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Abstract

Background: The minimum set of sub-models for simulating stand dynamics on an individual-tree basis consists
of tree-level models for diameter increment and survival. Ingrowth model is a necessary third component in
uneven-aged management. The development of this type of model set needs data from permanent plots, in which
all trees have been numbered and measured at regular intervals for diameter and survival. New trees passing the
ingrowth limit should also be numbered and measured. Unfortunately, few datasets meet all these requirements.
The trees may not have numbers or the length of the measurement interval varies. Ingrowth trees may not have
been measured, or the number tags may have disappeared causing errors in tree identification.

Methods: This article discussed and demonstrated the use of an optimization-based approach to individual-tree
growth modelling, which makes it possible to utilize data sets having one or several of the above deficiencies. The
idea is to estimate all parameters of the sub-models of a growth simulator simultaneously in such a way that,
when simulation begins from the diameter distribution at the first measurement occasion, it yields a similar ending
diameter distribution as measured in the second measurement occasion. The method was applied to Pinus patula
permanent sample plot data from Kenya. In this dataset, trees were correctly numbered and identified but
measurement interval varied from 1 to 13 years. Two simple regression approaches were used and compared to
the optimization-based model recovery approach.

Results: The optimization-based approach resulted in far more accurate simulations of stand basal area and number
of surviving trees than the equations fitted through regression analysis.

Conclusions: The optimization-based modelling approach can be recommended for growth modelling when the
modelling data have been collected at irregular measurement intervals.
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Background
The most flexible growth model type in irregular and
mixed stands is a set of individual tree models, consisting
of separate models for different species or species groups,
or using indicator variables for species-specific growth
patterns. Individual-tree models may be the best overall
tool for predicting the dynamics of tree stands. Stand-level
models may be more reliable in even-aged plantations but
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they may encounter problems in uneven-aged and mixed
stands. The minimum set of sub-models for simulating
stand development consists of individual-tree models for
diameter increment and survival. Tree height, volume and
biomass may be calculated with static models. If uneven-
aged management is an option, a necessary third compo-
nent is a model for ingrowth or regeneration.
The development of this type of model set needs data

from permanent plots, in which all trees have been num-
bered and tagged, and measured at regular intervals for
diameter and survival. New trees passing the ingrowth
Open Access article distributed under the terms of the Creative Commons
g/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:timo.pukkala@uef.fi
http://creativecommons.org/licenses/by/4.0


Juma et al. Forest Ecosystems 2014, 1:14 Page 2 of 13
http://www.forestecosyst.com/content/1/1/14
limit (i.e., the minimum measured diameter) between
two measurement occasions should also be tagged, num-
bered and measured. Unfortunately, these requirements
are not always met. There may be plenty of data, but
their use in individual-tree modelling is complicated for
instance due to the following reasons:

� Trees have not been numbered. The data may be
error-free but growth and survival information is
not available for individual trees.

� There are many tree-identification errors. This may
happen for instance when tree identification is based
on a certain measurement order of trees. Mortality
and ingrowth may make it difficult to keep the same
order in successive measurements, leading to
situations in which the sequences of tree-level
measurements are not always from the same tree.

� Measurement interval varies, making it difficult to
develop a growth model for a certain time step (e.g.
1 year or 5 years).

Pukkala et al. (2011) proposed an optimization-based
method, which can be used to recover individual-tree
models using data in which individual trees are not iden-
tified. All parameters of the sub-models of a growth
simulator were recovered simultaneously in such a way
that the simulated stand development, when started from
the initial diameter distribution, yielded the measured
ending distribution. The parameters of the diameter incre-
ment, survival and ingrowth models for three different
species were recovered simultaneously. The data came
from the permanent plots of several silvicultural experi-
ments where the tree diameters were measured accurately
but the trees were not tagged or numbered. This made it
impossible to calculate the growth and survival of indi-
vidual trees or identify ingrowth trees. The measure-
ment interval was not constant. Despite these problems,
Pukkala et al. (2011) were able to develop ingrowth
models for different species, as well as individual-tree
models for diameter increment and survival. The used
methodology was tested in another dataset in which the
measurement interval was constant, trees had number
tags, and ingrowth trees were identified and numbered.
In this dataset, the optimization-based recovery approach
yielded models that were very similar to ordinary regres-
sion models.
The same method was used by de-Miguel et al. (2014)

