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Abstract

Background: Information on above-ground biomass (AGB) is important for managing forest resource use at local levels,
land management planning at regional levels, and carbon emissions reporting at national and international levels. In
many tropical developing countries, this information may be unreliable or at a scale too coarse for use at local levels.
There is a vital need to provide estimates of AGB with quantifiable uncertainty that can facilitate land use management
and policy development improvements. Model-based methods provide an efficient framework to estimate AGB.

Methods: Using National Forest Inventory (NFI) data for a ~1,000,000 ha study area in the miombo ecoregion, Zambia,
we estimated AGB using predicted canopy cover, environmental data, disturbance data, and Landsat 8 OLI satellite
imagery. We assessed different combinations of these datasets using three models, a semiparametric generalized additive
model (GAM) and two nonlinear models (sigmoidal and exponential), employing a genetic algorithm for variable
selection that minimized root mean square prediction error (RMSPE), calculated through cross-validation. We compared
model fit statistics to a null model as a baseline estimation method. Using bootstrap resampling methods, we calculated
95 % confidence intervals for each model and compared results to a simple estimate of mean AGB from the NFI ground
plot data.

Results: Canopy cover, soil moisture, and vegetation indices were consistently selected as predictor variables. The
sigmoidal model and the GAM performed similarly; for both models the RMSPE was ~36.8 tonnes per hectare (i.e, 57 %
of the mean). However, the sigmoidal model was approximately 30 % more efficient than the GAM, assessed using
bootstrapped variance estimates relative to a null model. After selecting the sigmoidal model, we estimated total AGB for
the study area at 64,526,209 tonnes (+/— 477,730), with a confidence interval 20 times more precise than a simple design-
based estimate.

Conclusions: Our findings demonstrate that NFI data may be combined with freely available satellite imagery and soils
data to estimate total AGB with quantifiable uncertainty, while also providing spatially explicit AGB maps useful for
management, planning, and reporting purposes.
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Background

Information on forest resources in tropical developing
countries is challenging to acquire due to financial and
logistical constraints (Holmgren and Marklund 2007;
Skutsch and Ba 2010; Stringer et al. 2012). However,
tropical forest resources are being exploited and con-
verted to other uses at rates that seem to outpace the
capacity for regrowth (Shearman et al. 2012; Brink et al.
2014; Sawe et al. 2014; Suberu et al. 2014). This is espe-
cially true in the miombo ecoregion of southern Africa
(Cabral et al. 2010; Mayes et al. 2015), where forest
productivity is marginal (Frost 1996). In this context,
forest monitoring programs are required to provide in-
formation on forest resources for: i) planning use and
management activities at local levels (Stringer et al
2012); and ii) designing effective policies and measures
at national levels. Above-ground biomass (AGB) is a key
variable of interest in forest monitoring programs, where
estimates of AGB are necessary for assessing fuel wood
and timber availability, as well as for monitoring forest
carbon stocks. Integrating ground plot data from a forest
inventory with environmental and/or remotely-sensed
predictor variables to predict AGB has shown increasing
utility for estimating AGB (Moisen et al. 2006; McRoberts
et al. 2010; Lu et al. 2016; GOFC-GOLD 2015).

Optical remotely-sensed data alone have been used to
estimate miombo AGB with varying success (Samimi
and Kraus 2004; Kashindye et al. 2013; Neesset et al.
2016). The use of these data is complicated by complex,
nonlinear relationships between AGB and vegetation in-
dices (Lu et al. 2016). Active sensor remotely-sensed
data such as Airbone Laser Scanning (ALS) or radar
may provide improved accuracy of AGB models (Ryan et
al. 2012; Mitchard et al. 2013; Mauya et al. 2015; Neesset
et al. 2016), although this is not guaranteed (Solberg et
al. 2015). Another way to improve AGB estimation is to
incorporate percent canopy cover (CC) as a predictor
variable (Tiwari and Singh 1984; Lefsky et al. 2002; Hall
et al. 2006; Gonzélez-Roglich et al. 2014; GOFC-GOLD
2015), particularly since percent canopy cover is more
readily estimated by optical remotely-sensed data (Lefsky
and Cohen 2003; Lu et al. 2016).

Gonzélez-Roglich and Swenson (2016) capitalized on
the relationship between AGB and CC for modeling for-
est carbon in temperate savannahs of South America.
They first developed a model to estimate CC using
Landsat 5 Thematic Mapper along with topographic and
climatic variables, and then used the estimated CC as
the sole predictor to estimate forest carbon. Using this
process, the percent root mean square error (RMSE) for
prediction of forest carbon was 35 %. Similar studies in
arid woodlands of Australia (Suganuma et al. 2006) and
Sudan (Wu et al. 2013) also reported favorable results
using estimated CC to estimate AGB. One complication
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is that the definition of CC varies (Jennings et al. 1999).
In some cases, CC was defined as the percentage of the
sky blocked by tree crowns over a hemispherical view
(Jennings et al. 1999), often measured using a spherical
densiometer. Alternatively, the vertical projection of tree
crowns onto the ground is currently used in many coun-
tries as the basis for minimum forest area definition (FAO
2014). Gonzilez-Roglich and Swenson (2016) used the
former definition, while Suganuma et al. (2006) and Wu et
al. (2013) used the latter. Therefore, it is an open question
as to which measure of CC may better relate to AGB.

Models to estimate AGB that also incorporate informa-
tion on topography, soils, and disturbances may further
improve the accuracy (Moisen and Frescino 2002; Powell
et al. 2010; Pflugmacher et al. 2014; GOFC-GOLD 2015).
In the miombo ecoregion, as in other ecosystems, eco-
logical and physiological factors limit vegetation establish-
ment and survival, while disturbances result in changes to
vegetation structure and composition (Frost 1996;
Chidumayo et al. 1996; Sankaran et al. 2008). Soil charac-
teristics, fire regimes, and anthropogenic use have all been
identified as principal determinants of vegetation struc-
ture (Timberlake and Chidumayo 2011; Ryan and
Williams 2011). Investigations of these and other variables
for estimating miombo AGB appear to be sparse, and fur-
ther exploration is warranted.

The main goal of this research is to investigate
methods for estimating total AGB for a study area
within the miombo ecoregion by using ecologically rele-
vant predictor variables. For this purpose, we compared
models established within a model-based framework,
where inference is derived from the assumption that the
y; observations of AGB are considered realizations of the
random variable Y;, which in turn are realizations of a
random process termed a superpopulation (Gregoire
1998; Stahl et al. 2016). To assess these models, we com-
pared outcomes to a simple design-based estimate com-
monly used in forest inventories. The design-based
estimate assumes that the population of Y; is fixed, not
random, while the sample of y; observations is the
realization of a random process, and inference is inde-
pendent from assumptions regarding the probability dis-
tribution of Y; in the population (Gregoire 1998; Stahl et
al. 2016). In this framework, we then addressed the fol-
lowing specific questions: 1) Which definition of CC is
more useful as a single predictor variable to estimate
AGB, the hemispherical view or the vertical projection
view? 2) Does AGB estimation accuracy improve if CC
is combined with other predictor variables? 3) What
model-based AGB estimation method performs best in
terms of fit and validation statistics? and 4) How do
model-based methods compare to a simple design-based
estimate of the sample mean? This research is intended
as a case study to help inform development of forest
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monitoring programs which apply National Forest In-
ventory (NFI) data to estimation of AGB at sub-national
or national scales.

