
REVIEW Open Access

Genetics in Keratoconus: where are we?
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Abstract

Keratoconus (KC) is a non-inflammatory thinning and protrusion of the cornea in which the cornea assumes a
conical shape. Complex etiology of this condition at present remains an enigma. Although environmental factors
have been involved in KC pathogenesis, strong underlining genetic susceptibility has been proven. The lack of
consistent findings among early genetic studies suggested a heterogeneity and complex nature of the genetic
contribution to the development of KC. Recently, genome-wide linkage studies (GWLS) and genome-wide
association studies (GWAS) were undertaken. Next-generation sequencing (NGS)-based genomic screens are also
currently being carried out. Application of these recently developed comprehensive genetic tools led to a much
greater success and increased reproducibility of genetic findings in KC. Involvement of the LOX gene identified
through GWLS has been confirmed in multiple cohorts of KC patients around the world. KC susceptibility region
located at the 2q21.3 chromosomal region near the RAB3GAP1 gene identified through GWAS was independently
replicated. Rare variants in the ZNF469 gene (mutated in corneal dystrophy Brittle Cornea Syndrome) and in the
TGFBI gene (mutated in multiple corneal epithelial–stromal TGFBI dystrophies) have been repeatedly identified in
familial and sporadic KC patients of different ethnicities. Additional comprehensive strategies using quantitative
endophenotypes have been successfully employed to bring further understanding to the genetics of KC. Additional
genetic determinants including the COL5A1 gene have been identified in the GWAS of KC-related trait central
corneal thickness. These recent discoveries confirmed the importance of the endophenotype approach for studying
complex genetic diseases such as KC and showed that different connective tissue disorders may have the same
genetic determinants.
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Background
Keratoconus (KC) is a complex corneal condition charac-
terized by progressive corneal thinning and steepening
resulting in moderate to marked visual impairment [1].
The disease is relatively common; it affects approximately
300,000 people in the U.S. [2, 3] and is one of the three
top indications for corneal transplantation in the U.S. and
worldwide [4].
KC most commonly affects children. It is often detected

at puberty and is progressive until the third to fourth dec-
ade of life, when it usually arrests [1]. As the cornea thins
and steepens, it assumes a conical shape, causing increas-
ingly myopic and astigmatic vision. The decrease in visual

acuity can first be addressed with glasses, then later with
rigid gas permeable contact lenses. If the disease continues
to progress, the contact lens wear becomes gradually more
intolerable, and corneal transplantation is indicated to re-
store vision. These visual changes can also significantly
decrease quality of life for KC patients, especially when
the patient has been affected for more than a decade, and
as the visual acuity of the fellow “better” eye decreases [5].
The progression of the disease is caused by a decrease

in the biomechanical strength of the cornea, which is
composed primarily of stacked collagen and keratocytes
[6]. Current research suggests a complex etiology for the
disease including a genetic predisposition [3, 7, 8]. Studies
have shown that a positive family history greatly increases
the odds of a patient being diagnosed with KC [9–12].
There is also a possible association of KC with other

genetic conditions such as inflammatory bowel disease
(IBD) [13], Familial Mediterranean Fever (FMF) [14],
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rare chromosomal abnormalities including those associ-
ated with Down syndrome [15], and diabetes mellitus
(DM), for which DM patients have a lower incidence of
KC [16–18].
However, isolated KC with no associations is by far the

most common presentation seen by a practicing clin-
ician [1, 8]. The identification of genes responsible for
this type of KC has been the main focus of many studies
done by many research groups around the world. Signifi-
cant progress has been made towards identifying sub-
clinical phenotypic markers suitable for genetic studies
by videokeratography and optical coherence tomog-
raphy, including both anterior and posterior elevation
and pachymetric data. As will be shown below, several
genes have been implicated across these studies, includ-
ing genes coding for various collagens and related to
extracellular matrix production; still, many others seem
to only be tangentially related to these processes. Gen-
etic research into the etiology of the disease will improve
the clinician’s ability to predict and ultimately prevent
KC in patients.
In the main part below followed by Table 1 and Fig. 1,

this paper will summarize the current status of research
into the genetics of KC.