to develop individual-tree diameter increment and survival
models for balsa (Ochroma pyramidale) plantations in
Bolivia. The data came from permanent plots. The purpose
was to measure the trees always in the same order, which
seemed easy because trees were planted in straight rows.
However, high mortality rate typical to balsa resulted in a
data set in which successive diameter recordings did not
always represent the same tree. Tree identification errors
were many, making it almost impossible to derive diameter
increment and survival models by using ordinary regres-
sion analysis techniques. Yet, by using the optimization-
based recovery technique, de-Miguel et al. (2014) were able
to develop plausible models for one-year diameter incre-
ment and tree survival in balsa plantations. The researchers
tested the method using accurate data on another tropical
plantation species, tejeyeque (Centrolobium tomentosum)
(de-Miguel et al. 2013). The comparison showed that
optimization resulted in models that were very similar
to models fitted in regression analysis. In prediction,
optimization-based models performed better than mar-
ginal and conditional predictions of mixed-effects models,
and were almost as good as fixed-effects models.
The impact of irregular measurement interval on mod-

elling has received some attention in earlier research (Cao
2000 2004; Nord-Larsen 2006; Crecente-Campo et al.
2010). Assuming a constant growth between measure-
ments can lead to under- and over-estimation of tree
growth when growth dynamics are clearly nonlinear
(Clutter 1963; McDill and Amateis 1992). McDill and
Amateis (1992) suggested the use of correction factors
that force the interpolated growths to be consistent with
the estimated growth function. Cao (2004) proposed an
iterative technique, in which the calculation of the in-
terim values of stand level predictor variables was based
on stand-level models. The approach of Nord-Larsen
(2006) places tree survival at the end of the growth
period. Therefore, the effect of gradual mortality on the
interim values of tree- and stand-level competition vari-
ables is ignored. Crecente-Campo et al. (2010) used re-
peated fittings and simulations with the fitted models to
calculate the interim values of predictors. Mortality was
simulated by assuming that those trees will die that have
the predicted survival probability less than an iteratively
found threshold value.
Pinus patula is the most intensively utilized conifer in

the tropics and sub tropics, where it is widely planted as
an exotic (Wright 1994). The species is native to Mexico
(Dvorak and Donahue 1992; Dvorak et al. 2000).
P. patula has been introduced for instance to South
Africa, Swaziland, Zimbabwe, Madagascar, Malawi,
Tanzania, Kenya, Uganda, Angola and Cameroon (Wormald
1975). The plantations occur over a wide range of sites
of varying productive potential and are of major im-
portance in these regions (Record and Hess 1974;
Isango and Nshubemuki 1998; Mabvurira and Musokonyi
1998; Muchiri and Muturi 1998).
P. patula plantations have been used for several pur-

poses both within the area of natural distribution in
Mexico and in the countries where it has been planted as
exotic. The plantations have been established for commer-
cial timber and pulp as well as wood extracts such as
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tannins. They also produce fuel-wood and raw material
for charcoal. The plantations also play a role in the protec-
tion of watershed areas and restoration of degraded land
(Palmer and Gibbs 1974). P. patula is also planted in wind-
breaks, as a shade tree for coffee and as an ornamental tree.
The current area of P. patula plantations in Kenya is

about 100,000 ha (Muchiri and Muturi 1998). Despite its
importance, no individual-tree growth models have been
developed for Kenyan P. patula plantations. One reason
for this situation is that, although there are permanent
plot data in Kenya, they have not been measured system-
atically making the available data difficult to be used in
modelling.
This study applied the optimization-based parameter

recovery technique for P. patula plantations in Kenya.
Trees have been carefully numbered and measured re-
peatedly in several plots during a 30-year period. The
dataset is valuable since it covers the whole rotation
period. The problem with the data is irregular measure-
ment interval, ranging from 1 to 13 years. Two other ap-
proaches to deal with irregular measurement intervals
were tested and compared with the optimization-based
approach. The optimization-based method was used for
the first time to recover mixed-effects models.

