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Abstract 

Cognitive ecologist posits that the more efficiently an animal uses information from the biotic and abiotic environ-
ment, the more adaptive are its cognitive abilities. Nevertheless, this approach does not test for natural neurodegen-
erative processes under field or experimental conditions, which may recover animals information processing and 
decision making and may explain, mechanistically, maladaptive behaviors. Here, we call for integrative approaches 
to explain the relationship between ultimate and proximate mechanisms behind social behavior. We highlight the 
importance of using the endemic caviomorph rodent Octodon degus as a valuable natural model for mechanistic 
studies of social behavior and to explain how physical environments can shape social experiences that might influ-
ence impaired cognitive abilities and the onset and progression of neurodegenerative disorders such as Alzheimer 
disease. We consequently suggest neuroecological approaches to examine how key elements of the environment 
may affect neural and cognitive mechanisms associated with learning, memory processes and brain structures 
involved in social behavior. We propose the following three core objectives of a program comprising interdisciplinary 
research in O. degus, namely: (1) to determine whether diet types provided after weaning can lead to cognitive impair-
ment associated with spatial memory, learning and predisposing to develop Alzheimer disease in younger ages; (2) to 
examine if early life social experience has long term effects on behavior and cognitive responses and risk for develop-
ment Alzheimer disease in later life and (3) To determine if an increase of social interactions in adult degu reared in 
different degree of social stressful conditions alter their behavior and cognitive responses.
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Background
Cognitive ecology focuses on the effects of information 
processing and decision making on animal evolutionary 
fitness [1, 2]. A case in point is social behavior. Indeed, 
studies of social behavior comprise a broad spectrum 
of interactions among conspecifics that result in vari-
able relationships form, duration, and function [3, 4]. A 
fundamental aspect of social behavior that arises from 
social interactions among individuals is the tendency 

for conspecifics to live in groups. Group living among 
mammalian species denotes a number of individuals liv-
ing and interacting together [5, 6], and can occur in from 
short-term associations and aggregations (e.g., foraging 
or roosting groups) to relatively long-term socially cohe-
sive units (e.g., communally rearing groups) [7, 8].

Evolutionary explanations to group living have relied 
on fitness advantages to group members including an 
increased access to resources, decreased predation risk, 
decreased burrowing costs, reduced cost of thermoregu-
lation or even increased access to mates [5, 8, 9]. On the 
other hand, the evolution of group living itself has been 
attributed to the development of remarkable cogni-
tive capacities [10, 11]. Some of these higher cognitive 
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mechanisms are individual recognition of conspecifics, 
understanding of their behavioral signals, learning and 
monitoring of social hierarchies [11].

On the contrary, group living also may impose net fit-
ness cost, leading inevitably to a conflict of interests 
between group members (e.g., competition for access to 
limited resources such mates or food, increased parasit-
ism) or on ecological constraints that might force individ-
uals to form groups despite the associated costs [12–14].

These adaptive and nonadaptive scenarios can vary in 
space and time in response to ecological factors [15, 16]. 
Thus, studying intraspecific comparisons of mammalian 
sociality in populations inhabiting different environments 
remains a major, ultimate explanation of the evolution-
ary basis of sociality [17, 18]. However, this variation has 
not revealed a consistent relationship between ecological 
variation and group living [19–21] suggesting that these 
mechanisms are not sufficient to explain sociability.

Recent advances in neuroscience, endocrinology, and 
molecular genetics offer the opportunity to incorporate 
predictions for how these factors upon which selection 
can act to shape social systems and allows understand 
proximate mechanisms of social behavior still in an eco-
logical context [4, 22].

The relation between these internal mechanism and 
social behavior is bidirectional (i.e., social behavior and 
its variation in social systems can affect physiological 
and neuroendocrine mechanism) [23, 24]. Therefore, this 
new approach offers opportunities to integrate ultimate 
level function and proximate level mechanism to explore 
social behavior and gain a comprehensive and integrative 
understanding of these relationships and also predict the 
fitness consequences (thus, evolutionary significance) of 
social systems.

