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Abstract

Background: In this paper we determined the benefits of image registration on estimating longitudinal retinal
nerve fiber layer thickness (RNFLT) changes.

Methods: RNFLT maps around the optic nerve head (ONH) of healthy primate eyes were measured using Optical
Coherence Tomography (OCT) weekly for 30 weeks. One automatic algorithm based on mutual information (MI)
and the other semi-automatic algorithm based on log-polar transform cross-correlation using manually segmented
blood vessels (LPCC_MSBV), were used to register retinal maps longitudinally. We compared the precision and recall
between manually segmented image pairs for the two algorithms using a linear mixed effects model.

Results: We found that the precision calculated between manually segmented image pairs following registration
by LPCC_MSBV algorithm is significantly better than the one following registration by MI algorithm (p < <0.0001).
Trend of the all-rings and temporal, superior, nasal and inferior (TSNI) quadrants average of RNFLT over time in
healthy primate eyes are not affected by registration. RNFLT of clock hours 1, 2, and 10 showed significant change
over 30 weeks (p = 0.0058, 0.0054, and 0.0298 for clock hours 1, 2 and 10 respectively) without registration, but
stayed constant over time with registration.

Conclusions: The LPCC_MSBV provides better registration of RNFLT maps recorded on different dates than the
automatic MI algorithm. Registration of RNFLT maps can improve clinical analysis of glaucoma progression.
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Background
Estimation of retinal nerve fiber layer thickness (RNFLT)
is an important step in both glaucoma diagnosis and de-
tection of glaucoma progression. RNFLT can be object-
ively and quantitatively measured by Optical Coherence
Tomography (OCT). Because RNFLT maps measured by
OCT are highly correlated with visual field loss [1-3],
OCT can be used to assist in glaucoma diagnosis and
longitudinal detection of glaucoma progression.
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Studies suggest higher repeatability and reproducibility
in measuring RNFLT of healthy and glaucomatous eyes
with commercially available spectral-domain OCT com-
pared to time-domain OCT instrumentation [4-6]. How-
ever, causes of measurement variability for example,
manual placement of the scan circle by the instrument
operator and patient eye rotation during successive mea-
surements, remain problematic. Features of RNFLT such
as temporal, superior, nasal and inferior (TSNI) quad-
rants averages, and 12 clock hour sector averages have
been analyzed in clinical studies for glaucoma diagnosis
[7-9]. In monitoring glaucoma progression, small changes
of RNFLT features might be missed and false changes of
RNFLT features might be detected because of misalignment
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of successive RNFLT maps. Therefore, accurate registration
of maps recorded at different OCT imaging sessions is de-
sired for assessment of glaucoma progression [10-12]. Re-
cently, methods including tracking systems and scan
alignments based on the optic nerve head (ONH) have
been developed to improve image registration and RNFLT
measurement reproducibility [12,13]. Some of the latest
versions of commercially available spectral domain OCT
software also incorporate methods to enable serial analysis
of RNFLT changes. For example, the Spectralis OCT
(Heidelberg Engineering, Heidelberg, Germany) uses a
system to track eye movements and enable “real-time”
registration. The OCT software package RTVue FD-OCT
(Optovue, Inc., Fremont, CA) uses post-processing
methods based on baseline images to enable registra-
tion [14]. Most of the recent registration methods for
OCT scans are based on blood vessel structures or mu-
tual information (MI) of fundus images [15-17]. Previ-
ous studies have shown that evaluation of RNFLT
might be affected by variations in the position of the
scan circle of measurements around the optic nerve
that can compromise measurement reproducibility in
eyes of healthy human subjects [18,19]. However, no
study has been reported on whether image registration
can improve longitudinal RNFLT evaluation in healthy
eyes, and which RNFLT features may be more sensitive
to misalignment of RNFLT maps recorded on different
dates.
In this longitudinal study, we presented and compared

an automatic algorithm based on MI and a semi-
automatic algorithm based on log-polar transform cross-
correlation using manually segmented blood vessels
(LPCC_MSBV) for registration of RNFLT maps from a
spectral domain OCT instrument of healthy non-human
primates. We chose to investigate MI and LPCC_MSBV
algorithms because they were demonstrated as two ro-
bust approaches for retinal image registration [20-23].
We evaluated changes in 17 different RNFLT features
calculated from the RNFLT maps (all rings average,
TSNI quadrants average and 12 clock hour sectors aver-
age) with and without registration over a 30-week time
period.