Methods
Experiment
The data used in this study were collected from a P. patula
experiment established in 1967 in Londiani Forest Station
Table 1 Descriptive statistics of the modelling data

Modelling Predictor

Diameter increment modelling (13,483 observations) dbh (cm)

Diameter increment

BALa (m2 · ha–1)

Stand basal area (m2

Measurement interva

Survival modelling (14,150 observations) dbh (cm)

Stand age (year)

DOMb

Measurement interva

Height modelling (1,698 observations) dbh (cm)

Height (m)

Dominant diameter (

Dominant height (m

Dominant height modelling (260 observations) Starting age (T1, year

Starting dominant he

Ending age (T2, year)

Ending dominant he
aBasal area in larger trees.
bDominance = 1 – BAL/G where G is stand basal area.
in Kericho County of Rift Valley province, situated at
approximately latitude 0° 05’ S and longitude 35°53’ E
at an altitude of 2,300–2,400 m above sea level. The
area receives a mean annual rainfall of about 1,200 mm
with a bimodal distribution pattern with long rains oc-
curring between March and June, and the short rains
between mid September and November (Jaetzold and
Schmidt 1983). The mean annual temperature is 18°C
with a maximum of 24°C.
The P. patula permanent sample plots were primarily

established to observe the effect of stocking on P. patula
growth. The study area consists of four randomized blocks
with seven different spacings per block, resulting in 28
plots of 0.059 ha each. The plan was to measure diameter
at breast height, diameter at ground level, tree height and
survival annually from age 7 to 14 (1974–1980), followed
by every 3 years up to the age of 19 years, and afterwards
every 5 years up to rotation age of 30 years. However, the
plan was not followed rigorously, and the actual interval
varied from 1 to 13 years. The number of measurements
in the same plot was 7–10, resulting in 6–9 periods per
plot. However, since the measurement years were not al-
ways the same for all plots, the total number of periods
was 13. The last measurement was conducted in 1996. At
each measurement, tree diameter at 1.3 m height (dbh)
for all trees, and tree heights of a sample of at least 8 trees
per plot were recorded. This resulted in 13,483 diameter
increment observations and 1,698 height observations
(Table 1). Trees sampled for height were not necessarily
Minimum Mean Maximum Standard deviation

2.3 18.0 51.0 6.2

(cm · a–1) 0 0.7 8.7 0.7

0 35.4 175.0 28.7

· ha–1) 0.3 74.3 183.6 28.7

l (years) 0.6 2.3 12.5 2.6

2.3 18.0 51.0 6.3

7.2 11.5 23.9 4.1

0 0.5 1.0 0.3

l (year) 0.6 2.4 12.5 2.8

5.0 23.7 51.0 7.3

8.0 19.1 39.0 5.5

cm) 17.0 26.8 45.0 6.0

) 11.0 19.8 33.0 5.3

) 4.0 10.3 23.9 4.5

ight (H1, m) 4.1 17.6 32.5 6.8

6.0 12.7 28.7 6.6

ight (H2, m) 6.6 20.4 36.7 6.8



Table 3 Regression coefficients of the mixed-effects
survival models

Predictor

Modelling approach

Regression 1 Regression 2 Optimization

Constant 2.81439 6.42965 6.42705

ln(d) 2.96858 3.35703 1.83056

d –0.08303 –0.08219 –0.02004

ln(T) –2.31578 –4.14173 –2.72766

DOM 0.78448 0.95684 1.67272

Step – –0.20889 –

Period 1 (1974–1975) –0.61513 –0.56050 0.20351

Period 2 (1975–1976) –0.56811 –1.02784 0.58189

Period 3 (1976–1977) –0.32775 –0.25067 0.04924

Period 4 (1977–1978) 0.59064 0.85832 0.04480

Period 5 (1978–1979) –0.23147 0.19763 0.19210

Period 6 (1979–1980) 0.65382 0.66163 –0.21627

Period 7 (1979–1983) 0.49989 0.2948 0.33837

Period 8 (1980–1983) 0.57873 0.24327 0.06472

Period 9 (1983–1990) 0.43741 0.29726 –0.17157

Period 10 (1983–1991) 0.47512 0.29659 –0.42628

Period 11 (1983–1996) –0.31605 –0.16725 0.10843

Juma et al. Forest Ecosystems 2014, 1:14 Page 4 of 13
http://www.forestecosyst.com/content/1/1/14
the same in different measurements. Dead trees were re-
corded at each measurement.

