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Abstract

Background: Under ongoing climate and land-use change, biodiversity is continuously decreasing and monitoring
biodiversity is becoming increasingly important. National Forest Inventory (NFI) programmes provide valuable time-
series data on biodiversity and thus contribute to assessments of the state and trends in biodiversity, as well as
ecosystem functioning. Data quality in this context is of paramount relevance, particularly for ensuring a meaningful
interpretation of changes. The Swiss NFI revisits about 8%-10% of its sample plots regularly in repeat surveys to
supervise the quality of fieldwork.

Methods: We analysed the relevance of observer bias with equivalence tests, examined data quality objectives
defined by the Swiss NFI instructors, and calculated the pseudo-turnover (PT) of species composition, that is, the
percentage of species not observed by both teams. Three attributes of woody species richness from the latest
Swiss NFI cycles (3 and 4) were analysed: occurrence of small tree and shrub species (1) on the sample plot and
(2) at the forest edge, and (3) main shrub and trees species in the upper storey.

Results: We found equivalent results between regular and repeat surveys for all attributes. Data quality, however,
was significantly below expectations in all cases, that is, as much as 20%-30% below the expected data quality limit
of 70%-80% (proportion of observations that should not deviate from a predefined threshold). PT values were
about 10%-20%, and the PT of two out of three attributes decreased significantly in NFI4. This type of uncertainty —
typically caused by a mixture of overlooking and misidentifying species — should be considered carefully when
interpreting change figures on species richness estimates from NFI data.

Conclusions: Our results provide important information on the data quality achieved in Swiss NFls in terms of the
reproducibility of the collected data. The three applied approaches proved to be effective for evaluating the quality
of plot-level species richness and composition data in forest inventories and other biodiversity monitoring
programmes. As such, they could also be recommended for assessing the quality of biodiversity indices derived
from monitoring data.

Keywords: Biodiversity, Data quality, Equivalence test, Forest inventory, Monitoring, Observer agreement, Richness,
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Background

Biodiversity is important for sustaining ecosystem func-
tioning (Tilman et al. 2014) but can also constitute, pro-
mote and stabilize ecosystem services (Balvanera et al.
2006; Cardinale et al. 2012; Mace et al. 2012). Under on-
going climate and land-use change, biodiversity is con-
tinuously decreasing, which in turn threatens nature’s
contribution to human livelihood and well-being (IPBES
2018). Therefore, monitoring biodiversity is a valuable
and feasible approach to assess the state and trends of
ecosystem functioning and services. National Forest In-
ventories (NFIs) were initially set up to provide statisti-
cally reliable estimates of timber-related resources to
stakeholders such as politicians, ecologists, forest ser-
vices and the timber industry, and to national and inter-
national organizations and projects. Since the
importance and demand for quantitative information on
aspects of biodiversity are growing, NFIs have gradually
included attributes of structural diversity (Storch et al.
2018; Brandli and Hégeli 2019), species richness and
species composition, which are highly relevant for
reporting biodiversity indicators (FOREST EUROPE
2015). Their long history (Norway’s NFI just celebrated
its 100th birthday with a conference; NIBIO 2019)
means that they have produced long-term data series on
biodiversity. These time series can be used to assess the
effect of past changes or the success of mitigation mea-
sures on biodiversity and ecosystem services. However,
robust assessments of changes in monitoring or survey
data depend on high-quality data.

Collecting data for biodiversity monitoring in general,
and forest inventories in particular, usually involves
resource-intensive fieldwork on a large number of sam-
ple plots. Most of the recorded data are, however, expert
judgements (e.g. on forest structure or the identity of
species) rather than measurements (e.g. tree diameter or
height). Assessing the quality of recorded biodiversity in-
dicators hence essentially translates into quantifying ob-
server error typically associated with overlooking or
misclassifying species. Observer error is comprehensively
investigated in forest health monitoring programmes
(e.g. Allegrini et al. 2009; Bussotti et al. 2009; Ferretti
et al. 2014) and in vegetation surveys (e.g. Vittoz et al.
2010; Burg et al. 2015; Morrison 2016). Observer agree-
ment, the inverse of observer error, refers to the extent
of agreement between observer ratings, quantified by
measures such as agreement coefficients (Gwet 2012).
Most studies on the quality of vegetation surveys use a
predefined experimental design to evaluate the reliability
of results by assessing the level of agreement between
many observers that record biodiversity in the same
plots. Quality assessment and control frameworks, as
established in NFIs, usually evaluate data quality based
on repeat or control surveys, where 5%—10% of all plots
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are revisited by different (groups of) observers (Tomppo
et al. 2010). These surveys focus on the evaluation of
data quality in terms of the reproducibility of the assess-
ments, determined by the variation in measurements
made on a subject under changing conditions, e.g. due
to measurements being made by different observers
(Bartlett and Frost 2008).