Methods
Experimental design
Retinal nerve fiber layer (RNFL) imaging was performed
on three macaque monkeys: two cynomolgus monkeys
(macaca fascicularis), and one rhesus macaque monkey
(macaca mulatta). One eye (OS) in each primate was
followed over a period of 30 weeks during which weekly
OCT imaging and measurement sessions were performed
to assess the IOP and record RNFL thickness [24].
All studies performed in this work were done under

the direction of The University of Texas Institutional
Animal Care and Use Committee, which followed an ap-
proved protocol (#08013001), and adhered to the ARVO
Statement for the Use of Animals in Ophthalmic and
Vision Research. The OCT system utilized to image the
primates is a custom-built tabletop research instrument
Polarization Sensitive OCT (PS-OCT) with free-space
optics constructed for the purpose of this study [24,25].
Comparison of this OCT system to RTVue and Cirrus
OCT systems is shown in the Additional file 1: Table S1.
The PS-OCT system uses a swept laser source (Santec,
HSL 1000) with a 1 μm center wavelength and axial
resolution of 12 μm. Lateral resolution is approximately
25 μm. Average incident power on the primate cornea
was 1.13 mW. The head of the anesthetized primate was
gently secured in a cradle with angular position con-
trolled by two goniometers. Eye orientation was manipu-
lated with sutures at the limbus to bring the ONH into
the center of the field of view, and resulted in significant
variation in the globe orientation between imaging ses-
sions. Moreover, placement of the scan circle by the in-
strument operator was not repeatable between imaging
sessions and introduced some translational misalignment
in RNFLT maps.
The left eye of each primate was imaged every week

over a 30-week time period. Poor quality scans such as
scans with A-scans affected by eye blinking or cases
when the RNFL is out of the effective imaging depth
were rejected by the instrument operator. There were 8
measurements for primate 1; 16 measurements for pri-
mate 2; 16 measurements for primate 3 over the
30 weeks selected for the analysis. Two scanning pat-
terns were used to generate retinal maps. For each pri-
mate eye, one raster scan with best quality (minimum
eye movement and best contrast) was performed on a
3 × 3 mm2 square area centered on the ONH. Each
raster scan was comprised of 100 B-scans and each B-
scan consisted of 256 A-scans. We created a raster scan
fundus image by summing pixels of all the B-scan im-
ages and rescaled it to 256 × 256 pixels, and used it as
the reference image for the respective primate eye. A
second scanning pattern was a continuous ring scan pat-
tern that contained 100 equally spaced ring B-scans cen-
tered on the ONH with ring diameters ranging from
1.5 mm to 3.0 mm. Each B-scan contained 100 A-scans.
Data recorded from continuous ring scans were used to
create an RNFL thickness map of each eye. Fundus im-
ages of continuous ring scans were created by summing
pixels of all the B-scan images along the axial direction
for registration purposes as target images (Figure 1).

Retinal nerve fiber layer thickness map and feature
calculation
A LABVIEW software program (National Instruments,
Austin, Texas) was implemented for the OCT system to



Figure 1 Examples of reference image, target image, and blood vessel segmentation. Images in the top row are derived from a raster scan
fundus image (top, left) and manually segmented blood vessels (top, right). The raster scan fundus image is selected for each primate eye and
the central area is used as the reference image for registration of RNFLT maps. Images in the bottom row are derived from a continuous ring
scan fundus image (bottom, left) and manually segmented blood vessels (bottom, right). The continuous ring scan fundus image for each session
is used as a target image to register RNFL thickness maps.
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automatically detect RNFL boundaries in each B-scan of
continuous ring scans [25,26]. After RNFL boundary de-
tection, an expert on OCT retinal image evaluation visu-
ally inspected the boundaries overlaid on each B-scan to
correct any misidentified boundaries. RNFLT values were
then imported into MATLAB (The Mathworks, Natick,
MA) for RNFL feature calculation. The most widely used
feature parameters were computed including the all-
rings average thickness, TSNI quadrants average thick-
nesses, and each of the 12-clock hour RNFLT averages
according to the OD clock-wise hours (Figure 2). Fea-
ture values were calculated on RNFLT maps before and
after registration.