Height modelling
A model for dominant height development along age was
fitted for site index calculations. Dominant height was de-
fined as the average height of 100 largest (in terms of dbh)
trees per hectare. To calculate dominant height, a plot-
wise measurement-specific diameter-height model was
fitted and used to calculate the heights of trees that were
not measured for height.
Several different equation forms (Peschel 1938;

Schumacher 1939; Lundqvist 1957; Richards 1959;
Sloboda 1971; McDill and Amateis 1992; Diéguez-Aranda
et al. 2005, 2006) derived by using either algebraic dif-
ferential equations (ADA) or generalized algebraic dif-
ferential equations (GADA) (Bailey and Clutter 1974;
Cieszewski and Bailey 2000) were tested as candidate
models for modelling dominant height growth. The se-
lected model was used to estimate the site index of
each plot using 30 years as index age.
All individual-tree height observations were used to fit

an individual tree height model. Several variants of the
model based on Stoffels and van Soest (1953) modified
Table 2 Coefficients of the mixed-effects diameter
increment models

Modelling approach

Predictor Regression 1 Regression 2 Optimization

Constant –1.07845 –2.24497 0.59149

ln(d) 0.92911 1.49389 1.08691

d –0.02068 –0.04632 –0.07473

BAL –0.02316 –0.03033 –0.04719

√G -0.28039 –0.17988 –0.32857

Step – 0.12559 –

Period 1 (1974–1975) 0.45783 –0.45064 –0.27558

Period 2 (1975–1976) 0.6025 –0.03065 –0.28573

Period 3 (1976–1977) 0.42677 –0.08639 –0.10036

Period 4 (1977–1978) 0.70895 0.24015 0.25214

Period 5 (1978–1979) 0.53579 –0.02277 0.09960

Period 6 (1979–1980) 0.17169 –0.16441 0.18685

Period 7 (1979–1983) –0.08124 0.41545 –0.03458

Period 8 (1980–1983) 0.05176 0.32957 –0.32634

Period 9 (1983–1990) –0.14420 0.43467 –0.06149

Period 10 (1983–1991) –0.40772 0.47512 –0.40811

Period 11 (1983–1996) –0.78327 –0.31606 –0.56516

Period 12 (1990–1996) –0.65995 –0.22321 –0.52835

Period 13 (1991–1996) –0.87891 –0.95390 –0.65856

d = diameter at breast height; BAL = basal area in larger trees; G = stand
basal area.

Period 12 (1990–1996) –0.22321 –0.13769 0.52595

Period 13 (1991–1996) –0.95390 –0.89791 0.97645

d = diameter at breast height; T = stand age; DOM = dominance; Step =
length of the projection period.
by Tomé (1989) were tested in height-diameter modelling.
Tree height was predicted from tree diameter, dominant
height and dominant diameter. The used model form
guarantees that the simulated height development of indi-
vidual trees is logically related to the dominant height de-
velopment of the stand.
Figure 1 Predictions of the fixed parts of mixed-effects diameter
increment models.



Figure 2 Measured annual growths. Annual growth is calculated
by dividing the periodical growth by the length of the period
(1–13 years).
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Diameter increment and survival modelling
The diameter increment model predicts increment as a
function of different variables describing site quality, tree
size and competition. Site quality was described by site
index. Variables representing tree size were diameter at
Figure 3 Period factors of the mixed-effects diameter increment (A) a
Regression 2 and Optimization approaches. The x axis shows the first y
breast height (dbh), tree height and age. Variables that
described competition included basal area of trees larger
than the subject tree, stand basal area, and their
transformations.
Considering the hierarchical structure of our data –mul-

tiple measurements taken from the same trees grouped
into several plots within blocks– a mixed-effects model-
ling approach that allows for explicit description of the
between- and within-plot correlations was used. However,
fixed-effects models were also fitted because the estima-
tion of the random parameters is often too complicated to
be regularly used in forestry practice.
Three different approaches to deal with irregular meas-

urement interval were used in diameter increment and
survival modelling. The ‘constant rate approach’ assumes
constant annual diameter growth and survival rate during
the years between any two measurement occasions (Cao
2000; Crecente-Campo et al. 2010). This approach is
henceforth referred to as ‘Regression 1’ approach. The an-
nual diameter increment was obtained by dividing the peri-
odical increment by the length of the period (expressed in
years). Survival rate was assumed to be equal to the annual
rate raised to the power of period length. Tests with a high
number of different predictor combinations led to the
nd survival (B) models developed by using Regression 1,
ear of period.



Figure 4 One-year (A) and five-year (B) survival rates predicted by the fixed parts of mixed-effects models.

