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Abstract

Background: Retinopathy of prematurity (ROP) is a leading cause of childhood blindness worldwide but can be a
treatable retinal disease with appropriate and timely diagnosis. This study was performed to develop a robust
intelligent system based on deep learning to automatically classify the severity of ROP from fundus images and
detect the stage of ROP and presence of plus disease to enable automated diagnosis and further treatment.

Methods: A total of 36,231 fundus images were labeled by 13 licensed retinal experts. A 101-layer convolutional
neural network (ResNet) and a faster region-based convolutional neural network (Faster-RCNN) were trained for
image classification and identification. We applied a 10-fold cross-validation method to train and optimize our
algorithms. The accuracy, sensitivity, and specificity were assessed in a four-degree classification task to evaluate the
performance of the intelligent system. The performance of the system was compared with results obtained by two
retinal experts. Moreover, the system was designed to detect the stage of ROP and presence of plus disease as well
as to highlight lesion regions based on an object detection network using Faster-RCNN.

Results: The system achieved an accuracy of 0.903 for the ROP severity classification. Specifically, the accuracies in
discriminating normal, mild, semi-urgent, and urgent were 0.883, 0.900, 0.957, and 0.870, respectively; the
corresponding accuracies of the two experts were 0.902 and 0.898. Furthermore, our model achieved an accuracy
of 0.957 for detecting the stage of ROP and 0.896 for detecting plus disease; the accuracies in discriminating stage I
to stage V were 0.876, 0.942, 0.968, 0.998 and 0.999, respectively.

Conclusions: Our system was able to detect ROP and differentiate four-level classification fundus images with high
accuracy and specificity. The performance of the system was comparable to or better than that of human experts,
demonstrating that this system could be used to support clinical decisions.
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Background
Retinopathy of prematurity (ROP) is a proliferative ret-
inal vascular disease that affects approximately two-
thirds of premature infants who weigh less than 1250 g
at birth. It is associated with abnormal retinal vascular
development at the boundary of vascularized and avas-
cular peripheral retina [1, 2]. Worldwide, an estimated
30,000 premature infants annually experience blindness

or severe loss of vision due to ROP [3]. Most cases of
ROP are mild and resolve spontaneously without inter-
vention; 5 to 10% of cases progress to more severe ROP,
which can lead to retinal detachment or distortion of the
retina and permanent blindness if left untreated [4].
Whereas clinical diagnosis and early disease detection
remain subjective; high levels of inconsistency in ROP
diagnosis have been observed even among ROP experts
[5, 6]. Therefore, it is urgent to establish a screening tool
that can rapidly identify fundus images requiring further
attention and critical analysis by ophthalmologists,
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thereby increasing the accuracy and efficiency of
diagnosis.
Artificial intelligence (AI), inspired by the multilayered

human neuronal system, has achieved great performance
within medical imaging interpretation and triage tasks,
allowing clinical experts to diagnose diseases efficiently
and untrained technicians to objectively screen more pa-
tients. Deep learning (DL) has significantly extended the
capabilities of images classification, object detection,
drug discovery, and robot functions [7]. Convolutional
neural networks (CNNs) are DL algorithms commonly
applied in image classification, which have been success-
fully used in the diagnosis of skin cancer [8], lung cancer
[9], glioma [10], and breast histopathology [11]. DL has
achieved automated detection of retinal diseases [12, 13],
including diabetic retinopathy [14], glaucoma [15], age-
related macular degeneration, and cataracts [16]. Re-
cently, several studies regarding the diagnosis of ROP
with AI have achieved promising results. Approaches for
automated identification of plus disease in ROP depend
on traditional approaches, such as machine learning with
handcrafted features [17]. Gelman established a
computer-based image analysis system to distinguish
plus disease with 95% accuracy, which is comparable
with expert diagnosis [18]. Brown et al. developed an al-
gorithm based on DL to automatically distinguish the
presence of plus disease or pre-plus disease with high
sensitivity and specificity [19]. However, the above-
mentioned studies were mainly focused on plus disease
in ROP. An automated ROP diagnosis system that can
analyze real-world clinical features (i.e., stage and zone
of ROP as well as the presence of plus disease) is rare.
In this study, we established an intelligent system to