Review
Genes identified through genome-wide linkage studies
(GWLS)
GWLS denotes genotyping families affected by a certain
disease using a collection of genetic markers across the
genome, and examining how those genetic markers segre-
gate with the disease across multiple families. GWLS, also
called linkage studies, were applied successfully to identify
genetic variants that contribute to rare disorders like fa-
milial breast cancer [19], Huntington disease [20], cystic
fibrosis [21], and others (for a comprehensive review see
[22]). For decades, these studies were generally conducted
using 300–400 microsatellite markers spaced at 10–20
centimorgans (cM) apart. These multiallelic markers were
robust and highly informative; however, their genotyping
was a time-consuming process. Shortly after single nu-
cleotide polymorphisms (SNPs) were discovered to be
abundant polymorphic markers uniformly distributed
throughout the human genome [23], dense SNP arrays
quickly became the genotyping platform of choice due to
the highly unparalleled interrogation and accurate scoring.
Testing of genotyping data also evolved from being based
on model-based (recessive, dominant, etc.) to robust non-
parametric alternatives [24].

LOX
One of the most significant recent developments in the
field of KC genetics is the identification of polymor-
phisms in the LOX (collagen crosslinking enzyme lysyl

oxidase) gene that is potentially responsible for a link-
age signal at the 5q32-q33 chromosomal region identi-
fied by a two-stage GWLS using hundreds of
polymorphic microsatellite markers (state-of-the-art-
technology available at the time) and the nonparametric
method of analysis [25]. After looking at biological
functions of hundreds of known or predicted genes in
five linkage regions, LOX was found to be the most
promising candidate among plausible KC candidate
genes [26]. LOX initiates the cross-linking of collagens
and elastin by catalyzing oxidative deamination of the
epsilon-amino group in certain lysine and hydroxyly-
sine residues [27]. LOX defects can potentially lead to
the reduction of cross-linking of collagen fibers of the
corneal stroma thus leading to biomechanical weaken-
ing of the cornea. Despite the fact that an early study in
a group of Italian patients failed to identify LOX muta-
tions [28], further extensive genotyping in multiple
samples of independently collected KC patients around
the world confirmed the effect of SNP rs2956540 in
LOX in Czech KC cases of European descent [29],
Chinese cases [30], Iranian cases [31], and in a recent
meta-analysis of published studies [32]. LOX involve-
ment is also supported by functional data that showed
its attenuation in corneal epithelium of KC patients at
levels corresponding to disease severity [33] and re-
vealed changes in LOX distribution and its decreased
activity in KC corneas [34].

CAST
Two independent GWLS, one in a single extended KC
family and another using multiple unrelated families with
KC, mapped a KC locus to a genomic region located at
5q14.3-q21.1 [26, 35]. This region overlaps the CAST gene
encoding calpastatin, the inhibitor of calpains (non-lyso-
somal intracellular proteases), which was considered a
likely candidate based on the robust presence in the mam-
malian eye [36], which was further confirmed by in silico
analysis of EST (expressed sequence tags) databases of hu-
man eye tissues [37]. This analysis showed the presence of
different CAST isoforms in different parts of the eye (cor-
nea, lens, pterygium) as well as a potential difference in
their distribution in KC cornea ESTs as compared with
those from normal corneal tissues [37]. In addition,
higher levels of calpain small subunit-1 protein were
found by protein profiling in the epithelia of KC cor-
neas [38]. Initial linkage findings using microsatellite
markers were further confirmed by genotyping of
high-density SNPs in and around the CAST gene in
family and case-control panels of patients with KC
followed by comprehensive linkage and association
analysis [37, 39]. Both studies found CAST SNPs to
be significantly associated with KC.
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Table 1 KC genes and identified variants

Gene Function CHR Variant (s) Method (Reference) Variant Location Ref

LOX Lysyl oxidase, participates
in collagen cross-linking

5q23.2 rs10519694 GWLS/LD/FM Intron [25]

rs1800449/rs2288393 GWLS/LD/FM Missense [25, 29]