Table 4 Coefficients of fixed-effects diameter increment
models

Predictor

Modelling approach

Regression 1 Regression 2 Optimization

Constant –6.14591 –5.61685 0.88882

ln(d) 3.41191 2.31925 1.15958

d –0.15408 –0.05023 –0.08060

BAL –0.01522 –0.00569 –0.04803

√G –0.09034 –0.01232 –0.34133

Step – 0.07507 –

d = diameter at breast height; BAL = basal area in larger trees; G = stand basal
area; Step = length of the projection period.
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following model form for diameter increment (sub-scripts
for plot and block not shown):

idaij ¼ expða0 þ a1 ln dij
� �þ a2dij

þa3BALij þ a4
ffiffiffiffiffi
Gj

p þ ujÞ þ eij

ð1Þ

where idaij is the annual diameter increment of tree i
during period j, dij is the dbh of the same tree in the be-
ginning of the period, BALij is basal area in larger trees,
Gj is stand basal area (both in the beginning of period j),
uj ~N (0, σu) is random period factor and eij ~N (0, σe)
is residual. “Period” refers to a growth interval having
the same starting and ending year. The years of each of
the 13 different periods are shown in Tables 2 and 3.
Random parameters for plot and block effects were also
tested but they were very small and were therefore
ignored. Preliminary models were fitted with random
variables included also in the regression coefficients of
predictors, but the improvements due to these additional
parameters were marginal. Site index was not a signifi-
cant predictor, most probably because the plots and
blocks were near each other, resulting in almost similar
site conditions in all plots.
The survival model representing the constant survival
rate approach was

sij ¼ 1

1þ exp − b0 þ b1 lndij þ b2d þ b3 ln Tj
� �þ b4DOMij þ uj

� �� �
( )Stepj

ð2Þ

where sij is the probability to survive for one year, Stepj is
the length of period j (years) (sStep is the probability to sur-
vive for Step years), T is stand age (years), DOM is a



Table 5 Coefficients of fixed-effects survival model

Predictor

Modelling approach

Regression 1 Regression 2 Optimization

Constant 7.83597 6.36929 11.31540

ln(d) 1.54649 3.41518 2.94256

d –0.02158 –0.10010 –0.07065

ln(T) –3.14473 –4.13006 –5.06713

DOM 1.32723 1.41859 0.92033

Step – –0.21552 –

d = diameter at breast height; T = stand age; DOM = dominance; Step = length of
the projection period.
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variable called dominance, calculated as DOMij = 1 –
BALij/Gj, and uj ~N (0, σu) is random period factor.
In the ‘Regression 2 approach’, the time interval between

the measurement occasions was used as model predictor.
The diameter increment model corresponding to this
approach was:
Figure 5 Predicted one-year diameter increment (A) and one-year sur
three different modelling approaches.
idpij ¼ expða0 þ a1 ln dij
� �þ a2dij

þa3BALij þ a4
ffiffiffiffiffi
Gj

p þ a5Stepj þ ujÞ þ eij

ð3Þ
where idpij is the diameter increment of tree i during
period j (cm) and Stepj is the length of the period
(years). The corresponding survival model was:

Sij ¼ 1

1þ exp b0 þ b1 lndij þ b2d þ b3 ln Tj
� �þ b4DOMij þ b5Stepj þ uj

� �� �
ð4Þ

In the optimization-based approach the diameter in-
crement and mortality models were fitted simultaneously
via nonlinear optimization (Nelder and Mead 1965),
using diameter distributions as modelling data instead of
tree-level growth and survival data (Pukkala et al. 2011).
Starting from the initial diameter distribution of each
vival rate (B) according to the fixed-effects models developed by



Table 6 Statistics for full mixed-effects models (best in
boldface, worst in italics)