Methods

Study area

This study was carried out in Nyimba District (14°-15°S,
30°-31°E, ~1,000,000 ha), Eastern Province, Zambia
(Fig. 1). Nyimba lies in the center of the miombo eco-
region, a biome of diverse vegetation types dominated
by tree species from the Caesalpinioideade sub-family of
leguminous plants (Timberlake and Chidumayo 2011).
Across the ecoregion, vegetation composition and struc-
ture varies depending on climate, soil, landscape pos-
ition, and level of disturbance (Frost 1996; Timberlake
and Chidumayo 2011). Nyimba is found within the dry
miombo ecozone and is dominated by four vegetation
types (Table 1; GRZ 1976; Timberlake and Chidumayo
2011). Approximately 75 % of the district can be charac-
terized as forest land, based on canopy cover > 10 % per
0.5 ha area (Halperin et al. 2016). Nonforest land uses
are dominated by small-scale agriculture (Gumbo et al.
2016). Fire is a frequent disturbance, with an estimated
return interval of one to three years (Frost 1996;
Timberlake and Chidumayo 2011). Fires generally result
from people engaged in agricultural land clearing, char-
coal making, and hunting, with early dry-season fires
exhibiting less intensity than late dry-season fires (Frost
1996). Average rainfall is approximately 600-900 mm
per year (GRZ 1968); most rain falls in the December to
February period, with a distinct dry season from May to
November. Soils are generally characterized as Lithosol-
Cambisols on the hills and plateaus, and Fluvisol-
Vertisols in the valleys (GRZ 1986). Elevation ranges
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from 450 m along the Luangwa River valley bottom to
1000 m on the plateau area around Nyimba district cap-
ital, and higher on the mountain tops in the western half
of the district.

Ground plot measurements

Ground plot measurements were collected at 64, 0.1 ha
permanent plots from May — December 2013 (Fig. 1). The
ground plots were located on a systematic 10 km x 10 km
grid corresponding to the Zambian Integrated Land Use
Assessment 2 (ILUA2), an NFI program implemented by
the Zambian Forest Department in collaboration with the
FAO (GRZ 2014). Nationally, the Zambian Forest Depart-
ment collects field data at approximately 20 % of the grid
intersections using a cluster plot design. Each cluster plot
has four 20 m x 50 m rectangular subplots, and each sub-
plot has a nested 10 m x 20 m microplot starting at the
same origin as the subplot. In this study, we collected data
only for the first ground subplot of a cluster to increase the
number of locations within time constraints, thereby cap-
turing variations in conditions and land uses across the
landscape. As such, we refer to the 20 m x 50 m area where
we collected ground measurements as the plot, and the
10 m x 20 m area as the subplot.

Measurements within each ground plot followed the
ILUA2 protocol (GRZ 2014). Species, total height, and
diameter at breast height (DBH; outside bark diameter at
1.3 m above ground) were measured and recorded for each
live tree with DBH > 10 cm at the plot level and each live
tree>5 cm and < 10 cm DBH at the subplot level. These
tree attributes were used to calculate tree-level AGB, using
species-specific allometric models developed by Chidumayo
(2012) and utilized by the Zambian Forest Department
(GRZ 2014). In some cases, species-specific models were
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Table 1 Characteristics of the four dominant vegetation types found in Nyimba District, Eastern Province, Zambia

Vegetation type Dominant species Structure Phenology Fire susceptibility Soils and topography  Source
of dominant species
Dry miombo Brachystegia spiciformis, B.  Open to closed deciduous or  fire-tolerant Nutrient-poor, Timberlake and
woodland boehmii and Julbernardia  two layer canopy,  semi-deciduous plateaus and hills Chidumayo (2011);
globiflora with mean GRZ (2014)
height< 15 m;
dense grass layer
Mopane Colophospermum mopane Open one layer deciduous fire-intolerant Clay dominated, Timberlake (1995);
woodland (generally monospecific)  canopy, with on wide valley bottoms Makhado et al.
height ranging (2014); GRZ (2014)
from 6 to 18 m;
sparse grass layer
Munga Vechellia sp., Senegalia Open one or two  deciduous fire-tolerant Nutrient-rich and Timberlake and
woodland sp., Combretum sp.,, and  layer canopy, well-drained, plateaus  Chidumayo (2011);
trees associated with the  emergents up to GRZ (2014)
Papilionoideae subfamily 18 m; dense grass
layer
Riparian forest ~ Mixed Closed three layer evergreen fire-intolerant Restricted to buffer GRZ (2014)
canopy, up to zones around
25 m; vines significant rivers
commonly
occurring

not available and forest type models were used (Chidumayo
2012). We summarized tree-level AGB in plots and sub-
plots to obtain plot-level AGB in tonnes per hectare (tha
,1)'

We also measured percent CC for each ground plot
using a spherical densiometer and recorded the dom-
inant vegetation type (i.e., miombo woodland, mopane
woodland, munga woodland, or riparian forest, GRZ
2014). We recorded ‘nonforest’ if the ground plot was
dominated by nonforest land use with none of the
vegetation types present. Ground plot coordinates
were determined using a Trimble GeoXT, which were
differentially corrected (+/- 1 m). Lastly, we gathered
GPS line data for roads and point data for village
locations. Most of the ground plots (49) were visited
between 5 May and 30 July 2013, while the remaining
plots (15) were visited between 27 Oct and 6 Dec
2013.

Predictor variables

We employed two types of estimated CC as a single pre-
dictor variable in separate models to estimate AGB.
First, CC was estimated as the vertical projection of tree
crowns onto the ground using a binomial generalized
additive model (GAM) model developed for the same
study area (Halperin et al. 2016), referred to as CCvyggr.-
Second, CC was estimated as the percentage of the sky
blocked by tree crowns over a hemispherical view by
using the densiometer. For this purpose, we built a bino-
mial GAM to estimate percent CC using the same pre-
dictor variable selection methods described in Halperin
et al. (2016), and refer to its estimates as CCypmi. We

compared the results of estimating AGB using either
CCygrr or CCupmi, and used the better performing
model as the base upon which to add other predictor
variables.