We analysed the quality of woody species richness data
assessed in the Swiss NFI and addressed the questions:
(i) Is the detected magnitude of observer bias relevant?
(ii) Does data quality meet expectations defined by data
quality objectives? (iii) Has the quality of species identifi-
cation in the Swiss NFI improved over time? In the fol-
lowing, we provide an overview of the approaches used
to address these questions and how they are best applied
for data collected from Swiss NFI repeat survey data. Fi-
nally, we discuss how the answers to these questions can
help improve data quality in vegetation surveys in gen-
eral and in NFIs in particular.

Methods

Data sources

The Swiss NFI is a multisource and multipurpose forest
inventory. The field measurements encompass about
6400 permanent sample plots, arranged on a systematic
1.4 km x 1.4 km sampling grid. Each sample plot consists
of two concentric circles of 200 m* and 500 m?* and an
interpretation area of 50 m x 50 m. Starting with NFI4
(2009-2017), continuous fieldwork has been carried out
over a nine-year inventory cycle. Each annual survey
(panel) is representative of the entire country and covers
one-ninth (about 700 plots) of the complete sample. In
total about 280 attributes are assessed per sample plot;
many of them cover tree and stand characteristics, but
several attributes concern species richness. Details on
the methods and the design of the Swiss NFI are pre-
sented in Fischer and Traub (2019). In the NFI4 a total
of twenty employees were hired, but the majority of
fieldwork was conducted by four teams of two em-
ployees, who assessed about half of the sample plots
(2748 out of 5641). In NFI3 (2004-2006) forty em-
ployees were hired, and about half (3313 out of 6914) of
the sample plots were visited by eight teams.

The annual repeat surveys are a pillar of the quality as-
sessment and control framework of the Swiss NFI
(Traub et al. 2019). Since the first NFI (1982-1986), they
have been carried out on a varying random subsample of
the NFI panel to evaluate the reproducibility of survey
measurements. The repeat surveys are carried out by the
field teams in parallel to the fieldwork of the regular an-
nual surveys. The allocation of teams to the repeat sur-
vey is solely driven by organizational aspects and by the
rule, that teams never revisit their own plots (Cioldi and
Keller 2019). About 9% (626) of the sample plots in
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NFI3 and 8% (438) in NFI4 were revisited with a repeat
survey. The majority of the field work was conducted by
seven teams in NFI3 and four teams in NFI4 who man-
aged about the half of the repeat survey. All attributes of
a plot are remeasured using the same methods and
equipment as for the regular survey. The data assessed
by the regular field team are not accessible during the
repeat surveys to assure an independent re-
measurement of the plot (‘blind check’). With this type
of repeat survey nothing can be said about the correct-
ness of the results stemming from either the regular or
the repeat survey, since the true attribute value is un-
known. That is, the validity of the results or any attribu-
tion of performance to individual teams cannot be
derived, and consequently observer error cannot be
ascertained. During the entire field season (April-No-
vember), a team manages to assess two sample plots per
day on average, and thus the resources needed for the
repeat survey can roughly be derived from the number
of repeat survey plots assessed.

We analysed NFI3 and NFI4 data and investigated the
reproducibility of three attributes that are basic elements
of biodiversity indicators: (i) occurrence of tree and
shrub species that reach 40cm in height but are less
than 12 cm in diameter at breast height, assessed on the
200 m? circle of the concentric NFI sample plots (Woo-
dySp); (ii) number of tree and shrub species at the forest
edge, assessed along a line up to 50 m in length (FoEdge);
and (iii) main shrub and trees species in the upper storey
of the relevant stand with crown cover >5%, assessed on
the 50 m x 50 m interpretation area (UpStorey). The attri-
bute UpStorey corresponds to Indicator 4.1 ‘tree species
composition’ of Forest Europe (FOREST EUROPE 2015).
All species were selected from the exhaustive species list
of woody plants, as defined in the NFI field survey manual
(Diiggelin 2019). In Table 1 general statistics of the exam-
ined attributes are presented.