Modelling and simulation approach

Regression
1

Regression
2

Regression
2

Optimization

1-year
step

1-year
step

true
step

1-year
step

Basal area

- bias (m2 · ha–1) –1.09 1.43 1.10 –0.25

- RMSE (m2 · ha–1) 4.28 3.99 4.20 2.27

Number of trees per hectare

- bias –27.07 –53.19 38.88 –0.42

- RMSE 100.23 137.98 128.16 35.19

Annual basal area increment

- bias (m2 · ha–1) –0.297 0.709 0.151 0.005

- bias (%) 22.16 52.91 11.27 0.37

- RMSE (m2 · ha–1) 0.942 1.345 0.890 0.729
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sample plot, the fitting procedure aims at reproducing
the diameter distribution at the end of the measured
growth interval by minimizing the sum of squared differ-
ences between measured and predicted cumulative
diameter distributions of tree frequency and stand basal
area. The optimized decision variables were the coeffi-
cients of the diameter increment and mortality models.
Based on Pukkala et al. (2011), the objective function
was defined as:

min z θð Þ ¼
XK
k¼1

"XJ k
j¼1

XIjk
i¼1

Gm
jk dijk
� �

−Gs
jk dijk ; θ
� �� �2

þ10−4 �
XIjk
i¼1

Fm
jk dijk
� �

−Fs
jk dijk ; θ
� �� �2

#

ð5Þ

where θ is the set of coefficients (a0,…a4, b0,…b4, and
the period factors of the growth and survival models, see
Equations 1 and 2) estimated as arg min z(θ), K is the
number of plots, Jk is the number of periods of plot k, Ijk
is the number of 3-cm diameter classes in period j of
plot k, Gjk

m(dijk) and Gjk
s (dijk) are, respectively, measured

and simulated cumulative basal area (m2 · ha–1) at diam-
eter dijk (upper limit of diameter class i) at the end of
period j of plot k, and Fjk

m(dijk) and Fjk
s (dijk) are, respect-

ively, measured and simulated cumulative number of
trees per hectare at diameter dijk at the end of period j
of plot k. The number of simultaneously estimated pa-
rameters was 36 (2 × 13 period factors and 2 × 5 fixed re-
gression coefficients).
All models were also fitted as fixed-effects models.

The models were compared by simulating the stand de-
velopment of each plot from the beginning to the end of
each measurement interval. RSME (square root on the
mean of squared errors) and bias were calculated for the
ending basal area, ending number of living trees per
hectare, and basal area increment. The ‘Regression 2’ ap-
proach was used both with 1-year time step and by pre-
dicting the ending diameter and survival rate directly.
When the time step was one year, the possible incom-
plete year at the end of the growth period was simulated
by adding a fraction of annual growth to the diameter
(growth in 0.67 years was assumed to be 0.67 times an-
nual growth). The survival rate of the incomplete year
was obtained as sStep where s is annual survival rate and
Step is the length of the incomplete period in years.

Results and discussion
Diameter increment and survival models
The regression coefficients of the fixed predictors of
mixed-effects diameter increment and survival models had
the same signs in all three approaches (Tables 2 and 3).
BAL and stand basal area decreased growth while tree size
(dbh) had an increasing-decreasing effect. Increasing dom-
inance improved survival and increasing age decreased it.
Tree diameter improved survival, but the negative coeffi-
cients of untransformed diameter indicate that survival will
start to decrease again at large diameters.
Visual inspection of the models revealed clear differences

between modelling approaches (Figure 1). The ‘Regression
1’ approach predicts that diameter increment continues to
increase with increasing tree diameter also in very large
trees. However, this pattern could not be seen in the mod-
elling data (Figure 2), suggesting that the fixed part of this
mixed-effects model gives an erroneous picture on the
growth pattern.
The obvious reason for the shape of ‘Regression 1’

model is that the random period factors also describe the
influence of tree size. The assumption that the period fac-
tors are independent and identically distributed was not
met. This can be seen from Figure 3, which shows that the
period factor of ‘Regression 1’ model decreases with time.
Decreasing period factor decreases the prediction for lar-
ger diameters associated with later periods, implying that
although the fixed part of the mixed-effects model seems
unrealistic, the full model may predict realistic growths.
This result verifies the conclusion that it may be unwise to
use the fixed part of mixed-effects models in growth simu-
lators (e.g., Temesgen et al. 2008; Garber et al. 2009;
Pukkala et al. 2009; Shater et al. 2011; Groom et al. 2012;
Heiðarsson and Pukkala 2012; de-Miguel et al. 2012;
de-Miguel et al. 2013). As discussed by Burkhart and
Tomé (2012) it would be better to refit the model without
random parameters. Mixed-effects models can be used
when the model is calibrated for a particular period.
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However, since calibration requires measurements from
the same period, calibration cannot be done when one is
predicting future growth.
The survival models are more similar to each other