Disturbance factors, such as small scale conversion
to agriculture, unmanaged harvesting for charcoal
and timber, and fire are known to affect miombo
AGB (Chidumayo 1988; Frost 1996; Timberlake and
Chidumayo 2011). Proximity to roads and villages
has been shown to be related to increasing levels of
anthropogenic disturbance and decreased AGB
(Helmer et al. 2008; Ahrends et al. 2010). We calcu-
lated Euclidean distance from each ground plot cen-
ter to roads and to villages, based on the GPS line
and point data collected during field surveys
(Table 2). Fire frequency and intensity both impact
miombo AGB, where low intensity burns are more
characteristic of the early dry season when grass is
still curing, and higher intensity burns are more likely to
occur in the late dry season (Ryan and Williams 2011).
We included monthly fire history data for 500 m pixels
for 2003-2013, derived from the MODIS Burned Area
Product (Boschetti et al. 2013). We processed the fire his-
tory data and determined the number of low intensity,
early season fires and high intensity, late season fires per
pixel (Table 2).

Underlying factors that affect miombo AGB in-
clude topography and soils (Frost 1996; Timberlake
and Chidumayo 2011). We assessed landscape pos-
ition using the compound topographic index (CTI),
distance to perennial rivers, and slope percent. These
variables were calculated based on 30 m Shuttle
Radar Topography Mission Digital Elevation Model
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Table 2 Description of disturbance and environmental predictor variables for estimating above-ground biomass at the ground plot level

Predictor variable Description Minimum  Maximum  Mean
Available soil water capacity (AWC) Volumetric fraction 121 15.2 14.0
Bulk density (Bulk) kg-m™~ 1299.6 1501.2 13789
Carbon Organic soil carbon content (g-kg™) 43 1.5 7.0
Cation Exchange Capacity (CEC) cmolckg™ 7.7 218 123
Clay Percent volume 215 35.1 287
Coarse fragments (Crs.frg) Percent volume 22 170 95
Compound Topographic Index (CTI) gg,iteliiisa'l':grn\f;lil;fjri:dicate higher 58 396 8.2
Distance from ground plot to district capital (D2cap) Euclidean distance (m) 5704 90,146 40,635
Distance from ground plot to nearest perennial river/stream (D2hydro) Euclidean distance (m) 91 26,194 7203
Distance from ground plot to nearest village or settlement (D2vill) Euclidean distance (m) 542 42,902 8948
Distance from ground plot to nearest improved road (D2road) Euclidean distance (m) 192 59,363 12,042
Fire history — early season (Fire.early) ;(;trz'alwnijmkieg]of fires per pixel, 00 60 06
Fire history — late season (Fire.late) L?EI rtime(Jjevr ggﬂres per pixel, 0o 80 18
pH Unitless 59.0 67.8 62.6
Sand Percent volume 434 66.2 543
Silt Percent volume 99 22.8 17.0
Slope Percent 0.0 438 84

Minimum, maximum, and mean values calculated from n =64

(USGS 2004) (Table 2). ISRIC — World Soil Informa-
tion has produced a consistent and comprehensive
data source for soils information at 250 m pixel size,
covering the continent of Africa (Hengl et al. 2015).
The data is provided as estimates at six depths (2.5,
10, 22.5, 45, 80, and 150 cm). We downloaded these
data, clipped each dataset to the study area bound-
ary, and calculated the mean across all depths for
each variable (Table 2).

The use of predictor variables developed from op-
tical satellite imagery in models to estimate AGB has
a long history. However, the utility of various bands,
indices, or texture values to use as predictor variables
still remains an area of active research (Banskota et
al. 2014; Lu et al. 2016). We downloaded Landsat 8
OLI data from the Landsat Ecosystem Disturbance
Adaptive Process (LEDAPS) archive that spatially and
temporally corresponded to the study area and the
ground measurements (Path 170, Row 70; Path 171,
Row 70). LEDAPS data are processed to surface re-
flectance (Masek et al. 2006); therefore, we did not
perform atmospheric correction or radiometric
normalization. We created one mosaic from the two
scenes that were found to be in acceptable agreement
with the GPS line data for roads based on visual as-
sessment. We derived 24 predictor variables from
Landsat 8 OLI satellite imagery in order to assess the

use of a wide range of spectral and textural attributes
for predicting AGB (Table 3).

Before selecting pixels to match with ground plots
for all predictor datasets, we masked out major rivers
and paved roads by on-screen digitizing using Landsat
data at 1:10,000. All spatial data were clipped to the
study area boundary. To account for spatial extent
mismatches between ground plot size and predictor
variables, we resampled all predictor variable spatial
data to a 20 m x50 m pixel size using a nearest
neighbor method which maintained the actual pixel
values. The values for each predictor variable were
assigned to ground plots, based on proximity of the
ground plot center to the nearest pixel center for
each predictor variable. Preparation of spatial pre-
dictor variables was conducted using the R raster
package v.2.3-41 (Hijmans et al. 2015) and ArcGIS v.
10.1 (ESRI 2012).

AGB Models

Models using CC only o

As nQEed, we estimated AGB first using either CCvygrr
or CCupmi as a single predictor variable using three
models. A semiparametric GAM was used since it is
well-suited to modeling complex relationships where an
underlying nonlinear relationship is not known a priori
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Table 3 Description of remotely-sensed predictor variables generated from Landsat 8 OLI, used for estimating above-ground biomass at

the ground plot level

Predictor variable Description Minimum  Maximum  Mean  Citation

Albedo Sum of all bands 04156 1.1433 0.7103 Lu et al. (2016)

Albedo.texture® 0.0112 0.6469 0.0661 Hansen et al. (2002)

Atmospherically Resistant Vegetation Index (ARVI)  NIR — 2 x Red — Blue/NIR + 2 -0.1329 0.1974 00494  Kaufman and Tanre (1992)
x Red — Blue

ARVl.texture 0.0039 0.1675 0.0283

Blue band 00115 0.0623 0.0324

Blue.texture 0.0008 0.0556 0.0049

Enhanced Vegetation Index (EVI) 2.5 X ((NIR = Red)/(NIR + (6 x Red) 0.9530 1.6688 14284  Justice et al. (1998)
— (75 x Blue)+ 1)

EVitexture 0.0079 0.1875 0.0545

Green band 0.0297 0.0966 0.0547

Green.texture 0.0006 0.0786 0.0064

Normalized Burn Ratio (NBR) NIR = SWIR2/NIR + SWIR2 -0.1119 0.5962 03084  Key and Benson (2006)

NBR.texture 0.0054 03623 0.0561

Normalized Difference Moisture Index (NDMI) NIR = SWIRT/NIR + SWIR1 -0.2136 03247 0.0475  Jin and Sader (2005)

NDMI.texture 0.0047 0.2289 0.0419

Normalized Difference Vegetation Index (NDVI) NIR - Red/NIR + Red 03133 0.8169 0.5398 Rouse et al. (1974)