achieve detection and classification of ROP in fundus
images. The purpose of our study was to: (1) implement
and evaluate a CNN-based DL system for four-level
diagnosis (normal, mild, semi-urgent, urgent) of ROP in
fundus images; (2) determine the accuracy of the system
by comparing its diagnostic performance with that of ex-
perienced retinal experts; (3) detect the stage of ROP
and presence of plus disease, and predict lesion location
in fundus images using a faster region-based convolu-
tional neural network (Faster-RCNN).

Methods
Ethics approval
Collection and labeling of fundus images were performed
by ophthalmologists at Renmin Hospital of Wuhan Uni-
versity Eye Center. This study followed the tenets of the
Declaration of Helsinki [19], and was approved by the in-
stitutional review board of Renmin Hospital of Wuhan
University (ID: WDRY2019-K032). For all involved pa-
tients, written informed consent was obtained from their
parents for imaging and study participation. In addition,

we deleted all patients’ sensitive information prior to
image viewing, to ensure that their personal information
remained anonymous and confidential.

Data sets
For algorithm development, a total of 38,895 fundus im-
ages from the ROP screening (from February 1, 2012, to
October 1, 2016) were retrospectively collected from
Renmin Hospital of Wuhan University Eye Center. All
images were obtained using a wide-angle imaging device
(RetCam; Clarity Medical Systems, Pleasanton, CA). The
resolution of the image is 640 × 480 pixels. The
dataset also included follow-up images from the same
patients who underwent ROP screening.

Image labeling, preprocessing and dataset division
The overall experimental design and dataset selection
process is shown in Fig. 1. The current study invited 13 li-
censed ophthalmologists, who specialized in retinal dis-
eases diagnosis. Images were randomly assigned to 11
junior retinal experts for first-round screening and label-
ing. In the second round, the remaining two senior retinal
experts who have over 10 years of individual clinical ex-
perience were invited to confirm (or correct) the labeling
results. A total of 2664 images were excluded based on
the following exclusion criteria: (1) poor image quality; (2)
imaging artefacts; (3) unfocused scans; (4) presence of
other disease phenotypes (e.g., retinal hemorrhage). No
images were excluded based on age, sex, or race. Eventu-
ally, the remaining 36,231 images were included in the
current study to build the intelligent system.
Each image was annotated with two labels: the classifi-

cation label and the identification label. The classifica-
tion labels constituted one of four degrees of ROP
severity according to the requirements of clinical treat-
ment [20]: “normal” (no abnormalities); “mild” (stage I
or stage II, without plus disease; routine observation);
“semi-urgent” (stage I or stage II, with plus disease; sug-
gested referral); and “urgent” (stage III, stage IV, or stage
V, with or without plus disease; urgent referral for treat-
ment). The identification labels were added to indicate
ROP stages: “demarcation line,” “ridge,” “ridge with extra
retinal fibrovascular involvement,” “subtotal retinal de-
tachment,” and “total retinal detachment”; the identifica-
tion labels were also added to indicate plus disease:
“dilation and tortuosity of retinal vessels”, based on the
International Classification of Retinopathy of Prematur-
ity system [21]. In addition, the lesion area was delin-
eated with a box outline by the retinal experts.
Representative ROP images are shown in Fig. 2. In
addition, the experts labeled optic disc, fovea, and laser
scar on the images to assist in diagnosis and monitoring
of any therapeutic effects.
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To account for image variation within our dataset, we
used preprocessed versions of the original images and
normalized the image before learning. The preprocessing
steps consisted dataset augmentation followed by resiz-
ing. Data augmentation was a method that used image
transformations across a sample dataset to increase
image heterogeneity while preserving prognostic charac-
teristics of the image itself. Since the fundus diagnosis
primarily depended on the identification of major ana-
tomical structures, regardless of orientation, we encoded
rotational invariance into our predictions by randomly
rotating images before propagating these images into
our model. To preprocess images further before learn-
ing, we augmented the dataset by adding random noise
and adjusted the image brightness. The large dataset im-
proves the generalization of the model and reduces over-
fitting. Images were then downsized to a standard
resolution of 224 × 224 pixels to fit the expected input
size for algorithm training.
We randomly divided the obtained processed dataset