(Figure 4). In this case, the ‘Regression 2’ approach predicts
lower annual survival rates than the other approaches
(Figure 4 top). However, the differences between regression
approaches 1 and 2 disappeared when survival rates were
calculated for 5-year period (Figure 4 bottom). In this par-
ticular case, the optimization-based model deviated slightly
from the others.
Since it may not be recommendable to use non-

calibrated mixed-effects models, i.e., their conditional
predictions assuming that random parameters are zero,
Figure 6 Measured vs. predicted ending basal area and number of tr
approaches when full mixed-effects models are used.
all models were also fitted as fixed-effects model (Tables 4
and 5). The signs of the predictors again suggest similar
growth and survival patterns in all models, but visual in-
spection reveals that the ‘Regression 2’ model for diameter
increment differs a lot from the other models (Figure 5).
When the projection period is longer than one year, differ-
ences in the shape of the relationship between diameter
and diameter increment remain, but the magnitude of the
difference is smaller for large trees (results not shown).
The fixed-effects survival models show similar patterns

as the fixed parts of mixed-effects models (Figures 4 and
5). Also in this case the difference between ‘Regression
2’ model and the other modes gets smaller for projection
periods longer than one year.
ees per hectare in alternative modelling and simulation



Table 8 Statistics for the fixed-effects models (best in
boldface, worst in italics)

Modelling and simulation approach

Regression
1

Regression
2

Regression
2

Optimization

1-year
step

1-year
step

true
step

1-year
step

Basal area

- bias (m2 · ha–1) 1.74 10.04 9.24 –0.28

- RMSE (m2 · ha–1) 4.24 22.73 20.49 2.73

Number of trees per hectare

- bias –23.92 49.74 49.74 0.39

- RMSE 76.21 135.94 135.94 46.75

Annual basal area increment

- bias (m2 · ha–1) 0.579 1.611 1.497 –0.005

- bias (%) 43.21 120.22 111.71 –0.37

- RMSE (m2 · ha–1) 1.251 3.175 2.971 0.868
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Performance of the models
The models were used in simulation software to simulate
the growth of all plots for each period. The mixed-effects
models were used with and without period factors. The pre-
dicted ending stand basal area and number of survivors were
compared to their measured values. The RMSE (square root
on the mean of squared errors) and bias were calculated also
for the basal area increment of the period. Regression
models fitted with the ‘Regression 2’ approach were used in
two ways: by using one-year steps and by predicting the in-
crement and survival of the whole period directly.
Of the full mixed-effects models, the optimization-

based approach resulted in the best simulation results
according to all criteria (Table 6, Figure 6). ‘Regression
2’ approach used with the true length of the period (in-
stead of simulating in 1-year steps) was the second best
in predicting basal area increment and ending basal area.
However, using ‘Regression 2’ approach with 1-year time
steps resulted in the lowest accuracy and precision.
As expected, the RMSEs and biases were larger (with

some exceptions) when only the fixed parts of mixed
models were used (Table 7). Ranking of the regression ap-
proaches was now less straightforward. The optimization-
based approach was the best according to all criteria.
When the statistics were computed for the fixed-effects

models, ‘Regression 1’ approach turned out to be better
than ‘Regression 2’ approach, and optimization was again
clearly better than the other methods (Table 8). All regres-
sion approaches resulted in very biased estimates of basal
area increment.
Theoretically, full mixed-effects models should provide

the most accurate and precise predictions. The second
best should be fixed-effects models, and fixed parts of
Table 7 Statistics for the fixed parts of mixed-effects
models (best in boldface, worst in italics)

Modelling and simulation approach

Regression
1

Regression
2

Regression
2

Optimization

1-year
step

1-year
step

true
step

1-year
step

Basal area

- bias (m2 · ha–1) –1.07 3.01 3.82 0.18

- RMSE (m2 · ha–1) 3.33 7.66 9.49 3.24

Number of trees per hectare

- bias –18.00 49.97 49.97 5.63

- RMSE 64.01 135.94 135.94 50.78

Annual basal area increment

- bias (m2 · ha–1) –0.885 0.355 0.463 0.013

- bias (%) 66.04 26.49 34.55 0.97

- RMSE (m2 · ha–1) 1.322 1.339 1.476 0.976
mixed-effects models should be the worst (e.g., Temesgen
et al. 2008; Garber et al. 2009; Pukkala et al. 2009; Shater
et al. 2011; Heiðarsson and Pukkala 2012). Comparison of
Tables 6, 7 and 8 reveals that this was not always the case.
A probable reason for the deviations from expectations is
that the statistics in Tables 6, 7 and 8 were computed for
variables other than the response variables of regression
analyses.
The best models were the full mixed-effects models re-

covered by using the optimization-based approach. How-
ever, period factors cannot be used when predicting future
growth. Therefore, the models that should be used in sim-
ulations are the fixed-effects models recovered with the
optimization approach.