NDVI.texture 0.0091 0.3330 0.0482

NIR band Near infrared 0.1187 0.2974 0.2263

NIR.texture 0.0034 0.0455 0.0152

Red band 0.0247 0.1368 0.0685

Red.texture 0.0016 0.1150 0.0106

SWIR1 band Shortwave infrared 1 0.1071 03333 0.2073

SWIRT texture 0.0028 0.1624  0.0205

SWIR2 band Shortwave infrared 2 0.0497 0.2527 0.1212

SWIR2.texture 0.0021 0.1910 00156

Minimum, maximum, and mean values calculated from n=64

“All variables denoted with .texture were calculated using the standard deviation for each band or index using a 3 x 3 pixel window

(Wood 2006). Because of their flexibility, GAMs have
been used to estimate forest attributes from remotely-
sensed data (Moisen and Frescino 2002; Kattenborn et
al. 2015). The form of the GAM is:

. J
log(AGBi) =B + ij(xij) + &, (1)
=1

where i is the ground plot, AGB; is in tha™!, By is the
intercept, ¢; is the residual error, and f; is the smoothing
function for a predictor variable x; created via a regression
spline (Wood 2006). The GAM was fit with a normal dis-
tribution, the log link, and the default variance function.
Using the log link avoids negative AGB estimates. A value
of 0.1 was added to the AGB for two ground plots with no
trees. We found that setting the maximum smoothing
parameter at 2 was sufficiently flexible to account for po-
tential nonlinearity in the model, yet reduce the possibility
of overfitting that may occur in GAM’s (Moisen et al.

2006; Halperin et al. 2016). The GAM was fit with the
mgcv package v. 1.8-9 in R v. 3.2.2 (Wood 2015; R Devel-
opment Core Team 2015).

We also fit two nonlinear models that restricted the
AGB estimate to be positive with an upper limit. First,
we used a sigmoidal model (e.g., McRoberts et al. 2015):

(04

AGB, =
1+ exp(ﬁo +

7 + €, (2)
j=1 B/’Xii)
where parameters are o and the {s, and the other terms

are as in Eq. 1. Second, we used an exponential model,
also used for estimating AGB (e.g., Anaya et al. 2009):

J
AGB; = ax exp E ﬁ//XN + & (3)
ij
=1

To fit these nonlinear models, we used the Gauss-
Newton method in the nls function in R v.3.2.2. Starting
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parameters were estimated using the linearized form of
each nonlinear model (i.e., log (AGB,)). After experi-
menting with a flexible or fixed asymptote a, we found
that setting o = 500 produced realistic estimates. This is
in line with Naesset et al. (2016), who truncated miombo
AGB estimates from linear ordinary least squares models
at twice the maximum observed value in their sample
data. For each fitted model (three models and CCvgrr
or CCypmi), we used 20-fold cross-validation and calcu-
lated the root mean square prediction error (RMSPE)
and RMSPE as a percent of the mean (RMSPE%), de-
fined as:

RMSPE =, /Z% (4)

where y;, is the AGB (tha™') of ground plot i not used
for fitting in fold v, y,, is its corresponding estimate, and
n = the number of ground plots (64). RMSPE% was cal-
culated as:

MSPE
RMSPEY — (R ; )*100, (5)

where 7 is the mean AGB (tha™) calculated from the
ground plots. We then calculated and compared the
mean RMSPE and mean RMSPE% across the three
models using cC VERT OF cC nemi- Based on these valid-
ation statistics, we included either CC VERT OF cC HEMI In
models with multiple predictor variables.

Models using multiple predictor variables

Next, we investigated whether expanding the models
with increasingly diverse combinations of predictor vari-
able sets could improve the accuracy of AGB estimates.
For this purpose, we compared models using: CCygrr or
CCuypmi  alone; remotely-sensed (Landsat) variables
alone; environmental and disturbance (Env/Dist) vari-
ables alone; and combinations of each predictor variable
set (i.e., Landsat and Env/Dist, CCVERT or CCypmr and
Landsat, etc.). A genetic algorithm (GA) was used to
perform predictor variable selection within each pre-
dictor variable set. The GA has been demonstrated to
provide near optimality for predictor variable identifica-
tion and subsetting when there are a large, diverse range
of possible predictor variables (Tomppo and Halme
2004; Garcia-Gutierrez et al. 2014); a description of the
algorithm is given in Scrucca (2013). We set the object-
ive criteria (i.e., “fitness”) to minimize the RMSPE, and
established the GA stopping criteria at 20 consecutive
generations with no improvement in fitness, or a max-
imum of 100 generations. We restricted the number of
variables under consideration to a maximum of six in
each predictor variable set, in order to decrease the risk

Page 7 of 17

of near multicollinearity and overfitting. For each pre-
dictor variable set (except CCygrr or CCypmp alone), we
implemented the GA one time and recorded the lowest
RMSPE. We then calculated and compared mean
RMSPE and mean RMSPE% for each predictor variable
set, and chose the predictor variable set that minimized
these two fit statistics. The GA analysis was conducted
using the GA package v.2.2 in R (Scrucca 2013).

Final variable selection

We performed final predictor variable selection using
the predictor variable set that minimized RMSPE in
the previous section. For this purpose, we imple-
mented the GA 100 times for each model using the
same fitness and stopping criteria as before, and se-
lected the subset of predictor variables that minimized
RMSPE across all 100 GA implementations. For the
sigmoidal and exponential models, we also considered
commonly used transformations (i.e., square, square
root, inverse, etc.) for each predictor variable, once the
predictor variables were chosen through this process.
Use of transformations for predictor variables has been
examined in nonlinear models for improving model
performance (Wang et al. 2007; Timilsina and Staud-
hammer 2012). To compare performance among the
three models, we computed the following fit statistics:
root mean square error (RMSE), RMSE as a percent of

the mean (RMSE%), mean difference (MD), and
Pseudo-R? as follows:
RMSE — iL =) (6)
=7 7
RMSE
RMSE% = (T) x 100, (7)

MD — i(%;%)’ (8)

i=1

Z:l:l(yi— %)2
> 0-y)’

where y; and 7y, are the observed and estimated AGB
(tha™) for ground plot i, and # and 7 were defined in
Eq. 4 and Eq. 5, respectively. We also calculated 20-fold
validation statistics, namely RMSPE (Eq. 4) and the
mean prediction difference (MPD) defined as:

Pseudo-R? = 1- ) 9)

MPD :Z%—m)’

_ (10)

where y;,, 7, and #n were defined for Eq. 4.
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Uncertainty assessment and model selection