TG

rs41407546 S Missense UN

rs2956540 GWLS/LD/FM Intron [25, 29–31]

TG

COL5A1 Collagen type V, alpha-1 chain,
part of fibril-forming corneal collagen

9q34.2-
q34.3

rs1536482 GWLS/FM/CCT GWAS 5′ near gene [74, 111]

rs7044529 GWLS/FM/CCT GWAS Intron [74, 108,
111]

CAST Calpain/calpastatin, proteolytic
degradation

5q15 rs4434401 GWLS/FM Intron [37]

RAB3GAP1 Rab GTPase activating protein,
regulates exocytosis

2q21.3 rs4954218 GWAS 5′ near gene [56, 60]

HGF Hepatocyte growth factor,
involved in corneal wound healing

7q21.1 rs3735520 GWAS, TG 1 KB promoter [29, 54]

rs1014091 GWAS, S 1 KB promoter [54, 55]

rs17501108 S 1 KB promoter [55]

rs2286194 S intron [55]

FNDC3B Fibronectin, extracellular matrix
protein

3q26.31 rs4894535 CCT GWAS Intron [74]

FOXO1 Transcription factor 13q14.1 rs2721051 CCT GWAS, LA CCT
GWAS

3′ near gene [74, 108]

TGFBI Transforming growth factor beta
induced

5q31.1 Multiple rare variants S Exon [66, 67]

ZNF469 Transcription factor, regulates corneal
collagen structure and synthesis

16q24.2 rs9938149 CCT GWAS, TG 3′ near gene [74, 112]

Multiple rare variants S Exon [62–64]

DOCK9 Dedicator of cytokinesis 9,
Guanine nucleotide-exchange factor

13q32.3 c.2262A > C
p.Gln754His

GWLS/S Missense [41]

MPDZ-
NF1B

Not available 9p23 rs1324183 CCT GWAS, TG Intergenic [30, 74,
112]

WNT10A Member of WNT gene family of
secreted signaling proteins

2q35 rs121908120 CCT GWAS Missense [113]

ZEB1 Zinc finger transcription factor 10p11.22 c.1920G > T;
p.Gln640His

S Missense [84, 85]

SOD1 Superoxide dismutase 1,
cytoplasmic antioxidant enzyme

21q22.11 Multiple SNVs,
deletion

S Intron [99, 115]

IL1A Interleukin 1alpha, cytokine 2q13 rs2071376 TG, S Intron [91, 119]

IL1B Interleukin 1beta, cytokine 2q13 rs1143627 TG, S Promoter [119–121]

rs16944 TG, S Promoter [119–121]

COL4A3 Collagen type IV, alpha-3 chain,
structural part of corneal membranes

2q36.3 Multiple SNVs S Missense [123]

COL4A4 Collagen type IV, alpha-4 chain,
structural part of corneal membranes

2q36.3 Multiple SNVs S Missense [123, 124]

VSX1 Visual system homeobox 1,
transcription factor

20p11.2 Multiple SNVs S Missense, silent,
intronic

[133]

Table abbreviations: KC = keratoconus; CHR = chromosome; GWLS = genome-wide linkage study; GWAS = genome-wide association study; LD = linkage
disequilibrium; FM = fine mapping; S = sequencing; TG = targeted genotyping; CCT = central corneal thickness; SNV = single nucleotide variant; LA = Latino;
UN = unpublished data
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DOCK9
One previously reported chromosomal region at 13q32
linked to KC in Ecuadorian families [40] was sequenced
in 51 individuals and 105 matching controls. This mu-
tation screen identified a possible functionally import-
ant mutation c.2262A > C (p.Gln754His, rs191047852)
in the DOCK9 gene (dedicator of cytokinesis 9), which
segregated with phenotype in one large Ecuadorian
family [41]. This particular change was absent in other
tested families and in controls, however it is present,
albeit with extremely low frequency (minor allele fre-
quency (MAF) = 0.00002; Minor Allele Count = 3) in
61,000 individuals collected around the world and se-
quenced by The Exome Aggregation Consortium
(ExAC). The pathogenic nature of this change is sup-
ported by functional investigation, suggesting that it re-
sults in the aberrant splicing of the DOCK9 gene that
leads to exon skipping, resulting in the introduction of
a premature stop codon, disrupting the functional do-
mains of DOCK9 protein that may alter the biological
role of DOCK9 as an activator of Cdc42 (cell division
cycle 42), an important regulator of corneal wound re-
pair [42].