Registration and evaluation method
One fundus image created from the raster scan was used
as a reference image for each primate eye. All fundus
images of continuous ring scans were target images and
registered against this baseline image to ensure align-
ment of all RNFL thickness maps obtained with the con-
tinuous ring scan method. We applied two registration
algorithms, MI and LPCC_MSBV) algorithms. The
process of applying MI and LPCC_MSBV algorithms,
and evaluation of precision and recall are shown in a
flowchart (Figure 3). The original reference and target
intensity images were used for the MI algorithm to de-
termine the best transformation parameters to align the
reference and target image pair. The manually seg-
mented blood vessel images from reference and target
images (e.g., Figure 1) were used for the LPCC_MSBV
algorithm to find the best transformation factors to align
the reference and target image pair. Precisions and re-
calls between manually segmented blood vessels of refer-
ence and target image pairs were used to evaluate the
alignment between image pairs before and after registra-
tion. Details of the algorithms and evaluation process
are described in the following sections.
Mutual information algorithm
We first used a MI algorithm to register RNFLT maps re-
corded on different days for the reference image [20-22].
The MI algorithm was performed on reference-target
image pairs (Figure 3) and did not require segmentation
of the blood vessels (Figure 1). The MI registration algo-
rithm held the reference image fixed while the target image
undergone transformations until images were registered.
Linear transformation factors included x- and y-translation,
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Figure 2 Example of OCT B-scan image with segmented boundaries and feature parameter calculation of RNFLT map. The upper panel
is an example OCT B-scan image with segmented RNFL layer. The lower panel shows feature parameter calculation of RNFLT map of a primate
left eye (OS). Lower Left is all-rings average of all 100 rings in the RNFLT map. Lower middle shows the temporal (T), superior (S), inferior (I) and
nasal (N) quadrants in the RNFLT map. Lower right shows the 12 clock-hour sectors in the RNFLT map.
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rotation and scaling. The MI between a reference (A) tar-
get (B) image pair is defined as:

MI A;Bð Þ ¼ H Að Þ þ H Bð Þ–H A;Bð Þ ð1Þ

Where H(A) and H(B) are the Shannon entropies of
the reference (A) and target (B) images, respectively,
defined as

H Xð Þ ¼ −
XN

i¼1

p xið Þ log p xið Þ ð2Þ

Where p(xi) is the probability of occurrence of the
intensity value xiin the image. Similarly, H(A, B) is the
joint Shannon entropy of images A and B, defined as
Figure 3 Flowchart diagramming the application of MI and LPCC_MS
MI algorithm to find the transformation parameters (translation, rotation, sc
vessel images of the reference and target images are used for the LPCC_M
rotation, scaling) to register the image pair. The precisions and recalls betw
pairs before registration (bottom left), after MI registration (upper right), an
LPCC_MSBV transformation parameters are used to register RNFLT maps.
H A;Bð Þ ¼ −
X

i;j

p i; jð Þ log i; jð Þ ð3Þ

Where p(i, j) is the joint probability of the image in-
tensity pairs in the joint histogram of images A and B.
Two images were considered registered when MI (A, B)
had a maximum value with respect to the linear trans-
formation parameters.
We performed the MI registration in two major steps:

a coarse registration step followed by a fine registration
step. For coarse registration, we translated the target
image from −25 to 25 pixels (approximately 0.15 mm)
in both x and y directions with an interval of 5 pixels
(approximately 0.03 mm), and rotated the image −10 to
10 degrees in 2 degree intervals until maximum MI be-
tween the reference and target images was obtained. To
BV algorithms. Reference and target intensity images are used for the
aling) to register the image pair. The manually segmented blood
SBV algorithm to find the transformation parameters (translation,
een manually segmented blood vessels in reference and target image
d after LPCC_MSBV registration (lower right) are calculated. The



Figure 4 True positive (TP); False positive (FP); False negative
(FN) pixels for precision and recall calculation. Red regions are
the location of blood vessels in the reference image while white regions
are the location of blood vessels in the target image. Blood vessel pixels
that overlap in both reference and target images are marked as TP (light
red). Blood vessel pixels in the target image, but not in the reference
image are marked as FP (white). Blood vessel pixels in the reference
image, but not the target image are marked as FN (dark red).