After choosing the best performing predictor variable
subset for each model, we estimated the AGB total
(tonnes), 95 % confidence interval (CI) for the total, and
AGB (tha™) for the entire study area. We accomplished
this using a bootstrap method involving resampling »
samples from the ground plot data with replacement
using equal probability sampling, following recommen-
dations from McRoberts et al. (2011) and based on work
by Efron and Tibshirani (1986). Using 500 bootstrap
samples, we refitted each model to the predictor variable
data covering the entire study area, and estimated AGB
for every 20 m x 50 m pixel. Because the GAM is not
asymptotic, we limited the maximum estimated value
for AGB (tha™') to the same value as the asymptote for
the sigmoidal and exponential models, as is commonly
done in non-asymptotic models (e.g., Neesset et al
2016). For each model, we estimated total AGB (Yhoot)
using the following equation:

- nboot?k
boot
Yboot = § )
k=1 Npoot

(11)

where Y& is the estimated total AGB by summing all
pixels (in tonnes) across the study area for bootstrap k, and
Npoot 1S 500. AGB/ha was calculated from dividing Yhoot by
the number of ha in the study area. We estimated the vari-
ance for Ypoor using the following equation:

- ~ 2
P Moot Yk Y
Var (Yboot) _ 2 :( boot bOOt)

k=1

12
Npoot— 1 ( )

We used this variance estimate to calculate a 95 % confi-
dence interval (CI) for estimated total AGB based on the
normal distribution (Efron and Tibshirani 1986), and re-
ported the half-width of the CI for each model. To estab-
lish a baseline for comparing model performance, we fit a
null model with no predictor variables. Using this null
model, we estimated the AGB total, 95 % CI for the total,
and AGB (tha™) (Bater et al. 2009). Then, we calculated
the relative efficiency for each model by dividing the null
model variance estimate by each model’s variance esti-
mate, following Neesset et al. (2016). Finally, we compared
the four model-based estimates of total AGB, AGB/ha,
and CI to a simple design-based estimate of AGB total,
95 % CI for the total, and AGB (tha™) using the NFI sys-
tematic sample of ground plots, assuming equal probabil-
ity sampling (Cochran 1977).

Based on these statistics, along with observed versus
predicted AGB graphs, we chose one model and used
this to estimate AGB for each 20 m x 50 m pixel in the
study area. To assess the pixel-level variability of the
AGB estimates, we calculated the Coefficient of Vari-
ation (CV) in percent (i.e., standard deviation per pixel
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across the 500 resamples divided by the corresponding
mean pixel value, multiplied by 100, which was also used
by Carreiras et al. 2013; Fafinacht et al. 2014; Kattenborn
et al. 2015), present a map of CV, and report the mean
CV for the study area.

Results

Models using CC only

Observations of AGB (tha™) and CCygrr (%) for the
miombo woodland vegetation type follow a more regular
pattern than the mopane woodland and riparian forest
vegetation types, which exhibit a large range of observed
AGB values at low observed values of CCygrr (Fig. 2). Ob-
servations of CCygpyp greater than 50 % display a wide
range of observed AGB values; however, observed AGB
values corresponding to CCygpy less than 50 % follow a
more regular pattern. As expected, the six nonforest
ground plots which were measured have low observed
AGB and low observed CC for both forms of CC. A bino-
mial GAM was used to fit separate models for CCygrrand
CCriemp the model to estimate CCvgrr had better fit and
validation statistics than the model to estimate CCypm
(Table 4). However, in predicting AGB, clear differences
are apparent in the usefulness of CC as the percentage of
the sky blocked by tree crowns over a hemispherical view
(CCremi ) versus CC as the vertical projection of tree
crowns onto the ground (CCygrr). Across three model
forms, CCuemi /llad an average RMSPE% that was 18 %
lower than for CCvygrr (Table 5). The exponential model
performed poorly with RMSPE (72.1 tha™') larger than
the mean estimate of AGB tha™' from the sample data
(64.1 tha™). Considering only the GAM and sigmoidal
models, the average difference in RMSPE between
CCverr and CCpmi as a single predictor variable was
5 tha™! in favor of CC nemr. Because of these statistics and
relationships, we chose CCygyy for estimating AGB in
models with multiple predictor variables.

Models using multiple predictor variables

A clear pattern in reduction of RMSPE can be seen by
including more diverse combinations of predictor vari-
able datasets (Table 5). Across models, CCypym alone is
a better predictor of AGB than models that use only
Landsat 8 OLI predictor variables; however, the expo-
nential model that uses Landsat 8 OLI has a slight edge
over CCypvi (RMSPE 45.9 vs. 46.6, respectively). The
predictor variable combination of environmental and
disturbance data alone and CCygyy alone are compar-
able with two of the three combinations that have two
predictor variable datasets (Landsat+ Env/Dist and
CCuxemi + Landsat), with a difference in mean RMSPE%
of only three percent. Noticeable improvements in AGB
RMSPE% are seen when combining CCygyy with envir-
onmental and disturbance data, as mean RMSPE% drops
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Fig. 2 Top row: Scatterplot for two forms of observed canopy cover (CC) versus observed above-ground biomass (AGB), by vegetation type or
land use. CCpepy is the vertical projection of tree crowns onto the ground, derived from crown area-DBH models; CCpgyy is percentage of the sky
blocked by tree crowns measured using a spherical densiometer. Bottom row: Scatterplot for two forms of predicted canopy cover (CC) versus
observed above-ground biomass (AGB), by vegetation type or land use, with three models to estimate AGB based on cc VERT OF cc HEMI

seven percent. However, the greatest improvement is  Final variable and model selection

when performing variable selection using all three pre- One influential observation, which likely resulted from
dictor variable datasets combined, with a mean RMSPE%  haze in the remotely-sensed data, was evident across all
of 58 %. Therefore, we performed final variable selection  models. As the influence could be considered uncom-
using this combination. mon given this dataset, we discarded the observation

Table 4 Goodness-of-fit and validation statistics for two binomial generalized additive models to estimate percent canopy cover

based on crown radius-DBH models (CACVERT) and measurements using a spherical densiometer (E\C =)

Fit statistics

Validation statistics

Model RMSE (6) MD (8) RMSPE (4) MPD (10)
CCviar = —1.8747 4 F(NDVI) + f(ARVL.texture) + f(SWIR1.texture) + f(D2cap) + f(AWC) + f(slope) 85 % 0.0 % 84 % 15 %
CC 1gw = 0.6788 + Fire.late + D2cap + carbon + f(bulk) + f(crs.frg) 134% -0.7% 172 % —05 %

RMSE root mean square error, MD mean difference, RMSPE root mean square prediction error, MPD mean prediction difference
See Tables 2 and 3 for descriptions of predictor variables
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Table 5 Above-ground biomass (AGB, t-ha™') root mean square prediction error (RMSPE) using different predictor variable dataset
combinations and models, ordered by mean RMSPE and mean RMSPE%