A schematic representation of the components of rich-
ness assessments is illustrated in Fig. 1, where (a)

Table 1 Statistics of richness for the three attributes woody
species (WoodySp), forest edge species (FoEdge) and upper
storey species (UpStorey). Cv (%): coefficient of variation; Med:
median. Database: regular field survey of NFI3 and NFI4
(accessible forest without shrub forest)

NFI Repeat survey
Cycle  Mean Ccv (%) Med n n
WoodySp 4 9.24 71.53 8 5641 438
3 7.85 7244 6 6914 626
Fokdge 4 1187 4186 12 831 60
3 9.84 47.31 10 1010 95
UpStorey 4 2.89 52.85 3 3874 268
3 2.70 52.87 3 5079 398
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denotes the number of species present on both occa-
sions, (b) the number of species reported in the regular
survey but not in the repeat survey, and (c) the number
of species reported in the repeat survey but not in the
regular survey (Baselga 2012). Nestedness is a special
situation where the composition of species observed on
one occasion is a subset of the composition of species
recorded on the other occasion. In this case either (b) or
(c) equals zero (but not both).

Magnitude of observer bias

From a statistical point of view, the richness data of the
regular and the repeat survey were collected from a
paired sample, assuming that the observed subjects and
their true attribute values remained unchanged between
the regular and repeat survey. Observed differences are
usually evaluated by hypothesis tests, such as a paired t-
test, or by visual inspection of the corresponding confi-
dence intervals (e.g. Kercher et al. 2003; Burg et al. 2015;
Traub et al. 2019). However, the aim in analysing obser-
ver bias is to demonstrate that the mean difference in
richness is zero. In a classical t-test, with Hy : x-p =0
and Hy : x-u=0, an effect such as a bias can be demon-
strated if H, is rejected. However, one cannot conclude
that there is no bias if Hy is not rejected by this type of
hypothesis specification. Consequently, in our study the
agreement or equivalence between richness measure-
ments of regular and repeat surveys was evaluated by
the ‘two one-sided t-test’ (TOST) method for paired
samples, a standard test of equivalence. Basic assump-
tions of the TOST method can be found in Schuirmann
(1987), and a general overview and discussion of equiva-
lence tests is provided by Walker and Nowacki (2011),
Mara and Cribbie (2012), Ialongo (2017) and Lakens
(2017). An application of equivalence tests in forestry in
the context of modelling is found in Robinson et al
(2005). The formal notation of TOST hypotheses was:
Ho:p<po—mor pzpo+mand Hy:po—m < p < po + m.
The target variable y was derived from the richness dif-
ference between the regular and repeat survey, with
u=(@+c)-(a+b)=c-b (Fig. 1), m = critical margins
of relevance (a subjective choice of an interval within
which richness differences are considered negligible or
not relevant), and po=0 (the value y is tested against).
The calculation of t-values is explained in Add-
itional file 1: Eq. S1.

H, of the TOSTs stated that the mean richness would
differ by more than the critical margins. If H, was
rejected we concluded that the results of the regular and
the repeat survey were equivalent for practical purposes,
that is, observer identity had no practical impact on the
mean richness values from the survey sample. The crit-
ical margins m were determined by the NFI instructors
based on their expectation of richness differences that
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Fig. 1 Schematic representation of the components of species richness assessment and pseudo-turnover (PT) situations, adapted from Baselga
(2012). Each number represents a different species. a: number of species reported in both surveys; b: number of species reported only in the
regular survey; ¢: number of species reported only in the repeat survey; a + b: richness of regular survey; a + c: richness of repeat survey

\

should not be exceeded. They decided on a maximum
difference of + 2, 3 and 0 species as critical margins for
the attributes WoodySp, FoEdge and UpStorey, respect-
ively. Following the central limit theorem, we assumed
that the mean of richness differences was normally dis-
tributed and that the sample size for all attributes was
always 72> 60. We evaluated the results by interpreting
confidence intervals (CIs) to conclude if richness mea-
surements were equivalent. Details on the construction
and interpretation of TOST-based Cls are given in Add-
itional file 1: Figure S1. The TOSTs were completed
with SAS PROC T-TEST (SAS Institute 2014). Details
on the computational methods are presented in SAS In-
stitute (2013).

Assessing data quality objectives

The assessment of observer bias, based on the deviation
in reported species richness between observers, already
delivers valuable information about data quality. Equal
richness values, however, could be obtained from com-
pletely different species compositions resulting from
high rates of misidentification, which is not in harmony
with the goal of achieving the highest possible data qual-
ity. The data quality objectives (DQO) method involves
a more detailed evaluation of the variability between the
regular and repeat surveys; as explained above, even in
the absence of bias, results may still lack sufficient ob-
server agreement in terms of precision.