into the training and test datasets. The training dataset
was used to develop the learning model, while the test

dataset was used to evaluate the model. Image numbers
of each category in the training and test datasets are
summarized in Table 1. During the training process, we
used a conventional 10-fold cross-validation [22] method
to evaluate and optimize our model. The sample was
randomly partitioned into 10 complementary subsam-
ples of equal size. Nine folds were selected as the train-
ing set and one was selected as the validation set over 10
iterations. Therefore, 90% of the data was used for train-
ing and 10% of the data was used for validation. In this
context, all patients in the dataset participated in a valid-
ation, and each was predicted exactly once before the al-
gorithms were ready to be tested.

Development of the algorithm
In this study, we used two deep CNNs: the 101-layer
ResNet (classification network) and the Faster R-CNN
(identification network). The model was built and trained
with the Keras package in Python programming language
(ver. 2.7.9, Python Software Foundation, Beaverton, US)
using the TensorFlow backend (http://www.tensorflow.
org). To improve the training speed, we utilized a ResNet-

Fig. 1 Workflow of image labeling and model training
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101 CNN architecture that was pre-trained on the Ima-
geNet (http://www.image-net.org) database of 1.4 million
images [23], and retrain it on our dataset using transfer
learning, by which an algorithm can apply cumulative
knowledge learned from other datasets to a new task [24].
The CNN consisted of multiple convolutional layers that
learned local features of images and generated classifica-
tions. It included pooling layers (average pool and max
pool) that merged semantically similar features into one
feature, thereby reducing the dimensionality of the ex-
tracted features and fully connected layers to combine
these features and provide a final probability value for the
class. The original code of the study is available at https://
github.com/whu-eyelab/Rop_.

Recent studies have shown that network depth is
beneficial to classification accuracy [25]. However, as the
network gains greater depth, its performance becomes
saturated and then begins to decrease rapidly [26]. The
ResNet framework can correct this problem. Through-
out the deep network, shortcut connections are added
every three convolutional layers. These shortcut connec-
tions perform identity mapping without adding extra pa-
rameters or increasing the computational complexity,
which enhances the ease of optimizing the network dur-
ing the training process. Therefore, ResNet enables
achievement of higher accuracy from deeper networks
than from shallower networks when performing image
classification tasks. The network was trained with a

Table 1 Number of images in the training and test datasets

Clinical features Definition Training dataset Test dataset

Stage I Demarcation line 1687 377

Stage II Ridge 263 77

Stage III Ridge with extra retinal fibrovascular involvement 179 48

Stage IV Subtotal retinal detachment 45 13

Stage V Total retinal detachment 10 4

Plus disease Dilation and tortuosity of retinal vessels 2745 261

Optic disc – 12,383 5278

Fovea – 8455 3568

Laser scar – 692 146

Total – 26,459 9772

Fig. 2 Representative ROP images with annotations of five stages and the presence of plus disease. Box outlines in (a-f) indicate lesion sites. (a)
Stage I: Demarcation line. (b) Stage II: Ridge. (c) Stage III: Ridge with extra retinal fibrovascular involvement. (d) Stage IV: Subtotal retinal
detachment. (e) Stage V: Total retinal detachment. (f) Plus disease: Dilatation and tortuosity of retinal vessels
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learning rate of 0.0001 and the computation cost of
7.6 × 109 floating-point operations using the parameters
presented in Fig. 3a.
Faster R-CNN is a high-performing object detection