Model E\CVERT E\CHEM‘ Landsat  Env/Dist  Landsat + Env/Dist CACHEM‘ + Landsat E\CHENH + Env/Dist E\CHM + Env/Dist + Landsat
GAM (1) 50.1 443 488 415 40.7 434 379 351

Sigmoidal (2) 49.8 452 478 47.0 456 44.2 39.8 375

Exponential (3)  72.1 46.3 459 46.6 443 428 405 394

Mean RMSPE 57.3 453 475 45 435 435 394 37.3

Mean RMSPE% 89 % 71 % 74 % 70 % 68 % 68 % 61 % 58 %

and continued with the analysis, following the recommen-
dation of Kutner et al. (2005, p.438). Using the final selected
variables, we explored use of predictor variable transforma-
tions for the sigmoidal and exponential models. By incorp-
orating squared terms in the sigmoidal model for two

predictor variables (5(\3 HEM12 and sz), we found an im-
provement of 4 % in terms of RMSE% and an overall better
fit in graphs of observed versus estimated values of AGB.
The exponential model did not improve by incorporating
any transformed predictor variables. However, we found
that the fit and validation statistics of the exponential model
remained the same after removing one variable (EVLtex-
ture); therefore, we used a subset of five predictor variables
for this model. With the GAM, three variables were esti-
mated with a smoothing parameter of 1 (NBR, CTI, bulk
density); therefore we fit the model with these variables as
parametric terms, as recommended by Wood (2006).

For each of the three models, average RMSE% was less
than 60 % and average RMSPE% was less than 65 %
(Table 6). The mean prediction difference (MPD) for the
sigmoidal model was the highest at 3.2 tha™; however,
mean differences (MD) across all models were less than
1 tha™'. Despite the difference in MPD, the fit and valid-
ation statistics for the GAM and the sigmoidal models
were otherwise similar, while the exponential model had
the worst fit (Fig. 3). Each model had a tendency to
under-estimate AGB at higher values, which was most
pronounced in the exponential model; however, observa-
tions and estimations were relatively balanced along the
1:1 line up to approximately 100 tha™.

As expected, cC nemr was selected as a predictor vari-
able in all three models. Vegetation indices were chosen
more consistently over raw band values or texture indi-
ces among the Landsat 8 OLI predictor variables. The
Normalized Difference Moisture Index (NDMI) was
chosen in both the GAM and the sigmoidal model, the

Normalized Burn Ratio (NBR) was selected as another
index in the GAM, while the common Normalized Differ-
ence Vegetation Index (NDVI) was selected as the only
vegetation index in the exponential model. In the GAM
and the sigmoidal model, NDMI was selected in conjunc-
tion with topographic or soil variables related to soil mois-
ture (AWC, CTI, D2hydro). Available soil water capacity
(AWC) was selected in both the sigmoidal and exponential
models. Frequency of late season fire was the only disturb-
ance variable selected, and only in the sigmoidal model.

When each model was applied across the entire study
area, AGB ranged from 61.9 to 67.3 tha™' and total AGB
ranged from 64.3 million tonnes to 69.9 million tonnes
(Table 7). For comparison, the null model estimate and the
simple design-based estimate were both within this same
range. All of the model-based methods, including the null
model, exhibit confidence intervals that are more precise
than the design-based estimate by an order of magnitude.
Interestingly, even though the sigmoidal model exhibited
the highest mean prediction bias, it had the smallest confi-
dence interval based on bootstrap resampling. Conversely,
while the GAM demonstrated the best fit and validation
statistics across the three models where variable selection
was performed, it had a confidence interval wider than the
other models. The sigmoidal model and the exponential
model were both more efficient than the null model, while
the GAM was less efficient. Since the sigmoidal model had
fit and validation statistics similar to the GAM, yet had
higher relative efficiency than the GAM, we selected the
sigmoidal model to estimate AGB and the corresponding
CV for each 20 m x 50 m pixel in the study area.

AGB estimations per pixel using the sigmoidal model
ranged from 0 to 390 tha™, where lower values were more
common around areas with higher population and higher
values were more common in remote areas in the Luangwa
River valley (Fig. 4). Estimates of CV per pixel generally

Table 6 Fit and validation statistics for predicting miombo above-ground biomass (AGB, t-ha™') using three models

Model RMSE (6)  RMSE% (7) MD (8) Pseudo R?(9) RMSPE (4) RMSPE% (5) MPD (10)  Variables®
GAM (1) 29.2 45 % 0.8 0.65 36.8 57 % 0 cc Hem, NBR, NDM, Bulk, CTI, D2hydro
— — 2
. ) 299 o 09 0.63 36.9 o CC yemi, CC emi , NDMY, ARVl texture,
Sigmoidal (2) 47 % 58 % 32 Firelate, AWC, pH, sz
Exponential (3)  36.1 56 % 0.6 047 39.7 62 % 04 cc Hem, NDVI, AWC, Sand, Silt

?See Tables 2 and 3 for descriptions of remotely-sensed, environmental and disturbance variables
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Fig. 3 Observed versus estimated above-ground biomass (AGB) using predicted canopy cover, environmental, disturbance, and remotely-sensed
predictor variables. The solid line indicates 1:1 correlation between observed and estimated values

were highest where AGB was the lowest, with a large area of
high CV on the eastern boundary and two small valleys in
the west half of the study area. The area of high CV on the
eastern boundary is dominated by agricultural, nonforest
land use; whereas the two small valleys appear to be domi-
nated by grassland. The average CV per pixel across the
whole study area was 31 %, with a standard deviation of 14.

Discussion

This research provides encouraging results for using a
model-based approach to estimate miombo AGB with
National Forest Inventory data. The usefulness of canopy
cover as a predictor variable in estimating AGB was
clear. Similar results were found by Hall et al. (2006) for
boreal forests, by Wu et al. (2013) for tropical wood-
lands in Sudan, and by Gonzélez-Roglich and Swenson
(2016) for wooded savannas in Argentina. Hall et al
(2006) and Gonzélez-Roglich and Swenson (2016) used
CC as the percentage of the sky blocked by tree crowns
over a hemispherical view, whereas Wu et al. used CC as
the vertical projection of tree crowns onto the ground.
In our case study, CCygpny (i€, the hemispherical view
of canopy cover) demonstrated a better relationship to
AGB for two possible reasons. First, taller trees project
more cover in a hemispherical measurement device such
as the spherical densiometer (Jennings et al. 1999), and
tree height has been shown to be an important covariate
in predicting tree-level biomass (Chave et al. 2014).

Second, CCyggrr (i-e., vertical projection) relies on DBH-
crown radius models (Burrows and Strang 1964; Fuller et
al. 1997; Isango 2007) to estimate canopy cover per
ground plot; these models are outdated and not localized
in our study (Halperin et al. 2016). Updating DBH-crown
radius models may improve the usefulness of CCygrr as a
predictor variable in AGB models for the miombo eco-
region and should be an area of active research. This is es-
pecially true for less common vegetation types such as
mopane woodlands and riparian forests.

