all
single trees as the mean tree height of this sampling
unit. In this section, the function in Fig. 6 was used
to revise the CHM data. After the removal of the
non-forest pixels based on the supervised classifica-
tion results indicated in the section of supervised
classification results based on the SPOT image, the
mean tree height distribution map of the study area
at a 25-m spatial resolution was generated, as shown
in Fig. 7.
LiDAR data have typically been used to calculate

CD in forest studies (Popescu et al. 2011) when
field-measured CD values are not available. We con-
structed the relationship between the tree height

derived from the CHM data and the field-measured
CD of the super sample plots. The single-tree points
in the CHM data with tree height error ranges
smaller than 10% compared with field-measured tree
heights were selected to build the function shown in
Fig. 8. The results showed that tree height derived
from the CHM data had a linear relationship with
the field-measured CD values, with a high determin-
ation coefficient of 0.61. Thus, we used the function
in Fig. 8 to calculate the CD (Fig. 9) as a reference
for the validation process of the CD results calcu-
lated in the section of canopy diameter results esti-
mated by the semi-variance model.

Canopy diameter results estimated by the semi-variance
model

In our study, each of the super sample plots had a
size of 25 m × 25 m; therefore, in this part, all the
sample plots used to calculate the CD are 25 m × 25
m. The mean field-measured CD of each sample plot
can be calculated as follows:

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1CDi
2

n

s
ð18Þ

where CD is the mean CD of the plot, n is the number
of trees within the plot, and CDi is the individual tree
CD within the stands.

Fig. 8 Correlation between tree height derived from the CHM data and the field-measured CD data
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Optimal fitting function between the sill and field-measured
canopy diameter
The optimal fitting function between the sill and the
field-measured CD is constructed based on the 16 super
sample plots. The mean field-measured CD is calculated
according to Eq. (18). Because of the low binarization
accuracy (e.g., at sample plot No. 14, the quality of the
CCD image is low) and insufficient detailed information

on the super sample plots (e.g., sample plots No. 4 and
No. 5 contained a large hole and presented low LAI with
reduced canopy density), only 13 sample plots were
selected to provide the CD data for the modeling
process. The results in Table 1 show that the ratios (γ25)
between the sill under 2-m and 5-m spatial resolution
conditions are the most accurate for estimating the CD,
with an R2 value of 0. 72 (Fig. 10). The negative

Fig. 9 CD derived from the CHM data based on the function indicated in Fig. 8

Fig. 10 Relationship between γ25 and CD
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correlation (R) in Table 2 indicates that when the spatial
resolution of an image decreased, the sill ratio values of
larger CD images decreased faster than the smaller CD
images; this result also supports the results reported by
Song (2007).
Therefore, the optimal fitting function between CD

and the sill ratio value was:

CD ¼ - 0:28 � γ25 þ 3:94 R2 ¼ 0:72 ð19Þ

Supervised classification results based on the SPOT image
As described in the section of optimal fitting function
between the sill and field-measured canopy diameter,
the optimal fitting function was built based on the
super sample plots sized 25 m × 25 m. To apply Eq. (19)
to a larger scale, selected sample plots at a larger scale
with areas 25 m × 25 m and high forest vegetation
coverage, which are highly similar to the super sample
plots, must first be determined. Thus, in this part, a

supervised classification process was employed to select
the sample plots for further CD calculation at the re-
gional scale. The maximum likelihood method in ENVI
was used to perform the supervised classification with
SPOT-5 data (described in the section of bidirectional
reflectance data and 163 high spatial remote sensing
data), and the classification result is shown in Fig. 11
(pixels in green represent the forest coverage zone).