model, which was the winning entry of the Common
Objects in Context (COCO) detection challenge [27].
Object detection involved recognition and classification
of every object in an image as well as positioning each
object within a bounding box. We configured Faster R-
CNN with a pretrained Inception-ResNet-v2 model
provided by TensorFlow Object Detection application
programming interface (Fig. 3b) to identify the stage of
ROP and the presence of plus disease as well as to pre-
dict the objective boundaries of the lesion sites. The pre-
trained model had been trained on COCO, which was a
large image dataset designed for object detection [28].
During the training process, we applied the fine-tuning
technique to transfer the connection weights from the
pretrained model to our model and retrained the model
to the present task. This model accepted an image as in-
put and performed five main assessments: the region
proposal network was used to identify object regions in
an image; a classifier block of the outline box regressor
and an object classifier were used to assess candidate
boxes from the output of the region proposal network;
region of interest pooling and fully connected layers
were the final assessments. Eventually, the model out-
puts the bounding box of each target object as well as
the corresponding category label.

We combined these two CNN networks as a system to
process a large-scale ROP dataset; the system will eventu-
ally output the classification of ROP severity as well as the
diagnosis of ROP stage and the presence of plus disease.
The intelligent system ran a total of 120 training epochs
(iterations) and the training stopped when the cross-
entropy loss function was minimized by stochastic gradi-
ent descent. Then, the model with the lowest loss (highest
accuracy) was selected for use on the test dataset. Tensor-
Board chart was used to show the performance of model
training and validation data (Fig. 4). All classifications pro-
duce convergence when training reaches the final layer.
Figure 5 shows the overall working system.

Statistical analysis
To evaluate the performance of the intelligent system,
three evaluation indicators were compared, including ac-
curacy, sensitivity, specificity and F1-score. To further
evaluate the performance of the system, 1227 fundus im-
ages captured during routine clinical ROP screening
were used to compare the prediction accuracy of the sys-
tem within the four-level classification relative to the
diagnoses of two experienced human experts on retinal
imaging. We also plotted the confusion matrices of the
101-layer ResNet and compared the locations of the le-
sions predicted by the intelligent system with those la-
beled by the experts. Statistical analyses were performed
using GraphPad Prism software version 7.0 (GraphPad

Fig. 3 Workflow diagram. a Typical architecture of the 101-layer ResNet. b The flowchart of Faster-RCNN. Abbreviations: Conv, convolutional layer;
RPN, region proposal network; ROI, region of interest; AvgPool, average pool; FC, full connected layer; CNN, convolutional neural network; Faster-
RCNN, faster region-based convolutional neural network
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Fig. 4 Comparison between the cross-entropy loss function curve and the training step. (a) Performance of the training dataset; (b) Performance
of the validation dataset

Fig. 5 Workflow of our system
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Inc., La Jolla, CA, USA) and IBM SPSS Statistics 19
(IBM Corp., Armonk, NY, USA).

Results
Our intelligent system was evaluated regarding its ability
to discriminate the four-degree classification of ROP
from fundus images; The results showed that the system
can achieve an accuracy of 0.903, a sensitivity of 0.778
with a specificity of 0.932 and a F1-score of 0.761 for
grading the ROP cases as “normal,” “mild,” “semi-urgent,”
and “urgent” (Fig. 6).
We further compared the performance of the system

with the results obtained by two experienced retinal ex-
perts. Expert 1 achieved an accuracy of 0.902, a sensitiv-
ity of 0.748, a specificity of 0.934 and a F1-score of
0.743; expert 2 achieved an accuracy of 0.898, a sensitiv-
ity of 0.659, a specificity of 0.923 and a F1-score of 0.682
(Fig. 6). Table 2 shows the specific accuracies for each
category obtained by the proposed system and the two
retinal experts. The results showed that the system could
correctly discriminate the four-degree classification with
accuracies of 0.883, 0.900, 0.957, and 0.870, respectively.
Three confusion matrixes shown in Fig. 7 reveal the

specific assignments of different predictions for each
image. The rows provide the samples’ true labels, while
the columns present the predicted labels. Each diagonal
element of the heatmap represents the percentage of im-
ages correctly classified in the corresponding category.
Non-diagonal elements show the percentages of misclas-
sified images and how they were misclassified. Misclassi-
fication cases and types were significantly fewer with the
intelligent system than for human experts.