Social interaction and health
Social interactions appear to have a strong effect on the 
hypothalamic–pituitary–adrenal (HPA) axis activity 
[25, 26]. The HPA axis has been regarded as the body´s 
primary stress response [27]. Nevertheless, recent 
researches have proposed that activation of HPA system 
can have consequences that may or may not be linked to 
responses to stressors [28, 29]. Then, depending on the 
circumstances, the social relationships between animals 
that form stable social units or live in close proximity to 
conspecifics, could be regarded as a source of stress or, 
alternatively provide a buffer against stress [26, 27]. For 
example, group living species present a high intraspecific 
degree of flexibility in social structure, even within group 
members [16, 30]. If well many species are characterized 
for establish stable affiliative bonds, and the category 
of partner effectively acts as a social buffering calming 
another group member [27]. There also circumstances 

under social partner can represent a source of stress 
increasing HPA responses [26, 31]. Lastly, social relation-
ships where a dominance structured or social hierarchies 
system are established, the level of stress associated with 
being a dominant versus subordinate animal varies across 
species and may be related to the behavioral styles of the 
dominant animals and the level of social stability [26].

Stressful live events
The deleterious effects of stress on the immune system 
are well established in animal and human studies [32, 
33]. In fact, stress is an inevitable aspect of living being’s 
span life. The term stress has been defined as a biological 
response elicited when an individual face with unpredict-
able and life threatening perturbations in the environ-
ment [34, 35]. These threats elicit physiological (e.g., HPA 
system and sympathetic nervous system) and behavioral 
(e.g., fight or flight or enhanced fear or anxiety) responses 
[36, 37]. Then, an organism wills response to a hostile sit-
uation depending not only on type, quality, intensity and 
duration of stressor, but also on how past experiences 
and available coping options style its perception of the 
stressful stimulus [38, 39]. Stress can be moderate and 
beneficial (e.g., stressful stimuli can play an adaptive role 
in preparing an animal for coping with later environmen-
tal conditions), or it can be long lasting [36, 39, 40]. The 
prolonged and/or exaggerated exposure to stress initiates 
a cascade of cells signaling events that would culminate 
in cognitive disorders, immunosuppression, metabolic 
syndrome, diabetes, osteoporosis, reproductive failure, 
and hypertension [39, 41]. In the brain, excess of steroid 
hormones secretion is strongly associated with neuronal 
atrophy and dysfunction, and impaired cognition, as well 
as mood and affective disorders such as depression [37, 
39].

Variation in environmental factors such as photo-
period, temperature, food availability, the environment 
in which an animal is raised and/or housed, or the indi-
vidual dominance status and social interactions (or lack 
thereof ) can lead to chronically elevated HPA axis activ-
ity and a deterioration of health [35, 40, 42]. For example, 
nonhuman primates and other species housed in unsta-
ble social groups (by periodic reorganization of group 
memberships) exhibit more agonistic encounters and dis-
rupted patterns of affiliative interactions, and ultimately 
survive a shorter time period compared to animals 
housed in stable social groups [42–44]. In addition, the 
social status of group members and its instability (e.g., 
death, immigration, or emigration of a key individual, 
or the formation of a new group) appears to be a major 
source of physical and psychological stress [40, 42, 45]. 
Furthermore, in those mammal species (even humans) 
that leave their natal group and move to a nearly o new 
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group, the immigration period may be stressful for both 
the immigrating and the members of the group that he 
is joining [26, 45, 46]. Evidence from human and nonhu-
man animals studies exposing to early life adversity (e.g., 
maternal separation or social isolation from conspecifics) 
profoundly affects brain development displaying several 
long lasting changes in behavior contributing to the prev-
alence of physical and psychological disorders in adult-
hood [47–49].

Furthermore, research now indicates that the effects 
of stress at different period of life interact, meaning that 
exposure to stress early in life can increases reactivity 
to stress and cognitive impairments in adulthood [50]. 
Alternatively, the instability of the social environment in 
which the pregnant and lactating female lives is another 
stressful experience for fetal brain development and the 
behavioral profile of the offspring in later life [51]. Studies 
reported that mothers subjected an unstable social envi-
ronment brings a behavioral and neuroendocrine mascu-
linisation in daughters and a less pronounced expression 
of male typical traits in sons [51–53].

Social interactions as buffering
In highly social animals (rodents, birds, nonhuman pri-
mates and also in humans) the ability of a social part-
ner to reduce stress responses is commonly referred to 
as “social buffering” [27, 38, 54]. Many of the benefits 
achieved through social bonding are thought to result 
from suppressed HPA axis activity [25, 27, 55], and also 
has positive effects on the sympathetic nervous system 
and the immune system responses [27, 38, 56].