Canopy diameter calculation results for a small
experimental plot
We first applied Eq. (19) to a MODIS 500-m pixel
within which the super sample plots were located. The
small experimental plot information is shown below in
Fig. 12.
Based on the classification results (Fig. 12 (upper-

right)), we picked out the forest pixels and set the others
to black (DN = 0). We next performed a binarization
process with the selected forest pixels by setting the sun-
lit forest crown area to black (DN = 0) and the shaded
area to white (DN = 255) (Fig. 12 (bottom-right)). We
then divided the binarization results of the small experi-
mental plot into 20 × 20 parts, each sized 25m × 25m,
and resampled each forest pixel to 2-m and 5-m spatial
resolutions to calculate the sill ratio value (γ25) by using
the semi-variance model described in the section of
semi-variance model. Then, the CD could be estimated
for the small experimental plot. The results showed that
the threshold of the CD value is from 0 to 4m, with
most values distributed between 2 and 4m (Fig. 13).
When the CD calculated by the semi-variance model

was compared with the CD based on the CHM data for
a small experimental plot (the section of Tree height

Table 2 Relationship between tree crown size and image
variance of multiple resolution image (R is the correlation
coefficient, and R2 is the determination coefficient)

R2 R R2 R R2 R

γ1 0.03 0.18 γ13 0.40 −0.63 γ26 0.31 −0.55

γ2 0.17 0.42 γ14 0.54 −0.73 γ34 0.59 −0.77

γ3 0.30 0.55 γ15 0.66 −0.81 γ35 0.65 −0.80

γ4 0.47 0.69 γ16 0.41 −0.64 γ36 0.18 −0.42

γ5 0.60 0.77 γ23 0.49 −0.70 γ45 0.17 −0.41

γ6 0.40 0.63 γ24 0.62 −0.78 γ46 0.00 0.03

γ12 0.26 −0.51 γ25 0.72 −0.85 γ56 0.13 0.36

Fig. 11 Supervised classification results based on the SPOT-5 image with a spatial resolution of 25 m
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and CD results derived from the CHM data), the differ-
ence value (D-value) results (Fig. 14) demonstrated that
the difference between the two CD data points was
small, with a concentrated distribution from − 1 to 1 m.
We also compared the CD derived from the CCD

image of the 13 super sample plots used in Eq. (19)
with the CD derived from the CHM data. The re-
sults showed that the CDs derived from the CCD
image were smaller than those derived from the

CHM data, but these values were highly correlated,
with an R value of 0.79 and an RMSE of 0.37 m
(Fig. 15). The validation results showed that the
semi-variance model can be used to precisely
calculate CD.

CD calculation results at the regional scale
To expand the CD calculation process to the regional
scale, SPOT, CCD and CHM images with the same

Fig. 12 Small experimental plot information in the area within which the super sample plots were located. True color CCD image (middle),
supervised classification results (upper-right) and binarization results (bottom-right) with a spatial resolution of 0.5, 25, and 0.5 m, respectively

Fig. 13 CD derived from the CCD image
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coverage were used. To precisely match the supervised
classification results based on the SPOT image with
those of the CCD image used in the semi-variance
model and to perform pixel-to-pixel comparisons of the
CD data based on the CCD image with the CD data
based on the CHM data, these data must be pre-
processed. As the spatial resolution of the CHM data is

0.5 m, we first transferred the supervised classification
results of both the SPOT data and the CCD image to a
spatial resolution of 0.5 m so that the CD calculated
based on the CCD image could be compared with the
CD derived from the CHM data pixel-to-pixel. In this
process, the forest pixels were defined as those with
forest vegetation coverage greater than 0.75, which

Fig. 14 D-value results of comparison between the two CD datasets (CD derived from the CHM data minus the CD derived from the CCD image)

Fig. 15 Correlation between CD derived from the CCD image and CD derived from the CHM data
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means that in the transferred supervised classification
results, the number of forest pixels sized 0.5 m × 0.5 m is
more than 187 for the 25m × 25m area. Then, the CCD
image was used to calculate CD with the supervised clas-
sification results at 25-m spatial resolution according to
Eq. (19). The calculated CD results shown in Fig. 16
demonstrate that most pixel values were concentrated
from 2 to 4 m.
When the CD results shown in Fig. 16 were compared

with the CD derived from the CHM data, the D-value
results (Fig. 17) showed that most D-values were con-
centrated from − 1 to 1 m, with RMSE of 1 m for all
data. These results showed that this method can pre-
cisely calculate CD at the regional scale.