Liu et al. Eye and Vision  (2015) 2:3 Page 5 of 12
reduce time for coarse registration, larger search inter-
vals were used compared to those used subsequently in
fine registration. Performing three transformations sim-
ultaneously helped to prevent the algorithm from stal-
ling in a local maximum, which was more common if
each type of transformation were to be performed sep-
arately. The coarse transformation parameters that pro-
vided the maximum MI were found and performed on
the target image before fine registration.
In fine registration, all transformation parameters,

translation, rotation and scaling were performed separ-
ately with smaller search intervals to maximize MI. We
first did a scaling search for a scale factor between 0.85
to 1.15 with an interval of 0.01, then varied x-translation
factor from −20 pixels to 20 pixels (approximately
0.12 mm) with an interval of 1 pixel (approximately
0.006 mm), then y-translation factor from −20 pixels to
20 pixels with an interval of 1 pixel, then rotation factor
from −20 to 20 degrees with an interval of 0.1 degrees,
and finally scaling again with search radius between 0.85
to 1.15 with an interval of 0.01.

Log-polar transform based cross-correlation algorithm
RNFLT maps recorded on different days were also regis-
tered to the reference image using LPCC_MSBV algo-
rithm [23]. First, we segmented the blood vessels in the
original intensity reference and target images manually.
Blood vessel images were mapped into log-polar coordi-
nates, so that rotation and scaling in the original image
corresponded to translation in log-polar images. In polar
space, the translational factor in the angle direction cor-
responded to a rotational factor. In addition, consider a
scaling factor, a, between the images, such that (x, y) in
one image maps to (ax, ay) in the other. In log space, (x,
y)→ (log x, log y)and (ax,ay)→ (log x + log a, log y + log
a), so translational shifts corresponded to scaling. Log-
polar transformed images were then cross-correlated to
determine the scaling and rotation factors. Because
spatial-domain calculations, unlike frequency-domain
computations, are not translation invariant, the log-polar
transform and subsequent cross-correlation was com-
pleted for all possible choices of origin within a limited
search area in the reference image. When the maximum
cross-correlation was found, the choice of origin corre-
sponded to translation and shifts in log-polar space cor-
responded to scaling and rotation. To speed-up the
LPCC_MSBV algorithm, search for the maximum was
completed at two resolution levels, using the parameters
from the coarser level as an estimate of the parameters
for the finer level.
Because the OCT instrument operator approximately

centered the scan ring over the ONH before recording
data, images are roughly aligned, and registration is
achieved within a limited range of translation factors.
Translation factors between image pairs were limited to
40 pixels (approximately 0.23 mm) to improve registration
speed. For coarse registration, the images were subsam-
pled to 1/4th the size, yielding 128 × 128 pixel images with
20 × 20 pixel (approximately 0.23 × 0.23 mm) search areas
corresponding to x- and y-translation factors between −10
and 10 pixels (approximately 0.12 mm). Log-polar trans-
forms of the target images were then cross-correlated with
the log-polar transforms of the reference image.
To reduce computation time, all cross-correlations

were calculated using the Fast Fourier Transform (FFT).
The cross-correlation was linear in the scaling direction,
but circular in the rotation direction. Therefore, the log-
polar transforms of the images were zero-padded along
the scaling axis, but not the rotation axis.
The optimal scaling, rotation, and translation parame-

ters determined from these cross-correlations were then
applied to the target image before fine registration. For
fine registration, the 512 × 512 pixel blood vessel images
were used, and the translation factors were limited to −4
and 4 pixels (approximately 0.02 mm). The linear trans-
formation was computed as in coarse registration using
log-polar transforms and cross-correlations.

Manual segmentation of blood vessels
Manual segmentation of blood vessel images was needed
for two aspects of this study. First, blood vessel segmen-
tation is a necessary pre-processing step for registration
using the LPCC_MSBV algorithm. Second, we used the
manual segmented blood vessels for calculation of preci-
sion, and recall of reference-target image pairs to evalu-
ate performance of MI and LPCC_MSBV algorithms.
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Figure 5 Overlap of the reference and target images. The reference image is shown as the gray scale intensity image. The target image is
shown as transparent yellow lines in order to clearly demonstrate the overlap area. The overlap of the two images is shown before registration
(left), after LPCC_MSBV registration (middle) and after MI registration (right).
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Segmentation of the blood vessels in both raster and con-
tinuous ring scan fundus images were completed manually.
Using a tablet PC, the five widest blood vessels with
branches in each fundus image were manually annotated.