Supplementary models
Two supplementary models were developed for simulating
the development of stand and tree height. Tree height may
be a predictor in volume, taper and biomass equations and
it is therefore useful to have models for height as well.
Of the tested dominant height models, the Hossfeld

equation had good fitting statistics while being biologic-
ally acceptable. Some other functions had slightly better
fitting statistic but they gave unrealistic predictions out-
side the range of variation of the modelling data. The se-
lected dominant height model is:

H2 ¼ T 2
2

1:893þ T 2 T1=H1−0:027T 1−1:893=T 1 þ 0:027T 2ð Þ
ð6Þ

H refers to dominant height T to stand age. The de-
gree of explained variance was 0.916 and the RMSE was



Figure 7 Dominant height development in site indices 25, 30 and 35 m (dominant height at 30 years). The thin lines show the measured
dominant height development of individual plots.

Figure 8 Predictions of the tree height model with three
different combinations of dominant diameter and dominant
height (dots). The ratio in parenthesis is the dominant diameter
(cm) to dominant height (m) ratio.
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1.984 m. When the model is used to calculate site index,
T1 is replaced by measured stand age, H1 by measured
dominant height and T2 by index age (30 years). When
using the model to predict dominant height develop-
ment, T1 is replaced by index age, H1 by site index, and
T2 by the wanted projection age. Figure 7 shows that the
model follows fairly well the measured sequences of
dominant height in different plots.
The individual-tree height model is:

h ¼ 1:3þ H−1:3ð Þ � d
D

	 
0:201þ0:197 ln d
Dð Þ

ð7Þ

where h is tree height (m), H is dominant height (m), d
is dbh (cm) and D is dominant diameter (cm). For this
model, the degree of explained variance was 0.899 and
the RMSE was 1.746 m. The model predicts that trees of
a certain diameter are taller when the stand develops
and its dominant height and dominant diameter increase
(Figure 8).

Conclusions
The study showed that regression models based on the
assumption of linear growth or constant survival rate be-
tween the measurement occasions, or using the length
of measurement interval as a predictor, may lead to very
biased predictions in growth simulations. Therefore, more
sophisticated methods are needed to deal with irregular
measurement intervals. The optimization method used in
this study overcomes some of the problems related to other
methods (Cao 2004; Nord-Larsen 2006). In addition, it
works also in cases where varying measurement interval is
not the only shortcoming in the data (Pukkala et al. 2011,
de-Miguel et al. 2014). The method can be used to calibrate
an existing model or to fit a new model, or fit only a part of
the models needed in simulation. For example, in the case
that there are already models for diameter increment and
survival, the method can be used to fit ingrowth models
using data in which ingrowth trees cannot be separated
from the other trees.
Earlier research has shown that the optimization-based

modelling approach is competitive with individual-tree
modelling based on regression analysis when there are no
irregularities in the data (Pukkala et al. 2011; de-Miguel
et al. 2014). This study showed that the method resulted
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in clearly better models than obtained with more simplis-
tic approaches to deal with irregular measurement inter-
val. The benefit would of course be smaller if there was
less variation in measurement interval.
The drawback of the method is poorer parameter iden-

tifiability. The response variables of the models are not
utilized in modelling, and the parameters of all models are
estimated simultaneously. This may lead for instance to
models that overestimate diameter growth, which is com-
pensated for by underestimated survival rate. However, in-
cluding both basal area and frequency distributions in the
objective function decreases the likelihood of this kind of
mutual cancellation of model errors. The problem may
have been more serious if ingrowth model was esti-
mated simultaneously with survival and diameter incre-
ment model. In this case, overestimated ingrowth may
be compensated for by overestimated mortality among
the smallest diameter classes.
The optimization-based model recovery method used

in this study makes a higher number of different types of
observational plots available for individual-tree growth
modelling. This saves money and time. There is no need
to have the trees numbered or have a constant measure-
ment interval. The method is not sensitive to errors in
tree identification.
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