Improvements in AGB estimates were observed when
including a diverse range of ecologically meaningful co-
variates along with CCpgymy. In this context, two aspects
of moisture stand out. First, soil moisture was character-
ized by available soil water content (AWC, Hengl et al.
2015) in the sigmoidal and exponential models, or
through landscape position via the compound topo-
graphic index (CTI) and distance to perennial water in
the GAM. Soil moisture has been identified as an under-
lying factor contributing to miombo vegetation dynamics
(Frost 1996; D’Odorico et al. 2007). For example, higher
levels of soil moisture have been found under closed
canopy miombo woodland compared with open canopy
miombo woodland (Campbell et al. 1988).

Second, vegetation moisture was captured through the
Normalized Difference Moisture Index (NDMI), an im-
portant variable in both the GAM and sigmoidal models.
NDMI has been shown to be correlated with tree canopy

Table 7 Bootstrap results for mean and total above-ground biomass (AGB) with corresponding 95 % confidence intervals for four

model-based methods, compared to a design-based method

Method Mean Total 95 9% Cl for total AGB Relative efficiency
AGB (rha™) AGB (0 (half-width)

GAM (1) 67.3 69,961,134 694,260 0.82

Sigmoidal (2) 62.1 64,526,209 477,730 1.20

Exponential (3) 619 64,316,094 500,070 1.15

Null model 62.8 65,244,018 573,365 -

Design-based 63.0 65,472,297 13,055,331 -
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Fig. 4 Map of estimated above-ground biomass (AGB) per pixel (0.1 ha) and the Coefficient of Variation per pixel (CV). AGB estimates derived

water content and is competitive with the more well-
known Normalized Difference Vegetation Index (NDVI)
for a variety of forest mapping purposes (Hunt and Rock
1989; Jin and Sader 2005). This study targeted collection
of field and remotely-sensed data for the early dry season,
which is considered a prime period for linking these ob-
servations in the miombo ecoregion. In this timeframe,
grass layers have generally senesced while the deciduous
tree canopies have not yet fully shed their leaves (Fuller et
al. 1997). As such, NDMI appears to be an important
vegetation index for characterizing vegetation moisture in
tree canopies, and higher canopy moisture could be re-
lated to greater levels of AGB (D’Odorico et al. 2007).

Our study area is in the dry miombo ecozone where
rainfall averages less than 1000 mm.yr ' (Timberlake
and Chidumayo 2011). Comparing our results with simi-
lar studies in the same ecozone, Nasset et al. (2016) es-
timated mean AGB at 51.3 tha™, Mauya et al. (2015) at
65.8 tha™}, Ryan et al. (2011) at 59.4 tha™!, and Ribeiro
et al. (2008) at 70 t-ha™', while Carreiras et al. (2013) es-
timated AGB at 25.7 tha™'. However, Carreiras et al.
only studied areas with canopy cover < 50 %. The review
by Frost (1996) provided an AGB estimate of 55 tha
“!for dry miombo of Zambia and Zimbabwe, and in the
most recent FAO Forest Resources Assessment for
Zambia, the national estimate of AGB was 84 tha™* (FAO
2014). Across models, our AGB estimates ranged from
61.9 to 67.3 tha™', where the best performing model and
the null model estimated 62.1 and 62.8 tha™", respectively.
Clearly, our estimates of AGB for a study area in the Zam-
bian dry miombo ecozone are in line with other studies.

Comparing accuracy statistics with other published re-
sults is challenging, given the number of studies using
similar data sources in the same ecozone, as well as the

use of a wide variety of statistics. Therefore, a compari-
son of similar studies estimating AGB in other miombo
ecozones or dry forest ecoregions is necessary. Some re-
searchers presented model fit statistics such as R* (Wu
et al. 2013; Kashindye et al. 2013), while others empha-
sized RMSE (Mitchard et al. 2013; Solberg et al. 2015).
The latter two estimated RMSE at 12.8 tha™ (22 % CV) in
Mozambique and 40.3 tha™! (78 % CV) in Tanzania, re-
spectively. However, fit statistics are known to be optimistic
when concerning prediction (Guisan and Zimmermann
2000; Packalén et al. 2012). Using resampling methods to
estimate prediction error for AGB in Mozambique, Ryan et
al. (2012) and Carreiras et al. (2013) reported RMSPE of
19.6 tha™ and 5.0 tha™, respectively, where the latter re-
ported a mean CV of 25 %. In a study site in Tanzania with
similar vegetation and rainfall to our study area, Mauya et
al. (2015) and Neesset et al. (2016) reported RMSPE% of 47
and 62 %, respectively. These latter studies all employed ac-
tive sensor (radar or ALS) imagery as the single source for
predictor variables.

Research on the use of optical sensor satellite imagery
for estimating AGB in the miombo ecoregion is more
limited. Neesset et al. (2016) used a linear ordinary least
squares model and a stepwise predictor variable selec-
tion method. As potential predictor variables, these au-
thors included canopy cover predictions and canopy
cover gain or loss from Hansen et al. (2013), raw band
values from Landsat 7 ETM+ and Landsat 8 OLI, NDVI
calculated from the Landsat data, and square and square
root transformations for all of these predictor variables.
Based on their stepwise predictor variable selection pro-
cedure, squared canopy cover was the only predictor
variable chosen. While their finding helps to corroborate
our result of canopy cover and squared canopy cover in
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the sigmoidal model, their model resulted in poor AGB
prediction with an RMSPE% of 87 %. It is possible that
their model using Landsat data was disadvantaged by
two aspects. First, they did not include other commonly
used vegetation indices (i.e., NDMI, NBR) or texture var-
iables (i.e. standard deviation in a 3 x 3 window around
the ground plot), which we found to be useful in our
study, as have others (e.g., Lu et al. 2014). Second, the
Landsat data that Neesset et al. used differed by at least a
year from the time of their ground plot measurements.

Two studies that estimated miombo tree volume
(m*ha™') using Landsat also provide a useful compari-
son. Employing cross-validation to compute RMSPE%,
Pereira (2006) reported 48 % in Mozambique using
Landsat and k-Nearest Neighbor imputation, while Gara
et al. (2015) averaged 62 % using Landsat and nonlinear
models. Our chosen model (sigmoidal) has estimates of
RMSE% at 47 and RMSPE% at 58 %, indicating that our
fit and validation statistics are comparable to similar
studies using large-scale inventories in the miombo eco-
region using optical remotely-sensed data (Pereira 2006)
and active remote sensing data such as ALS or radar
(Solberg et al. 2015; Mauya et al. 2015; Neesset et al.
2016). However, more research is needed to compare
AGB confidence intervals to other studies because appli-
cation of a model-based approach appears relatively un-
common in the miombo ecoregion.