Evaluation of the registration results
The MI and LPCC_MSBV algorithms were evaluated in
terms of precision and recall between manually segmented
reference, and target image pairs before and after registra-
tion. The overlapped scanning region of reference and
Figure 6 Precision (left) and recall (right) before (black) and after reg
and recall following registration by both MI (blue) and LPCC_MSBV (red) al
(p < <0.0001). Precision of the LPCC_MSBV (red) algorithm is significantly h
LPCC_MSBV and MI algorithms are not significantly different (p = 0.0571).
target images was used for calculation of precision and
recall. Precision and recall are defined as:

precision ¼ NTP

NTP þ NFP
ð4Þ

recall ¼ NTP

NTP þ NFN
ð5Þ

Where NTP is the number of overlapping blood vessel
pixels in reference and target images (true positives). NFP is
istration by MI (blue) and LPCC_MSBV (red) algorithms. Precision
gorithms are significantly better than values before (black) registration
igher than that of the MI (blue) algorithm (p < <0.0001). Recalls of



Table 2 Results of comparing precision and recall values
of before registration (regi,t = 0) vs. after registration by
LPCC_MSBV algorithm (regi,t = 1)

Evaluation Linear mixed effects model coefficients and p values

Intercept p value for
intercept

Slope of
regi,t

p value for
slope

Precision 0.2453 <<0.0001 0.5829 <<0.0001

Recall 0.2323 <<0.0001 0.6905 <<0.0001
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the number of blood vessel pixels in the target image, but not
in the reference image (false positives). NFN is the number of
blood vessel pixels in the reference image, but not target
image (false negatives) (Figure 4). The algorithm with better
performance was used for registration of RNFLT maps.

Statistical analysis
Linear mixed-effects models were used for longitudinal
evaluation of estimated RNFL parameters to capture
both the similarity (fixed effect) and variations (random
effects) among the three primates. Linear mixed-effects
models also provided unbiased analysis of balanced and
unbalanced repeated-measurement data, which was con-
sistent with our experiment design. We used the nlme
package (R package version 3.1-104) [27] of R statis-
tical programming language (v2.13.10 07/08/2011;
http://www.R-project.org/, R Development Core Team,
2011, R Foundation for Statistical Computing, Vienna,
Austria) and R studio (v0.94, 06/15/2011, RStudio, Inc.)
for implementing the linear mixed-effects models.
We first evaluated whether the precision and recall calcu-

lated for registered image pairs by MI and LPCC_MSBV al-
gorithms were significantly improved compared with no
registration. We also used the precision and recall of image
pairs registered by MI and LPCC_MSBV algorithms to
compare the performance of these two algorithms. We
used the following linear mixed effects model to evaluate
the significance for the pairwise comparisons:

Ti;t ¼ Tavg þ bi þ γ � reg i;t þ εi;t ð6Þ

Where Ti,t is precision or recall of the ith primate con-
trol eye on day t since the beginning of the study, Tavg is
the mean precision or recall across all the eyes. bi is a ran-
dom effect representing the deviation from Tavg for the i

th

primate eye, normally distributed with zero-mean and
standard deviation δb; regi,t is a binary variable represent-
ing with (regi,t = 1) or without registration (regi,t = 0) for
the ith primate control eye on day t when the model was
used for comparison of precision and recall, with and
without registration. When the model was used for com-
parison of precision and recall of image pairs registered by
MI and LPCC_MSBV algorithms, regi,t is a binary variable
representing the algorithm used for the ith primate control
eye on day t (regi,t = 0 for MI algorithm; regi,t = 1 for
Table 1 Results of comparing precision and recall values
of before registration (regi,t = 0) vs. after MI registration
(regi,t = 1)

Evaluation Linear mixed effects model coefficients and p values

Intercept p value for
intercept

Slope of
regi,t

p value for
slope

Precision 0.2488 <<0.0001 0.4972 <<0.0001

Recall 0.2332 <<0.0001 0.6588 <<0.0001
LPCC_MSBV algorithm). γ is the slope for regi,t; εit is a
random effect representing the deviations in precision
or recall on day t of the ith primate eye from the mean
precision or recall of the ith primate eye, and normally
distributed with zero-mean and standard deviation δε.
We investigated whether registration will affect the

evaluation of RNFL thickness over time in this longitudinal
study for healthy eyes. The following linear mixed effects
model was applied,