DQOs quantify the degree to which we are willing to
accept this deviation between observers by applying: (i)
quantifiable threshold values, called measurement qual-
ity objectives (MQOs), which define a tolerance level of
the sum of exclusive species (b + ¢) which should not be
exceeded; and (ii) data quality limits (DQLs), which de-
fine the proportion of measurements expected to comply
with the MQOs (Allegrini et al. 2009; Ferretti 2009).
Data quality results (DQR) constitute the observed pro-
portion of cases compliant with the MQO, i.e. the pro-
portion of measurements that do not exceed the MQO.

The DQOs of the examined attributes are listed in
Table 2. The DQO narrative for the example of Woo-
dySp would read: “The sum of exclusive species must
not exceed two species and we expect this limit to be
met in at least 80% of all observations.” The MQOs and
DQLs defined by the NFI instructors were based on
their best guess of what experienced field teams should
be able to achieve in the long term, rather than optimal
results under ideal conditions (Pollard et al. 2006). At
the same time, the MQOs reflect the degree of deviation
that is thought to be non-trivial or practically important.

The DQO definition can easily be transformed into a
one-sided test for binomial proportions (Zar 2010) that
assesses whether the actual DQR proportion ppoe sig-
nificantly exceeds the expected DQL proportion ppgr
based on the hypotheses Hy:ppor < ppor (the DQR is
inferior to the DQL) and H4: ppor > Ppor (the DQR is
superior to the DQL - which would demonstrate
sufficient data quality). The DQR proportion is calcu-
lated as ppor :%Z(MQOCDmpl)? where MQO, o is
calculated per sample plot by MQO o =1 if (b+c)<
MQO and 0 otherwise. The binomial test statistic is
computed as:  z=(ppor—Ppqr)/stderrpgr,  with

stderrpqr = \/Ppoi(1-Ppqr)/n  (Zar 2010, eq. 24.30).

By constructing a confidence interval of ppgr, We can
evaluate Hy:ppor>ppor- Several methods were ap-
plied to calculate CIs for the binomial proportions,

Table 2 DQO specification for the sum of exclusive species.
MQO: measurement quality objectives (tolerated sum of
exclusive species b + ¢, DQL: data quality limits (expected
proportion of samples that meet the MQO)

Attribute MQO (b+0¢) DQL (%) Coverage threshold®
WoodySp 2 80 < 5%
Fokdge 3 80

UpStorey 0 75 < 6%

®Coverage threshold: exclusive species with coverage lower than the threshold
were not counted
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but their differences were found to be marginal. For
the interpretation of results, we used the “Wilson’ CI
because of its good performance, as stated by New-
combe (1998) and SAS Institute (2014). Inferiority is
found if the upper limit of the CI is below the DQL
and superiority if the lower limit of the CI is above
the DQL. If the upper limit of the CI exceeds the
DQL, results are deemed inconclusive (non-inferiority
is not impossible but also not significant). According
to Cochran (1977), the relationship between sample
size and the width of a confidence interval of a bino-
mial proportion (such as the DQR) can be estimated
on the basis of the normal approximation for infinite popula-
2

L2202 where d = half the width of the 1 a
confidence interval calculated by d = ¢,/, @, with p =

Ppor- All CIs and binomial tests were calculated with SAS
PROC FREQ (SAS Institute 2014).

tions by n ~

Pseudo-turnover and quality development

So far, we have focused on richness differences and on
the number of exclusively found species as measures of
observer bias and uncertainty. As an additional analysis,
turnover assessment involves investigating the agree-
ment in species identifications between observers, thus
providing a more differentiated picture of data quality.
Here we used pseudo-turnover of species composition as
defined by Nilsson and Nilsson (1985), but we acknow-
ledge that any of the available turnover measures could
have been used instead (cf. Tuomisto 2010 for an exten-
sive overview). Pseudo-turnover is defined as PT = (A +
B)/(S_A+S_B )x100, where A and B represent the
number of species exclusively found by team A/B, and
the terms S_A and S_B denote the sum of all species
found by team A/B (a diversity of team A and team B).
According to the notation of Baselga (2012), PT can
equivalently be expressed as PT=(b+c)/(2a+b +c) x
100 (Fig. 1). PT is widely used when assessing reproduci-
bility in vegetation surveys, where values are typically
10%—30% (Morrison 2016).