The use of GAMs and nonlinear models, such as the
sigmoidal and exponential models in this study, for pre-
dicting AGB has shown promise in a number of studies
in different biomes (e.g., Moisen and Frescino 2002; Hall
et al. 2006; Anaya et al. 2009; McRoberts et al. 2015;
Kattenborn et al. 2015). However, it appears that most
approaches to estimate and map AGB in the miombo
ecoregion used linear ordinary least squares (Ryan et al.
2012; Kashindye et al. 2013; Mitchard et al. 2013;
Solberg et al. 2015; Neesset et al. 2016), despite the non-
linear relationships between forest attributes and
remotely-sensed data (Sedano et al. 2008; Banskota et al.
20145 Lu et al. 2016 ; Gara et al. 2015). We found GAM’s
to perform as well as nonlinear models with respect to
fit and validation statistics; however, when applied to the
population of predictor data the bootstrap confidence
interval was less efficient than the null model.

We protected against overfitting of the GAM by using
cross-validation in the variable selection process (Guisan
and Zimmermann 2000; Hawkins 2004; Packalén et al.
2012); however, the smoothing splines of GAM’s may
perform in an unpredictable manner when applied to
population-level data which includes ranges of values
not within the observation data (Guisan et al. 2002;
Venables and Dichmont 2004). Because of this, nonlin-
ear models may be preferred for several reasons. First,
the sigmoidal and exponential models in this study are
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asymptotic, thereby preventing both negative and unrea-
sonably high estimations (McRoberts et al. 2015). Sec-
ond, nonlinear models are able to achieve more stable
extrapolation at the ends of, and beyond, the ranges of
the values of the predictor variables (Venables and Dich-
mont 2004). Third, judicious application of transforma-
tions may improve performance if there appears to be a
lack of fit in nonlinear models.

One issue with the nonlinear models we used in this
study is estimating the asymptote. We initially investigated
a flexible asymptote (a), with o estimated in the model fit-
ting process. For our dataset, a was often estimated at un-
realistically high values or the nonlinear models would not
converge, both of which may indicate that the data does
not support estimating a biologically meaningful asymp-
tote. We further investigated estimating « as a function of
the predictor variables in the models (i.e., ag + a1x;); how-
ever, no improvements in model fit or biologically mean-
ingful values of a were noted. In this context, Burkhart
and Tomé (2012 p. 123) stated that if an asymptote can-
not be realistically fit with the data at hand, then expert
judgement may be employed to fix the asymptote at a rea-
sonable value and continue with model fitting. AGB tha™*
for most vegetation types in the dry miombo ecozone tend
to be less than 100 tha™' (Frost 1996), although upper
limits generally appear to be understudied. Mauya et al.
(2015) found an upper limit of 350 tha™' in dry miombo
woodland vegetation type for a study site in southeast
Tanzania, while the riparian forest vegetation type may ap-
proach 500 tha™' (Chidumayo personal communication
2016). Future modeling efforts should assess practical
asymptotic limits for AGB in all miombo vegetation types.

While this study made progress in terms of ecologic-
ally meaningful variable selection and highlighted model
advantages and disadvantages, improvements may be re-
alized in several aspects. First, we found that canopy
cover as the percentage of the sky blocked by tree
crowns over a hemispherical view (CCygpp) was a better
predictor for AGB than canopy cover as the vertical pro-
jection of tree crowns onto the ground (CCvgrr). How-
ever, values of CCygry, used to predict CCvygrr, were
derived from DBH-crown radius models (Burrows and
Strang 1964; Fuller et al. 1997; Isango 2007) that should
be updated for conditions in Zambia (Halperin et al.
2016). Once updated, CCygrr may prove to be as useful
as CCupmi as a predictor of AGB. Second, the highest
percent CV pixel values occurred where AGB was pre-
dicted to be the lowest, likely because there were very
few ground plots with no trees. To accommodate such
under-sampled areas, off-grid ground plots could be in-
cluded along with the NFI ground plots in implementa-
tion of the model-based methods. Model-based methods
are not restricted to one single sample design as long as
the same variable of interest (i.e., AGB) is being sampled
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according to the same definitions; the main consider-
ation is that sample selection is required to be unin-
formative in terms of Y (Gregoire 1998).

Third, active sensor remotely-sensed data allow tree
heights to be estimated and height is known be corre-
lated with tree-level (Chave et al. 2014) and plot-level
biomass (Wulder et al. 2012). ALS data is a proven
source of height estimates, yet remains operationally
out-of-reach for many countries (Ribeiro et al. 2012).
Testing of this source of predictor variables for use in
operational monitoring programs is just now underway
in the miombo ecoregion (Mauya et al. 2015; Neesset et
al. 2016). Additionally, significant challenges remain in
using more readily available radar data (Sinha et al
2015; Solberg et al. 2015). However, space borne laser
scanning systems are under development (Moussavi et
al. 2014; GOFC-GOLD 2015) and may prove useful in
future applications.

Fourth, a model-assisted approach may lend itself to
use of the GAM, balancing the variability in population-
level estimation with more conservative inference that
takes advantage of the design-based properties of the
sample (Opsomer et al. 2007; Neesset et al. 2016). Fifth,
there is significant opportunity to explore model-assisted
or model-based approaches in a small area estimation
context for improving both estimates and inference at
spatial scales where traditional design-based approaches
are not possible (Magnussen et al. 2014). Lastly, if a map
of AGB is a requirement, then use of georeferenced pre-
dictor variables is required. However, if a map of AGB is
not required, then our null model would provide a viable
alternative that could also be applied within a small area
estimation framework.

Conclusion

Estimating the amount and distribution of AGB is cru-
cial for improving land management planning and for
engaging in international discussions on REDD+. Our
understanding of AGB is enhanced by including eco-
logically meaningful predictor variables in a model-
based approach to estimation. This study generated sev-
eral insights for improving miombo AGB estimation
using NFI data. First, the biophysical relationship be-
tween AGB and CC can be exploited to improve AGB
estimation. Second, model-based methods improve pre-
cision of AGB estimates by an order of magnitude over
simple design-based estimation. Third, if a map of AGB
is not required, estimating the confidence interval of
total AGB using bootstrap resampling for a null model
is a viable alternative to the traditional design-based
confidence interval. Fourth, if a map is required, expen-
sive predictor variables such as those derived from ALS,
are not necessarily required as there is freely available
spatial data (i.e., Landsat, Digital Elevation Model, soils,
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etc.) which can be used as predictor variables in the
model-based framework. Fifth, a genetic algorithm pro-
vides an efficient way to perform predictor variable se-
lection. Lastly, future approaches to improve our
understanding of AGB distribution in the miombo eco-
region should include small area estimation.
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