Other loci
Reports on familial KC have proposed both dominant
and recessive modes of inheritance, while most families
do not fit any typical mode of inheritance [1]. To date,
the following gene loci for KC have been identified using
GWLS methodology worldwide: 1p36.23-36.21, 2p24, 2q13,
3p14-q13, 5q14.3-q21.1, 5q21.2, 5q32-q33, 8q13.1-q21.11,
9q34, 13q32, 14q11.2, 14q24.3, 15q15.1, 15q22.33-24.2,
16q22.3-q23.1, and 20p13-p12.2, 20q12 [26, 35, 40, 43–51].
Potential mutations in the IL1RN (interleukin 1 receptor
antagonist) and SLC4A11 (solute carrier family 4, sodium
borate transporter, member 11) genes have been identified
in Ecuadorian family linked to the 2q13-q14.3 and 20p13-
p12 regions [51].

Genome-wide association studies (GWAS)
For many years, linkage analysis or GWLS was the pri-
mary tool used for the genetic mapping of Mendelian
and complex traits with familial aggregation. However,
over the last ten years, GWAS have evolved into a
powerful tool for investigating the genetic architecture
of human genetic diseases, especially complex and
common genetic traits. Analytical methods used for
GWAS are based on interrogating SNPs, single base-
pair changes in the DNA sequence that were found to
occur with high frequency in the human genome [23].
SNPs are by far the most abundant and common form
of genetic variation in the human genome. Many SNPs
are present in a large proportion of human populations
[52]. A SNP with allele frequency significantly altered
between the case and the control group is considered
to be associated with the trait. Minimizing the false
positive rate is the most important consideration for
GWAS. Thus, genome-wide significance threshold of a
nominal p-value < 5 × 10−8 has been established [53].
Well-designed GWAS would also include a replication
and analyses that include consideration of the joint as
well as the individual discovery and replication
datasets.

HGF
Two major GWAS were undertaken almost in parallel and
identified new candidate genes for KC. The first one using
pooled DNA from an Australian cohort of KC samples and
two-step confirmation procedure using two independent
case-control cohorts) identified promoter polymorphism
SNP rs3735520 in the HGF (hepatocyte growth factor) gene
[54]. Effect of HGF SNP rs3735520 was confirmed in a
panel of unrelated Czech KC cases of European descent
[29]. Interestingly, extensive analysis of HGF SNPs in
addition to the Australian KC population identified mul-
tiple associated SNPs [55].

Fig. 1 Keratoconus genes and their involvement in other ocular diseases
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RAB3GAP1
The second GWAS used discovery cohort of 222
Caucasian KC patients and 3324 matched controls and
two independent confirmation panels, a case-control
panel of 304 cases and 518 controls and a family panel
of 307 subjects (146 affected) in 70 families. A novel
SNP rs4954218 in the RAB3GAP1 (RAB3 GTPase acti-
vating protein catalytic subunit) gene was identified
[56]. Mutations in RAB3GAP1 gene are associated
with the Warburg Micro syndrome in patients of dif-
ferent ethnic backgrounds [57–59]. Notably, identified
polymorphism SNP rs4954218 was independently rep-
licated in an unrelated cohort of Australian Caucasian
KC patients thus providing further validity to this
novel locus [60].