RNFLTi;t ¼ a1 þ βi
� �þ a2 � tþ ξ i;t ð7Þ

In the mixed effects model, RNFLTi,t is a feature value
in RNFLT maps of the eye of the ith primate on day t
since the beginning of the study. The intercept α1 and
the mean slope α2 for number of days t are fixed effects.
The random effect is the intercept βi for ith primate,
which is normally distributed with zero-mean and stand-
ard deviation δ. ξi,t is the random error component for
the ith eye on day t, and assumed to be normally distrib-
uted with a mean of zero and standard deviation δe.

Results and discussion
Comparison of MI and LPCC_MSBV algorithms
One example of overlap of the reference image and tar-
get image before and after MI and LPCC_MSBV regis-
tration is shown in Figure 5. By visual inspection, we can
see that the overlap of the reference and target images is
improved after both MI and LPCC_MSBV registration.
Precision and recall were used to evaluate quality of
registration results before and after application of MI
and LPCC_MSBV algorithms (Figure 6). We used the
linear mixed effects model described in Equation 6 to
compare precision and recall values before vs. after
registration and precision and recall values after regis-
tration by MI algorithm vs. LPCC_MSBV algorithm.
Table 3 Results of comparing precision and recall values
of registration by MI algorithm (regi,t = 0) vs. LPCC_MSBV
algorithm (regi,t = 1)

Evaluation Linear mixed effects model coefficients and p values

Intercept p value for
intercept

Slope of
regi,t

p value for
slope

Precision 0.7388 <<0.0001 0.0857 <<0.0001

Recall 0.8871 <<0.0001 0.0318 0.0571

http://www.R-project.org/


Figure 7 Estimation of changes of RNFLT of clock hour 1, 2 and 10 average over time. The left column is before registration, right column is after
registration. The dashed lines are the fits of individual primates. The individual fits display very similar trends as compared to the linear mixed effects model
fits. The clock hour 1 and 2 averages decreased significantly before registration (p = 0.0058 for clock hour 1 and p = 0.0054 for clock hour 2), but stayed
constant after registration. The clock hour 10 average RNFLT increased significantly before registration (p = 0.0298), but was constant after registration.
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Precision and recall following registration by either the MI
or LPCC_MSBV algorithms were significantly better than
that before registration (p < <0.0001, Tables 1 and 2). Thus,
either the MI or LPCC_MSBV registration algorithm could
significantly improve alignment of reference and target im-
ages. Precision of the LPCC_MSBV algorithm was signifi-
cantly higher than that of the MI algorithm (p < <0.0001,
Table 3). Recalls of the MI and LPCC_MSBV algorithms
were not significantly different (p = 0.0571, Table 3). Inas-
much as the results suggest that the LPCC_MSBV algorithm
performs slightly better than the MI algorithm on recorded
primate images, we used the LPCC_MSBV algorithm to
register maps for analysis of RNFLT versus time.

Analysis of RNFL thickness over time with and without
registration
We used a linear mixed effects model (Equation 7) to
evaluate whether changes in RNFLT features occurred
during the study duration. Before registration, RNFLT
features are calculated in each map at each date. After
registering all target images to a corresponding reference
image using the LPCC_MSBV algorithm, we co-aligned
all RNFLT maps, and used the overlapped region of all
RNFLT maps from different dates to calculate the RNFLT
feature parameter values. We found that prior to registra-
tion, three RNFLT features (1, 2, and 10 clock hour sectors
Table 4 Comparison of changes in RNFL features over time b