The definition of Nilsson’s pseudo-turnover (PT) en-
ables the direct and simple interpretation of results as
the proportion of disagreement. For example, an inter-
observer PT of 30% indicates that 30% of species re-
ported were not observed by both teams (Morrison
2016). Thus, PT is an indispensable component in the
evaluation of the data quality of a species diversity
assessment.

The attempt to define DQOs for PT led to ambiguous
results and was not applied in this study. We have fo-
cused instead on the development of PT between inven-
tory cycles, which provides a useful instrument to judge
the development of observer agreement. For the
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construction of CIs, we used the ratio of mean estimator
(Cochran 1977). Details on the CI construction are pro-
vided in Additional file 1: Figure S4.

Power analysis

A power analysis may reveal whether remeasuring 8%-—
10% of the plots is sufficient to detect relevant effects.
Power is the probability of rejecting the null hypothesis
when the alternative is true, that is, the probability of
rejecting a false Hp. Given alpha and #, a certain non-
trivial effect (e.g. the difference between population
means) can be detected with a certain power. The larger
the effect, the more power. The power in an equivalence
test on richness difference is the probability of rejecting
non-equivalence when the richness assessment in fact is
equivalent, that is, the probability of observing the mean
difference within the margins when the true value lies
within the margins. The DQO power analysis corre-
sponds to the z-test for binomial proportions. The
power analysis of PT values (detection of change be-
tween NFI cycles) is based on the ‘two sample t-test for
mean differences with unequal variances’. All power
curves were created with SAS PROC POWER (SAS In-
stitute 2014).

Results

Magnitude of observer bias

Equivalence of richness difference could be demon-
strated for all attributes in both NFI cycles. The 90% Cls
(horizontal line with cap) were entirely contained within
the equivalence margins (Fig. 2); the confidence limits
were substantially far from the specified margins that in-
dicate the threshold to relevant bias, even in the case of
attribute FoEdge with a large CIL. All p-values of the cor-
responding TOSTs were <0.0001 and thus the H, were
rejected. We conclude that no significant bias exists for
any attribute. The 95% CI (horizontal line without cap)
indicates whether a classical t-test would assume signifi-
cant bias if these intervals do not overlap with zero. Our
results show that the t-test would indicate significant bias
for the FoEdge attribute in the NFI3 data (mean = - 0.91,
t=-223, p> |t =0.028).

With regards to sample size and power analysis, we
analysed the NFI4 data of the attribute WoodySp as an
example. Based on the stddev of 2.56, a sample size of
about 42 observations is sufficient to reach a power of
80% given a mean expected richness difference (effect)
of +1. As the effect approaches the critical margin of +2,
more observations are needed to gain this power (n=
164 and n =450 for effects of 1.5 and 1.7, respectively).
The power as a function of sample size and effect size is
presented in Additional file 1: Figure S2.
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Fig. 2 Results from equivalence tests comparing NFI3 and NFI4 richness differences in: (a) woody species (WoodySp), (b) forest edge species
(FoEdge), and (c) upper storey species (UpStorey). The horizontal lines are the confidence intervals (dot = mean). The caps mark the 90% Cls and
the ends of the horizontal lines mark the limits of the 95% Cls. The dashed, vertical lines are the margins within which results were considered
equivalent. Exact values of the means and 90% Cls are given to the right of the figure for NFI3 and NFl4

Assessing data quality objectives

The results of the DQO analysis revealed that the data
quality for all examined attributes in both inventory cy-
cles was below the expectations of the NFI instructors
(Fig. 3). The upper limits of the CIs were all below the
DQL, indicating that the quality in richness assessments
was substantially inferior to the objectives expressed as
DQLs. The percentage of nested sample plots, an indica-
tor of the proportion of overlooked species, varied be-
tween 24.25% (UpStorey NFI4) and 38.95% (FoEdge
NFI3). Only the quality of the attribute UpStorey im-
proved substantially in NFI4; the DQR increased from

51.51% to 64.93% and the nestedness decreased from
39.20% to 24.25%. The complete results are given in
Additional file 1: Table S1.

Since the CIs of the DQR do not encompass the
specified DQL, no effect exists in terms of the speci-
fied Ha : Ppor > Ppor, and in that sense power and
sample size calculations have no meaning. Neverthe-
less, we carried out a power analysis using hypothet-
ical effect sizes. Under Hy=0.8, the analysis showed
that a sample size of 368 plots is needed to detect an
effect of 0.05 (that is, a DQR proportion of 0.85) with
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Fig. 3 DQR results of the NFI3 and NFI4 repeat surveys for woody species (WoodySp), forest edge species (FoEdge) and upper storey species
(UpStorey). Crosses depict data quality limits (DQL) and circles refer to the data quality results (DQR), i.e. the observed mean results comparing
regular and repeat surveys with their 95% confidence intervals (Wilson)

a power of 80%. A sample size of at least 498 plots is
needed to detect this effect with a power of 90%.
More details on sample size and power for four ex-
amples of DQR proportions can be found in Add-
itional file 1: Figure S3.