Genes involved in KC and other corneal
dystrophies
TGFBI
TGF beta-induced protein (TGFBIP) is an extracellular
protein that mediates cell adhesion to collagen, laminin
and fibronectin and proteoglycans, such as decorin and
biglycan with expression changes triggered by the activa-
tion of the TGFB signaling pathway [61]. Transcript cod-
ing for TGFBI (previously called BIGH3) was the second
most abundant transcript identified in the cDNA library
constructed from KC corneas [62]. TGFBI gene muta-
tions have been frequently identified in patients with
corneal epithelial–stromal TGFBI dystrophies, a group
of heterogeneous conditions that are characterized by
the progressive loss of corneal transparency [63] result-
ing in the corneal abnormalities witnessed in transgenic
mice [64, 65]. Recently, potential mutations in TGFBI
was identified in Chinese [66] and in Polish KC patients
[67]. The TGFBI protein has been identified in primary
amyloid deposits of hereditary corneal dystrophies and
in secondary corneal amyloidosis of diverse etiologies
[68] as well as in corneal stromal amyloid deposits in
KC patients [69]. Increased levels of TGFBI protein have
been identified in corneas of patients with Fuchs’ endo-
thelial corneal dystrophy (FECD) [70, 71]. However, not
all analyzed KC patients showed association with poly-
morphisms in the TGFBI gene [72].

ZNF469
Brittle cornea syndrome (BCS) is an autosomal recessive
generalized connective tissue disorder associated with ex-
treme corneal thinning (220–450 μm) and a high risk of
corneal rupture. Homozygous mutations in the ZNF469
(zinc finger protein 469) gene coding for a transcriptional
factor containing zinc finger domains were found in pa-
tients with BCS type 1 [73]. The common genetic variant
rs9938149 in ZNF469 was found to confer increased KC
risk [74] and influence CCT (central corneal thickness) in

the general population [74–76]. In addition, extensive se-
quencing of this gene in KC patients of different ethnicities
by various research groups identified significant enrich-
ment of a number of potentially pathogenic ZNF469 alleles
[77–79]. These missense variants were found in 23 % of 43
KC patients from New Zealand, one-half of which were
Maori or Polynesian [78] and in 12.5 % of three European
cohorts with isolated KC (two from the United Kingdom,
and one from Switzerland [79]). However, in contrast to
previous studies, recent sequencing analysis of ZNF469 in
Polish patients with KC and high myopia and Polish indi-
viduals without ocular abnormalities found no significant
enrichment of any sequence variants in ZNF469 [80].
Based on these results together with the lack of evidence
for the functional impact of the variants, ZNF469 involve-
ment remains contentious at this time.

ZEB1
Mutations in the ZEB1 (zinc finger E-box binding
homeobox 1) gene are repeatedly found in patients with
posterior polymorphous corneal dystrophy type 3
(PPCD3) [81, 82] and seem to result in variable ocular
phenotypes [83]. In particular, a unique coding mutation
c.1920G > T (p.Gln640His) in this gene has been first
identified in a family with KC and FECD [84] and later
in a patient with triple corneal dystrophy consisting of
KC, epithelial basement membrane corneal dystrophy
(EBMCD) and FECD [85] thus, further supporting muta-
tional spectrum of ZEB1 with a unique genotype/pheno-
type correlation.

VSX1
The VSX1 (visual system homeobox 1) gene belongs to a
family of homeodomain transcription factors that are
thought to control cell differentiation in craniofacial and
ocular development, making it a promising functional
candidate gene for KC pathogenesis of various corneal
dystrophies [86, 87]. Various VSX1 gene variants have
been proposed to be the genetic cause of KC in several
sporadic and familiar cases [87], Italian patients [88],
Iranian patients [89], Korean [90], and Chinese [91] pa-
tients, as well as in cases with PPCD (reviewed in [92]).
However, no evidence of association with VSX1 variants
was identified in subsequent recent research studies with
large patient cohorts and recently developed genotyping
methods that allow for simultaneous interrogation of
hundreds of thousands of independent SNPs providing
information on common genomic variation [93–99]. In
addition, extending previously identified VSX1 variants
to additional populations and samples provided evidence
of their benign nature [100, 101]. Current evidence
seems to largely support a limited role for VSX1 in KC
pathogenesis.
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Use of endophenotype CCT to identify additional
genes and variants
Variation in CCT is one of the most highly heritable human
traits [102, 103]. Reduced CCT is often associated with KC
[104, 105]. Several recently performed GWAS identified a
number of genomic loci associated with differences in CCT
that revealed differences in genetic determinants of CCT
between ethnic groups, and evaluated the relevance of
CCT-associated loci to KC susceptibility [74–76, 106–108].