RNFL feature Before registration

Intercept (μm) Slope (μm/day) p value for

All rings 102.00393 −0.00257 0.8232

Temporal 81.6539 0.0378 0.1412

Inferior 132.2164 −0.0081 0.6857

Nasal 82.7397 −0.0167 0.4794

Superior 112.1748 −0.0280 0.2417

Clock hour 01 104.2529 −0.0684 0.0058*

Clock hour 02 89.6372 −0.0764 0.0054*

Clock hour 03 75.1912 −0.0156 0.4824

Clock hour 04 83.2301 0.0345 0.4629

Clock hour 05 129.4731 0.0205 0.5714

Clock hour 06 141.3183 −0.0032 0.9131

Clock hour 07 126.2726 −0.0456 0.2689

Clock hour 08 80.2741 −0.0248 0.4117

Clock hour 09 72.7352 0.0491 0.2124

Clock hour 10 92.0908 0.0901 0.0298*

Clock hour 11 115.7404 0.0270 0.4125

Clock hour 12 116.1991 −0.0349 0.2496

A linear mixed effects model is used to estimate the change in RNFL features over
effects model of RNFL features vs. days before registration and after registration by
magnitude of RNFL thickness and, therefore, the p values for intercepts are all zero
RNFL thickness features over time. The p values for the slopes are shown in the tab
*p values were smaller than 0.05.
averages) out of seventeen features we evaluated showed
significant change during the study (Figure 7 and Table 4).
Before registration, one and two o’clock hour sectors aver-
age RNFLT showed a significant decrease (p = 0.0058 for
one o’clock hour and p = 0.0054 for two o’clock hour).
Before registration, ten o’clock hour sector average in-
creased significantly during the study duration (p = 0.0298).
Other RNFLT features showed no change over the study
duration. However, after registration, all RNFLT features,
all model slopes of RNFLT feature vs. time are not sig-
nificantly different from zero, suggesting that all thick-
ness feature parameter values are constant over the
time course of the study (Table 4). Since for healthy
eyes, we would not expect the RNFL thickness to change
significantly during the six months study duration [28], we
concluded that consistency of RNFLT feature parameters
improved after registration. The results suggest that regis-
tration can remove artifacts introduced by misalignment
of RNFLT maps especially in more detailed features like
12 o’clock hour sector average. Overall, the clock hour
features of RNFLT are more sensitive to mis-registration
artifacts compared to the all-rings average and TSNI
quadrants average.
Moreover, we also compared the residuals of the linear

mixed effect model before registration and after registra-
tion using the LPCC_MSBV algorithm (Table 5). We
efore and after registration

After registration

slope Intercept (μm) Slope (μm/day) p value for slope

101.0946 0.0024 0.8543

83.1664 −0.0085 0.5937

132.5075 0.0030 0.8902

74.1178 0.0105 0.4744

110.8570 0.0030 0.8702

100.3047 −0.0105 0.5423

85.0136 −0.0238 0.1335

67.9575 0.0081 0.5795

69.5369 0.0295 0.0806

119.3772 0.0059 0.7964

144.1395 0.0044 0.8891

134.3108 −0.0003 0.9919

87.8058 −0.0183 0.3725

69.7586 −0.0149 0.3827

92.1486 0.0085 0.6408

113.4984 0.0235 0.3103

116.8135 −0.0010 0.9574

time. Coefficients and the p values of the coefficients of the linear mixed
LPCC_MSBV algorithm are shown in this table. The intercept represents the
indicating that the thickness is non-zero. The slopes represent the change of
le.



Table 5 Comparison of the magnitude of residuals of the
linear mixed effect model before and after registration

RNFL feature Linear mixed effects model for residual

Intercept (μm) Slope Of regi,t p value for slope

All rings 2.5198 0.3877 0.4075

Temporal 5.3737 −1.8789 0.0425*

Inferior 4.5483 0.0420 0.9595

Nasal 5.1851 −1.8431 0.0259*

Superior 5.6397 −1.4297 0.0773

Clock hour 01 5.3477 −1.3711 0.0944

Clock hour 02 6.0659 −1.9699 0.0359*

Clock hour 03 4.7984 −1.3750 0.0797

Clock hour 04 9.3879 −6.3046 <0.0001*

Clock hour 05 8.7581 −3.5554 0.0018*

Clock hour 06 6.5226 0.6532 0.5933

Clock hour 07 8.0791 −2.8944 0.0325*

Clock hour 08 6.5612 −2.2646 0.0488*

Clock hour 09 7.6976 −4.3798 0.0024*

Clock hour 10 8.7744 −4.9544 0.0003*

Clock hour 11 7.6400 −2.6737 0.0229*

Clock hour 12 7.1031 −2.6395 0.0060*

Coefficients and the p values of the coefficients for comparing residuals of linear
mixed effects models of RNFL features vs. days before registration (regi,t = 0) and
after registration by LPCC_MSBV algorithm (regi,t = 1). Most of the slopes are
significantly negative (p < 0.05), which mean that the magnitude of the residuals
decreased after registration.
*Slopes were negative and p values were smaller than 0.05.
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found that for most RNFLT features, the magnitude of
residuals of the linear mixed effects model were signifi-
cantly decreased after registration (slopes were negative
and p values were smaller than 0.05; marked with “*” in
Table 5). Therefore, registration reduces the measure-
ment error.