Pseudo-turnover and quality development

Pseudo-turnover (PT) between the regular field survey
and the repeat survey ranged from 15.45% to 22.98% in
NFI3 and from 9.88% to 19.22% in NFI4 (Fig. 4). In both
NFIs, we observed the highest PT for woody spe-
cies composition and the lowest for upper storey species,

with intermediate values for forest edge species compos-
ition. We found generally lower PT in NFI4 compared
with in NFI3, with significant differences for upper
storey and woody species composition (non-overlapping
CIs in Fig. 4), but a non-significant decrease in PT in
forest edge composition. Detailed results of the PT ana-
lysis are presented in Additional file 1: Tables S2 and S3;
Figure S4 shows that estimating the PT ClIs in different
ways would not have changed the interpretation of
results.

The analysis of the PT components (Additional file 1:
Table S3) revealed different reasons for the observed

WoodySp | WoodySp FoEdge FoEdge UpStorey UpStorey
S 4 3 4 3 4
30 n=626 n=438 n=95 n=60 n=398 n=268
25 I
20 I
g
= 154
'_
o
10 E
5 -
0 -
Fig. 4 Mean and Cls of pseudo-turnover (PT) for the three assessed richness attributes woody species (WoodySp), forest edge species (FoEdge)
and upper storey species (UpStorey) in NFI3 and NFI4. The mean (triangles) and stderr of the Cl (grey whiskers) were calculated using the ratio of
means estimator
J
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changes in PT. Whereas the improvement in attribute
WoodySp was largely based on a significant increase in
the number of species found in both surveys (a) from
6.40 (stderr=0.18) in NFI3 to 7.86 (stderr=0.27) in
NFI4, the number of exclusive species (b +c) was not
significantly lower in NFI4. Contrarily, the improvement
in PT for the attribute UpStorey was predominantly
caused by a significant decrease in the number of exclu-
sive species from 0.86 (stderr=0.06) in NFI3 to 0.61
(stderr =0.06) in NFI4. The PT value and its compo-
nents of the FoEdge attribute showed a neutral behav-
iour: both exclusive species and those reported in both
surveys have not significantly changed.

The power analysis was calculated for the attribute
WoodySp as an example, based on a standard deviation
of 15% in NFI3 and 12% in NFI4, with a sample size re-
lationship of 3/2. It revealed that a power of 80% could
be reached for a PT difference of 5%, 4% and 3% with at
least 235, 365 and 645 observations, respectively. A
graphical representation of the relationship between
sample size and power to detect significant PT differ-
ences is presented in Additional file 1: Figure S5.

Discussion

Our analyses show in general that the quality in species
assessments has increased from the third to the fourth
NFI cycle. We could further demonstrate equivalence in
richness assessment, the pre-defined data quality objec-
tives, however, have not been met. Our study also shows
that species turnover has decreased from NFI3 to NFI4.
Below, we discuss the three investigated research ques-
tions, critically examine statistical aspects of our ap-
proaches, and discuss implications and potential
extensions of our work. Although biodiversity monitor-
ing and inventories vary in many aspects — measurement
protocols, time available for the assessment, and the
level of training to name just a few — we also compare
our findings with data quality assessments of diversity
indicators from other inventories wherever possible.

Interpretation of observer bias

Since we expect observers to come to the same result
when assessing richness attributes on unchanged NFI
sample plots, we hope to find evidence for equivalence
rather than difference in the richness value. The results
of the applied TOST equivalence tests consistently dem-
onstrated equivalence, that is, we found no systematic
deviation (bias) for any attribute examined in both NFI
cycles. In other words, the Swiss NFI would not need to
worry about data quality if reporting species richness
were the sole relevant indicator. We also observed that
the classical t-test on differences indicated significant
bias in one case, a discrepancy that highlights that using
t-tests is problematic when aiming to prove that richness
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differences do not significantly deviate from zero. Since
the probability of rejecting the null hypothesis increases
as sample size increases, the TOST approach is more ro-
bust in that the conclusion of equivalence does not
change with increased sample size. A detailed discussion
on this issue is found in Mara and Cribbie (2012).