Tree height estimated results based on the GOMS model
and the semi-variance model
In this paper, the BRF datasets built as described in the
section (Bidirectional reflectance data and high spatial
remote sensing data) were at 500-m spatial resolution.
Of all the inversion results, the spatial resolution of all
the observational data and parameters in the GOMS
model was 500m. However, the spatial resolution of the
CD data calculated by the semi-variance model was 25
m (the Section of CD calculation results at the regional
scale). When combining the CD data and the GOMS
model inversion results to calculate the tree height, we
transferred the CD data from 25- to 500-m spatial reso-
lution with Eq. 18. As shown in Fig. 18, the results dem-
onstrated that the standard deviation of a 500-m pixel
was mainly concentrated at 0.5 m, which reflected that

in one 500m × 500m pixel, the difference in CD among
the subpixels sized 25 m × 25m was small. Through this
method, high-accuracy CD results at a 500-m spatial
resolution could be obtained. Combined with the inver-
sion results (b/R and h/b) provided by the GOMS model,
tree height at a 500-m spatial resolution could be calcu-
lated (Fig. 19a). We also calculated tree height based on
the CHM data at a 500-m spatial resolution by averaging
all single trees in one 500-m scale pixel; the results are
shown in Fig. 19b.
We compared the inverted tree height calculated by

the GOMS model and the tree height derived from the
CHM data. In the pixel outlined in black (Fig. 19)
wherein the super sample plots were located, the tree
height calculated by the GOMS model and that derived
from the CHM data were 7.34 and 9.60 m, respectively.
The difference between the two tree heights was small.
We also calculated the threshold of the tree height

(equals the mean value ± standard deviation value, with
the standard deviation value calculated when upscaling
CHM tree height from single-tree point to 500-m spatial
resolution scale) of each pixel. The relationship between
the thresholds and the tree height calculated by the
GOMS model is plotted in Fig. 20a. The results showed
that, most of the inverted tree heights are within the
threshold range, and the GOMS model will overestimate
tree height with low tree height pixels. Since the GOMS
model was more suitable for a high-FVC coverage area,
we then compared the two different tree heights among
pixels with high forest coverage ratios (greater than 0.8);
the difference between them was small, with an R value

Fig. 16 CD results derived from the CCD image with a 25-m spatial resolution
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of 0.49 and RMSE of 2.44 (Fig. 20b). The low RMSE
showed that with CD provided by another data source as
prior knowledge for the GOMS model, tree height could
be accurately calculated for dense crown areas.

Discussion
The results described in the section of optimal fitting
function between the sill and field-measured canopy
diameter support the research of Song et al. (2007) with
different sample plots of different crown sizes; when the
spatial resolution of the sample plots decreased, the sill
value decreased faster with larger crown size sample
plots than with smaller ones. Moreover, in the optimal
fitting function, the sill ratio was closer to the real size
of the crown canopy than the spatial resolution of the
sample plots.

In the validation process, the data values of the CD
(the section of CD calculation results at the regional
scale) and inverted tree height (the section of tree height
estimated results based on the GOMS model and the
semi-variance model) results were close to those of the
validation data (with low RMSE), but the R2 was small.
We further attempted to determine which factors influ-
enced the accuracy of the inverted tree height. Two rea-
sons were identified, as discussed herein: (1) The
inaccuracy of the tree heights derived from the CHM
data. In the section of canopy diameter calculation re-
sults for a small experimental plot, local filtering with a
canopy height-based variable window size was used to
extract single-tree points, with an R2 of 0.72 compared
with the field-measured tree height. Thus, the extracted
tree height used as the true tree height of one pixel
could cause errors in the later comparison process.