COL5A1
Since the corneal stroma is composed of collagen fibrils, it
is not surprising that a number of genomic loci associated
with CCT contain genes that code for various collagens,
such as COL1A1 and COL1A2 [109], and COL8A2 [76].
The most evidence, however, points to the involvement of
the COL5A1 gene coding for type V collagen subunit 1 in
both CCT variation [76, 106, 108, 110] and KC [74, 111].
However, in-depth analysis of variants in KC families as
well as in sporadic cases showed that while some KC
patients carrying minor alleles of these variants do have
thinner corneas, others do not, highlighting the complex
relationship between genetic variation in COL5A1, corneal
thinning and KC development [111].

FNDC3B, FOXO1, MPDZ-NF1B
CCT-associated variants rs4894535 located in the FNDC3B
gene, rs2721051 near the FOXO1 gene, and rs1324183 lo-
cated between theMPDZ and NF1B genes have been found
to be associated with KC in large multinational cohorts of
KC patients and controls [74]. SNP rs1324183 was further
associated with an increased risk of KC in Chinese cases
[30] and in the Australian population [112].

WNT10A
The identified CCT variants only explain about 8 % of the
variability of the trait [75]. One possible component of the
missing heritability is low frequency variants. The published
GWAS of CCT to date focus primarily on common vari-
ants (i.e., MAF >5 %); however, when putative rare func-
tional coding exome variants from the Illumina Human
Exome array were evaluated, a novel rare WNT10A exonic
variant (rs121908120), which increases the risk of KC by
decreasing corneal thickness, was identified [113]. This
variant is located in a gene 437 kb away from the USP37
gene, previously associated with CCT, and completely ac-
counts for the signal previously seen at USP37. It increases
the risk of KC two times. WNT10A (wingless-type MMTV
integration site family member 10A) belongs to the WNT
gene family. This family consists of structurally related
genes encoding secreted signaling molecules that have been
implicated in important developmental processes, including
regulation of cell fate and patterning during corneal devel-
opment [114].

Other potentially involved genes
SOD1
The SOD1 (superoxide dismutase 1) gene has been pro-
posed and repeatedly investigated as a candidate gene
for KC with published data supporting [99, 115] as well
as refuting [28, 40, 89, 93, 116] its involvement. The
sometimes identified increased levels of oxidative stress
markers in corneas from patients with KC [117, 118]
suggest that defects in the SOD1 gene, encoding a major
cytoplasmic antioxidant enzyme that metabolizes super-
oxide radicals, might be involved in the development of
this disease. However, lack of data supporting such gen-
etic involvement suggests a possibility that said oxidative
stress may be an end product of other pathologic pro-
cesses caused by defects in other genes.

IL1B, IL1A
IL1B (interleukin 1 beta) promoter polymorphisms and
IL1A (interleukin 1 alpha) intronic polymorphism
rs2071376 have been suggested to play roles in KC suscep-
tibility due to significant differences in allelic frequency be-
tween groups of KC patients and controls in Han Chinese
[91, 119], Korean [120], and Japanese [121] populations.
However, the same polymorphism showed no evidence of
association in the Turkish population [122].

COL4A3, COL4A4
Genes coding for collagens COL4A3 (type IV collagen
alpha3, COL4A4 (type IV collagen alpha4) have been
suggested as well [123, 124]; however, additional studies
in multiple populations found no association with these
SNPs [91, 125] or found evidence of their extensive pres-
ence in the normal population [126].