The accuracies of our system to identify the stage of
ROP and the presence of plus disease were 0.957 and
0.896. Besides, it achieved an average F1-score of 0.78 in
each category. Table 3 shows the specific accuracies,
sensitivities and specificities of each category for the
proposed system. The accuracies for discriminating stage
I to stage V were 0.876, 0.942, 0.968, 0.998 and 0.999,
respectively.
Performance was also measured by evaluating whether

the proposed outline boxes overlapped sufficiently with
outline boxes that were provided as the gold standard. In
the test phase, the re-trained model used test images as in-
put then output the predicted category label and the
outline box for each corresponding target object (Fig. 8).

Discussion
We developed a new automated feature-learning ap-
proach for ROP detection using DL methods. This pro-
vides a robust solution for ROP detection within a large-
scale annotated dataset, and the results showed high effi-
cacy of the proposed model in providing objective and
efficient ROP diagnosis without reliance on ophthalmol-
ogists for manual examination and grading of images. In
addition to image classification, the system could accur-
ately identify the stage of ROP and presence of plus dis-
ease, and could visualize abnormal regions, which are
important for the clinical diagnosis of ROP.
By employing a transfer learning algorithm, the pro-

posed system showed good performance for this applica-
tion without the requirement for a highly specialized DL
machine nor a novel database of millions of images. Key
improvements are as follows: (1) a new dataset was con-
structed that is large and annotated with a new labeling

Fig. 6 Performances of the proposed system and the two human experts for the four-degree classification of the ROP severity. The proposed
system demonstrated 0.903 accuracy, 0.778 sensitivity, 0.932 specificity and 0.761 F1-score for the four-degree classification task; Expert 1 achieved
0.902 accuracy, 0.748 sensitivity, 0.934 specificity and 0.743 F1-score, while expert 2 achieved 0.898 accuracy, 0.659 sensitivity, 0.923 specificity and
0.682 F1-score. Abbreviations: ROP, retinopathy of prematurity
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scheme combining more clinical features of ROP, aiding
in reduction of the individual effect and avoiding over-
fitting of the algorithms to some specific feature; (2) two
mainstream CNN models were applied as our classifica-
tion and identification algorithms (101-layer ResNet and
Faster-RCNN, respectively), which appeared to perform
screening functions with proficiency comparable to or
better than that of ROP experts; (3) the performance
was optimized with a 10-fold cross-validation method
that can increase the generalizability of the system.
Clinical studies have shown that zone I, any stage ROP

with plus disease or zone I, stage III retinopathy without
plus disease requires timely treatment to prevent blind-
ness [29]. The most prominent advantage of our study is
its attempt to identify the stage of ROP and presence of
plus disease, along with disease severity; this functional-
ity enables clinical review and verification of the auto-
mated diagnosis, rather than simply identifying the
presence of ROP. Moreover, conventional deep neural
networks (such as ResNet, AlexNet), provide only the
image classification and associated labels without ex-
plicit definitions of features in clinical practice. Here,
Faster-RCNN served as an object detection network
that could recognize and classify object in an image
and could position the object by using an outline box
[27]; this enables ophthalmologists to inspect and
visualize specific lesion regions. The algorithms devel-
oped in this study are advantageous in terms of the
above properties when compared to other algorithms;
the benefits also include consistent prediction and
instantaneous reporting of results.

Previous studies of automated identification of ROP
screening have shown encouraging results [6, 30, 31].
The majority of traditional methods for diagnosis of
ROP are focused on the recognition of plus disease such
as measuring the statistics of retinal vessels in the fun-
dus [32]. For example, “ROPTool” and “i-ROP” systems
were proposed to assist ophthalmologists in diagnosing
plus disease [31, 33]. The ImageNet pre-trained Google-
Net was the first deep neural network to classify the
presence of plus disease [34]. Although plus disease is an
important clinical feature of ROP diagnosis by the Inter-
national Classification of Retinopathy of Prematurity sys-
tem defining treatment-requiring ROP, it is not
sufficient to define ROP by itself only [21]. To the best
of our knowledge, there has been minimal research fo-
cused on comparative analysis of image features that are
most critical for diagnosis. In contrast to other studies,
Wang J et al. developed a DL-based method and divided
ROP into three grades with high sensitivity and specifi-
city [35]. However, their system could only evaluate the
severity of ROP; it could not identify finer details, such
as the stage of ROP or presence of plus disease. Add-
itionally, the numbers of the images in different datasets
are insufficient to develop robust DL models that can
deliver satisfactory performance [36]. An overview of
previous studies using AI methods for ROP diagnosis
are listed in Table 4, including a comparison of the data-
set, diagnostic model and their applications in ROP.
Some limitations of this study include: (1) limited