Fig. 17 D-value results of comparison between the two CD datasets (CD derived from CHM data minus the CD derived from the CCD image)

Fig. 18 CD upscaling results from 25- to 500-m spatial resolution. Standard deviation results (a); CD upscaling results (b)
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However, due to insufficient field-measured tree height
data, these datasets must be used to perform the valid-
ation. (2) The unmatched spatial resolution of different
datasets may cause errors in the data transference
process. As described in the section of canopy diameter
results estimated by the semi-variance model, CD results
must be based on the transferred CD at 500-m spatial
resolution, referring to the effective CD of a 500 m ×
500m pixel, which had a different physical meaning with
the CD (true CD) in the GOMS model. This difference
may cause an error when calculating tree height using
these effective CD data, especially in areas with low
FVC.
Since the inaccuracy caused by factor (1) was inevit-

able due to the shortage of field-measured tree height
data, we conducted further testing to explore the im-
portance of the effect of factor (2) on the inaccuracy of
the estimated tree height result.
We combined the CD data derived from the CHM data

(Fig. 9) with the canopy structural parameters inversion
data derived from the GOMS model to calculate tree height
and then compared these with the CHM data. The com-
parison results (Fig. 21) showed that in the pixels with high

FVC (forest coverage ratio higher than 0.8), the tree heights
derived from the CHM data were slightly higher overall
than the tree heights obtained from the GOMS model but
also showed high correlation, with an R value of 0.79 and a
RMSE of 1.56. The results shown in Fig. 21 were better
than those shown in Fig. 20b, which means that when com-
paring tree height calculated by the GOMS model with that
derived from the CHM data, the accuracy uncertainty
emerges primarily in the process of transforming CDs to
tree heights. However, despite the low consistency, both
RMSEs (2.44 and 1.56) shown in Figs. 20b and 21 were low,
which demonstrates that the method detailed in our study
is suitable for areas with high FVC.

Conclusions
In this study, we provided CD data derived from a high
spatial resolution image as a priori knowledge for the
GOMS model to obtain tree height data at the regional
scale. We first built the optimal relationship function be-
tween the sill calculated by the semi-variance model and
the field-measured CD, and then applied the optimal
function at the regional scale (the section of CD calcula-
tion results at the regional scale) to obtain CD data

Fig. 19 Tree height calculated by the GOMS model (a); tree height derived from the CHM data (b)

Fig. 20 Comparison between tree heights calculated by the GOMS model and tree height threshold derived from the CHM data (a) and tree
heights derived from the CHM data (forest coverage ratio greater than 0.8) (b)
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covering the entire image. Moreover, by combing the
CD results described in the section of CD calculation re-
sults at the regional scale and the canopy structure pa-
rameters (b/R and h/b) inversion results derived from
the GOMS model, tree height at the regional scale could
be obtained (the section of canopy diameter results esti-
mated by the semi-variance model). The results showed
that γ25 (the ratio between the sill values when the
spatial resolution of the image was 2 and 5m) had the
greatest R2 of 0.72 with the CD. Moreover, the differ-
ences between the tree heights calculated by the GOMS
model and the tree heights derived from the CHM data
were small. We also found that the calculated tree height
result had high accuracy in an area with high FVC, exhi-
biting an RMSE of 2.44 in the pixels for which the forest
area coverage index was greater than 0.8.
However, several problems remained unresolved. For

example, additional field-measured data are needed for
the modeling process to increase the precision of the op-
timal function when using the semi-variance model to
calculate CD. Additionally, many pixels did not match
the assumption of the GOMS model; therefore, BRF data
at a higher spatial resolution are needed for future stud-
ies. Moreover, inconsistencies in the spatial resolution
between the calculated CD results and the inversion re-
sults of the GOMS model can also lead to inaccurate
tree height calculation results. Although there are several
uncertainties with the method used in this research, our
project provides a novel concept for calculating tree
height cheaply and easily, which has far-reaching

relevance in the field of forest studies, especially for
difficult-to-reach areas or for cases in which prior know-
ledge of forest structural parameters is lacking. There-
fore, in a forthcoming study, we will focus on improving
the accuracy of our modeling process and obtain multi-
angle BRF data with higher spatial resolution to perform
canopy structural parameter inversions.
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