Rare recurring mutation in miR184 (microRNA184)
in families with KC and cataracts
MicroRNAs (miRNAs) bind to complementary se-
quences within the 3′ untranslated region (UTR) of
mRNAs from hundreds of target genes, leading either to
mRNA degradation or suppression of translation. Germ-
line sequence variants in mature miRNAs are extremely
rare possibly due to the extreme conservation and im-
portance of mature miRNAs as well as its tremendously
small size (18–25 base pairs). A heterozygous c.57 C > T
mutation in the seed region of MIR184 (miR-184) was
found to be responsible for familial severe KC combined
with early-onset anterior polar cataract in the Northern
Irish family [127]. The same mutation was later identi-
fied in an unrelated family with the EDICT (endothelial
dystrophy, iris hypoplasia, congenital cataract, and stro-
mal thinning) syndrome [128] and most recently in a
five-generation family with cataracts and varying corneal
abnormalities including severe KC and non-ectatic cor-
neal thinning from Galicia, Spain [129]. Interestingly,
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genetic ancestry testing of the Spanish family strongly
suggested that the c.57 C > T MIR184 mutation arose in-
dependently in the Galician and Northern Irish families
and thus represents the first observation of the recurrent
germline mutation in the microRNA gene leading to the
genetic disease described [130]. No mutation(s) within
the stem loop of MIR184 in isolated KC cases was
detected in two independent screens, suggesting that
mutations in MIR184 are more relevant to cases of KC
associated with other ocular abnormalities [131, 132].

Discussion
Major strides had been made in the understanding of
KC genetics. However, more research is needed to
make biological connections between already identified
KC genes as well as new genes. Several KC research
groups around the world are designing and performing
high-throughput studies in familial and sporadic KC
patients to accomplish this task. These studies will in-
clude genotyping large cohorts of well-characterized
ethnically homogenous patients and large groups of
ethnically matched controls using the most comprehen-
sive genomic chips containing up to 2.5 million inde-
pendent SNPs. In addition, outgoing development and
dropping prices for the next-generation sequencing
(NGS) based whole genome screens are becoming more
of a reality. Such screens especially in families with KC
and in thoroughly selected KC patients with extreme
phenotypic features can identify and test rare or low
frequency variants that cannot be tested with chip
technology.
As KC often begins by affecting vision, and thereby

quality of life at a young age, being able to diagnose and
arrest the progress of the disease at an earlier stage will
aid clinicians in treating KC patients. Currently, KC is
diagnosed by evaluating a variety of non-genetic metrics,
such as corneal topography and pachymetry. A thorough
understanding of the genetic contribution to the disease
progression will increase the certainty of a KC diagnosis
and allow that diagnosis to be made sooner. It may also
bring additional options for the treatment of this dis-
order. As technology progresses and genetic screening
becomes simpler and more cost effective, ophthalmolo-
gists may find value in testing suspected KC patients for
the genetic variations discussed in this paper. This
knowledge could enable the general ophthalmologist to
understand the disease etiology such that he or she can
diagnose more easily and potentially screen patients’
family members, thereby proactively caring for the dis-
ease as it develops.

Conclusion
Although the genetic etiology of KC remains to be com-
prehensively defined, recent GWLS and GWAS have

made significant progress in identifying genetic variation
that is strongly correlated with the disease. SNPs associ-
ated with the following genes have been implicated:
LOX, CAST, DOCK9, IL1RN, SLC4A11, HGF, RAB3-
GAP1, TGFBI, ZNF469, ZEB1, VSX1, COL5A1, COL4A3,
COL4A4, FNDC3B, FOXO1, MPDZ-NF1B, WNT10A,
SOD1, IL1B, IL1A, in addition to the microRNA
MIR184. Notably, not all analyses of each of these genes
completely confirm their role in KC pathogenesis. Ra-
ther, it is likely that KC can result from abnormalities in
several biochemical pathways for which the interactions
have not yet been outlined. Genetic analyses that docu-
ment these associations will eventually elucidate this
connection.
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