The definition of critical margins in TOST introduces
an additional element into the testing method, but any
serious planning of an experiment based on sample size
and power calculations requires that one defines the
practical relevance of an effect as well.

Assessing data quality objectives

The DQR proportions and associated Cls from the re-
peat survey samples revealed that the data quality objec-
tives in terms of species richness are currently not met
in the Swiss NFIL. The gap of up to 30% to the target ob-
jectives is certainly large. Several aspects could contrib-
ute to this result. The instructors could simply have
overestimated the performance of the observers: were
the MQOs set unrealistically low, or the DQL unachie-
vably high? We observed that the instructors managed
to define the MQO quickly and with reasonable confi-
dence, whereas the expected DQL proportion was thor-
oughly debated, which could suggest that DQLs were set
at rather large values. On the other hand, the instructors
ended up using the DQL as an important MQO-‘waiver’
that enabled them to cope with the difficulties in rich-
ness assessments, bearing in mind (i) the demanding sit-
uations during field measurement and (ii) the general
performance of survey teams perceived during the past
field seasons, which should prevent overly high expecta-
tions in terms of DQL. The data at hand does not pro-
vide a definitive answer, suggesting that targeted tests
that determine the accuracy of re-surveys by a single
person might be needed. Knowing how well an observer
can replicate its own assessment should help determine
realistic MQOs and DQLs.

The results, however, could also reflect that training
for the observers is simply insufficient or inadequate.
Discussing this aspect at length goes beyond the scope
of this study and demands a critical and thorough in-
spection of the training activities within the Swiss NFIL.

Although we could not find a conclusive explanation
for the failed DQO tests, the potential for data quality
monitoring using this method is clear. DQOs are applied
in different fields of quality assessments in forest moni-
toring. Allegrini et al. (2009) applied DQO in the context
of ICP-Forests quality assurance procedures, and Bus-
sotti et al. (2009) applied DQO to monitoring tree crown
conditions. A comprehensive set of DQO definitions and
results is available for the US forest inventory FIA (Pol-
lard et al. 2006). Gasparini et al. (2009) assessed the
quality of photo interpretation as applied in the Italian
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NFL. For the evaluation of the control survey data of the
Japanese NFI, MQOs for tree species richness were de-
fined in terms of a coefficient of variation (cv) threshold
(Kitahara et al. 2009), which makes sense if a reference
value (control group) exists. This type of DQO, however,
is not applicable to the Swiss NFI, since a true reference
value is not available from the repeat survey.

Pseudo-turnover and quality development

The pseudo-turnover assessment demonstrated that the
quality in species determination increased significantly
from NFI3 to NFI4. The three investigated attributes dif-
fered with respect to data quality as assessed by PT, but
compared quite well with values known from the litera-
ture. Our average results from the latest inventory cycle
2008-2017 (NFI4) of woody species in the 200 m? circle
(WoodySp, PT =19.22, stderr = 0.6) and along the forest
edge (FoEdge, PT =16.95, stderr = 2.03) were quite close
to results published for the Japanese NFI (17.3%, Kita-
hara et al. 2009), while PT values of tree species in the
upper storey (UpStorey, PT =9.88, stderr=0.97) were
even better. The lowest PT for UpStorey richness and
highest value for WoodySp richness could be explained
by the fact that UpStorey species richness on average is
much lower than WoodySp, which lists all woody spe-
cies in the more diverse understorey, because the vari-
ance increases with the mean. However, the average of
species richness is only one of several determinants of
quality and PT. For example, FoEdge richness should in
theory show the highest PT values because it has the
highest average richness, but it actually exhibits inter-
mediate values. Other factors related to the complexity
in recording (such as correctly setting the start and end
points of the transect, which determines which individ-
ual trees belong to the forest edge) could be linked to
the small and insignificant quality increase in forest edge
richness in NFI4. The power analyses indicate that re-
peating ca. 10% of all survey plots provides sample sizes
(up to approx. 440 in NFI4) that are large enough to
achieve decent power. This is congruent with the recom-
mendation of several authors and customary practice in
NFIs. Optimization towards the minimal required frac-
tion of repeated plots, however, requires in-depth power
analyses.

Implications for the Swiss NFI

As a first implication of this study, the data quality of all
investigated richness attributes improved from NFI3 to
NFI4. This increase in quality can be expected because
knowledge, as well as the amount of advanced training
of the observers, has steadily increased over time. More-
over, data for NFI4 was recorded continuously by a core
of four teams over the period of 9 years, whereas the
data for NFI3 was collected within a period of 3 years by
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a core of seven teams. Hence, switching the data collec-
tion system can be considered a good choice in terms of
the quality of biodiversity data.