Conclusions
In this study, we investigated benefits of image registration
on estimation of longitudinal RNFLT changes in non-
human primate eyes. We compared the performance of
MI and LPCC_MSBV algorithms. Precision and recall cal-
culated between manually segmented blood vessel image
pairs were used for comparison with that determined after
applying LPCC_MSBV and MI algorithms. Results in-
dicate that application of either MI or LPCC_MSBV al-
gorithms improves the alignment between target and
reference images compared to no registration. The preci-
sion after registration by the LPCC_MSBV algorithm is
significantly higher than that after registration by the MI
algorithm. Recalls following registration by either MI or
LPCC_MSBV algorithms are similar. The computation
time of the LPCC_MSBV algorithm was five-times faster
than that of the MI algorithm. However, this computation
time does not include the pre-processing time required
to manually segment the blood vessels before applica-
tion of the LPCC_MSBV algorithm. Therefore, when fully
automated registration is required, MI is preferred to
LPCC_MSBV algorithm. Both MI and LPCC_MSBV algo-
rithms showed good performances for registration of fun-
dus images of primate eyes and thus have potential for
application to OCT image data recorded from human eyes.
The present study is the first to evaluate how registra-

tion can affect the analysis of RNFLT measurement in a
longitudinal study on healthy eyes using a non-human
primate model. We evaluated the registration effect on
all reported RNFLT feature parameters, which includes
all-rings average, TSNI quadrants average, and 12 o’clock
hours average. The results suggest that RNFLT feature
parameters evaluated in the 12 o’clock hours are affected
by registration in a longitudinal study in healthy primate
eyes. Some recent studies also supported the observation
that RNFLT average in some clock hour sectors are more
sensitive to head tilt or OCT instrument variability
[29,30]. Registration can correct the artifacts introduced
by misalignment of RNFLT maps recorded on different
dates. Registration allows detection of changes of de-
tailed features and prevents false detection of changes
due to misalignment. Moreover, any analyses associated
with the all-rings average and TSNI quadrants average
are not affected by the registration. Misalignment of a
series of RNFLT maps is a candidate reason that previ-
ous studies showed that the all-rings average is the most
robust feature in reproducibility studies [4,31]. Our re-
sults suggest the 1, 2, and 10 clock hour sectors are the
most sensitive to registration errors possibly because
these clock hour sectors are located in regions with a
large RNFLT gradient. Intuitively, sectors that are in
RNFLT gradient transition zones should be more sensi-
tive to mis-registration than sectors in smooth areas of
RNFLT maps. Therefore, without registration, the varia-
tions of RNFLT features across different dates are due to
misalignments among RNFLT maps plus the reproduci-
bility error introduced by the instrument. With registra-
tion, the variations of RNFLT features across different
dates are primarily due to the reproducibility error intro-
duced by the instrument.
This study was performed on non-human primates.

Due to the difference in eye fixation method during im-
aging acquisition, primate experiments magnify rotation
artifacts because of the suture positioning process that
was performed to bring the primate’s ONH into the cen-
ter of the field of view. In a clinical setting where a pa-
tient can fixate on a target, human eyes may have
smaller rotation variation from one imaging session to
another. However, human eyes can still exhibit compar-
able translation factors vs. primate eyes because this
effect is primarily due to the variability of operator’s
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placement of the scanning ring around the ONH. Imple-
menting registration algorithms for OCT images has the
potential to improve analysis and interpretation of evo-
lution of spatial changes of RNFLT over time as assessed
in this longitudinal study. Results of such longitudinal
studies can potentially identify features of RNFLT that
precede visual field changes and allow for earlier and
more effective therapeutic interventions.
Additional file

Additional file 1: Table S1. Comparisons of PS-OCT, RTVue OCT and
Cirrus OCT systems.
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