number of ROP stage V fundus images in our dataset,
which may have biased the performance of the model;
(2) the fundus images in our study were collected from a
single clinical site with consistent device settings and
population characteristics, which might have reduced
data diversity and affected the generalization ability of
the algorithm; (3) our system struggled to differentiate
between normal and very early cases of ROP in the data-
set, such that it missed cases with subtle demarcation
lines; (4) although we used a cross-validation method to
maximize generalizability to other datasets, an important

Fig. 7 Three confusion matrixes for the intelligent system and the two best retina experts’ predictions in the four-degree classification task. (a)
Confusion matrix of the proposed system; (b) Confusion matrix of expert 1; (c) Confusion matrix of expert 2

Table 2 The specific accuracies for each category by the
intelligent system and the two retinal experts

Category System Expert 1 Expert 2

Normal 0.870 0.929 0.914

Mild 0.883 0.874 0.869

Semi-urgent 0.900 0.882 0.889

Urgent 0.957 0.923 0.920
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continuation to this study will be to achieve validation
using completely separate images. Notably, premature
infants who were diagnosed with avascular retina but no
characteristics of ROP for the first screening time,
needed to be followed up every 2–3 weeks until the
retina was fully vascularized.
In future studies, larger datasets of severe ROP images

are needed to validate and optimize our system in the
clinical setting. Moreover, further testing and
optimization of the sensitivity metric may be necessary
to ensure a minimum false-negative rate. Additionally,
multimodal clinical metadata should be included in the
AI diagnosis of ROP, such as birth weight, patient his-
tory, gestational age, and other clinical data that may

influence the risk of retinopathy. Datasets from multiple
clinical centers and larger patient cohorts are needed in
subsequent studies to further validate this intelligent sys-
tem and enable it to serve as a practical intelligent tool
for real-world clinical use.

Conclusions
Overall, our DL-based system showed the potential for
automated detection of ROP and differentiation of four-
level classification fundus images with high accuracy and
specificity. The performance of the system was equal to
or better than that of retinal experts, suggesting that this
system can be used to assist in clinical decisions; this is

Fig. 8 Representative images of system-predicted lesion locations compared with those predicted by experts. Box outlines in (a-f) indicate lesion
sites. The boxes in red are the lesion locations annotated by retinal experts (gold standard annotations), and the boxes in blue are the lesion
locations predicted by the Faster-RCNN. Abbreviation: Faster-RCNN, faster region-based convolutional neural network

Table 3 The accuracies, sensitivities, specificities and F1-scores for each category by the proposed system

Definition Clinical features Accuracy Sensitivity Specificity F1-score

Stage I Demarcation line 0.876 0.765 0.883 0.81

Stage II Ridge 0.942 0.550 0.973 0.52

Stage III Ridge with extra retinal fibrovascular 0.968 0.473 0.975 0.51

Stage IV Subtotal retinal detachment 0.998 0.867 0.998 0.93

Stage V Total retinal detachment 0.999 0.800 0.999 0.89

Plus disease Dilation and tortuosity of retinal vessels 0.896 0.713 0.907 0.78

Optic disc 0.954 0.945 0.917 0.96

Fovea 0.781 0.744 0.840 0.72

Laser scars 0.974 0.908 0.988 0.89
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an initial step toward clinical translation of this method.
Given the increasing burden of ROP on the healthcare
system, the implementation of our algorithm is likely to
be important in supporting decisions for patient man-
agement and primary care-based screening approaches
for ROP in the general population.
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