A second implication relates to how data quality can
be further improved. Differences in species richness and
pseudo-turnover between regular and repeat surveys are
mainly caused by two factors: misidentification and over-
looking of species. For example, Archaux et al. (2009) re-
ported that on average 15.5% of shrubs and trees taller
than 2 m were overlooked and 2.3% were misidentified
in his analysis of French ICP-level II plots. Misidentifica-
tion can be prevented by improved training. However,
additional training comes with additional costs, and it is
of crucial importance that the resources required for
additional training are viewed in relation to the expected
benefit. A decision on the amount and form of add-
itional training must therefore involve not only the in-
structors and field observers, but also stakeholders such
as funding agencies. A rigorous and diversified data-
quality assessment, such as the one presented in our
study, will provide extremely useful information about
expectations and can help in reaching such a decision.

The issue of overlooking unfortunately cannot be elimi-
nated by improved training, but requires a larger sampling
effort either by spending more time on a plot or by adding
more observers. However, even though a greater sampling
effort decreases error from overlooking and could also re-
duce misidentification, organizational constraints and
budget limitations render additional sampling effort un-
feasible in the Swiss NFI — a situation that is likely paral-
leled in other inventories and biodiversity surveys. The
current Swiss NFI standard of working as teams already ap-
pears to be a good measure to overcome overlooking, given
that Vittoz and Guisan (2007) found that pairs of observers
overlook 10%—20% fewer species than single observers.

We further emphasize the need for additional research
because our analyses do not answer all questions related
to data quality. Apart from the additional research that
we mentioned when discussing the specific research
questions, we propose the following avenues of future
research. First, we suggest an in-depth analysis of the ef-
fect of overlooking species on data quality. The nested-
ness component in turnover analyses (Baselga 2010),
that is, cases where the species composition of one sur-
vey is a subset of the composition recorded in the other
survey, should provide insight into overlooking error, as
it is the main cause of nestedness. Second, we suggest
identifying sets of species where observers frequently
disagree. We suspect that closely related species that are
difficult to distinguish (e.g. within the genera Tilia or
Quercus) might contribute to pseudo-turnover to a
greater extent than species that are easier to distinguish.
Third, we imagine that small, targeted experiments
could help answer open questions. For example,



Traub and Wuest Forest Ecosystems (2020) 7:37

experiments where observers and/or field teams have to
identify species in standardized (or artificially created)
plots that harbour various combinations of species in a
fully-crossed experimental design would not only shed
light on intra-observer agreement but would also make
it possible to properly assess bias with a given standard.
Fourth, the repeat survey approach itself is not optimal
to examine the underlying causes of deviations between
regular and repeat surveys. We do not know the true
richness values in the NFI sample plots because there is
no constant control, in other words, no instructor team
that does all repeat surveys and as such can serve as the
reference against which deviations can be compared.
Moreover, the observer combinations (the composition
of field teams in the regular survey and the repeat sur-
vey) are assigned randomly to the sample plots, which
makes it difficult to identify observer combinations that
have substantially larger mean richness deviations com-
pared with others. Analysing control survey data could
investigate the impact of individual survey team mem-
bers by investigating the variation in richness differences
using multiple-membership models.

Conclusions
With respect to our specific study system, we conclude
that the Swiss NFI needs to decide if additional training
for the field crew is needed or if adjusting the quality ob-
jectives is necessary to reach the currently unmet data
quality objectives in the future. Our results may not pro-
duce sufficient insight to reach a conclusion regarding this
question, but they certainly provide guidance for identify-
ing additional investigations. Such studies should include
targeted, small-scale experiments. In combination with
control surveys that set the standard against which repeat
survey results can be compared, these experiments will
make it possible to determine realistic quality objectives.
More generally, and of importance to any inventory or
monitoring programme that surveys species richness, the
combination of the three approaches used in this study
provides a multi-faceted assessment of data quality. Fur-
thermore, we emphasize that statistical rigour is the only
way to prevent false conclusions from being drawn (e.g.
on the existence of bias), implying that accurate assess-
ments of data quality require choosing the right statistical
tools. Finally, we consider repeat survey data to be indis-
pensable because they provide an independent measure of
uncertainty, which is of critical importance when assessing
biodiversity changes in times of ongoing global change.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540663-020-00252-1.

[ Additional file 1. Supplementary material on methods and results. ]
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