Social buffering of stress responses has been exten-
sively studied in the context of mother infant bonding. 
Across a number of mammalian species the mothers and 
infants appear strongly attached emotionally, suggest-
ing that the presence of the mother inhibit the infant’s 
HPA axis; further, infants can buffer the response of 
mothers [27, 57, 58]. The importance of social buffer-
ing also have been documented in intermediate stages 
of development, and in adulthood of a number of mam-
malian as well as avian species (Table 1 in Ref. [27]), in 
particular the presence of familiar social partners and/or 
salient social relationships. Moreover, in humans, social 
interactions also appears to have a profoundly influence 
on human welfare and health, improved diagnosis and 
treatment several neuropsychiatric disorders [38, 59, 
60], and also decreasing mortality from different causes 
[26, 61]. For instance, disruptions of social relation-
ships could result in behaviors similar to those found in 
human depression [4, 62, 63], anxiety and also was asso-
ciated with abnormal physiologic responses as cardiac 
disturbances [64].

Social interactions and aging
Aging is a progressive functional decline, as such, char-
acterized not only by a gradual deterioration of physi-
ological function, including a decrease in fecundity [65, 
66], but also by a variety o changes in anatomy, endocrine 
systems, neural circuitry, as well as behavior [67, 68]. Due 
to these changes, ageing represents a period of high vul-
nerability to unstable or adverse environmental condi-
tions, which could accelerate cognitive impairments and 
hippocampal dysfunction [50, 69]. In fact, increased HPA 
activity with age, and the resulting elevations of stress 
related hormones have been linked with hippocam-
pal degeneration (i.e., atrophy and ultimately death of 
hippocampal neurons with a posterior decreased hip-
pocampal volume) and occurrence of severe cognitive 
impairments and memory deficit [50, 69, 70].

In socially living individuals this cognitive impairment 
was associated with disruptions in social motivations 
and the ability to maintain social relationships primar-
ily due to problems in the recognition and identification 
of sensory cues used by conspecifics [71–73]. The cog-
nitive ability to memorizing and recalling past actions 
by conspecifics, know their social relation, predicting 
their future actions, and adjusting its own behavior in 
response are critical for the structure and stability [11, 
71, 73]. If with increasing age, some of these cognitive 
abilities decline, then animals may have exhibit aggres-
sive defensive unconditioned reflexes, a decrease in the 
frequency and quality of social contact leading to social 
isolation, and ultimately develop stress related disease, 
such a depression or anxiety [71, 74–76].

Stress, aging and Alzheimer’s disease
There is extensive evidence about the association 
between stress, aging process and their causal role in the 
development of neuro and psychopatologies such Alzhei-
mer’s disease (AD) [39, 77]. For example, stressful events 
during lifespan on an individual hasten the appearance of 
certain biological markers of brain aging that accelerate 
the onset and progression of AD [39, 77].

The AD is the most common of the brain degeneration 
[78]. It also was attribute as a primarily form of demen-
tia in the elderly (accounting for up to 70  % of demen-
tia cases) characterized by progressive memory loss and 
neuropathological changes in specific regions of the 
brain with deadly outcome [79, 80]. The major pathologi-
cal hallmarks of AD brains are the massive neuronal cell 
and synapse loss matter at specific sites and the accumu-
lation of a significant numbers of neurofilament tangles 
(NFT) and neuritic plaques primarily in the hippocam-
pus, cortex and other brain areas linked to cognitive pro-
cesses [80–82]. NFT consist of intracellular twisted nerve 
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cell fibers composed of hyperphosphorylated tau, a low 
molecular weight microtubule associated protein [81]. 
Whereas plaques are primarily composed of β amyloid 
(Aβ). Aβ is a short peptide that is an abnormal proteo-
lytic by product of the transmembrane protein amyloid 
precursor protein (APP), whose function is unclear but 
thought to be involved in neuronal development [81–83]. 
There is substantial evidence to show that these NFTs 
and amyloid plaques and their distribution in the brain 
correlate with cognitive dysfunction [84, 85].

The clinical characteristics of AD engage progressive 
impairment or disturbance of multiple brain functions, 
including memory, orientation, attention, learning capac-
ity, language (aphasia), recognizing or identifying objects 
(i.e., agnosia), and motor activity (i.e., apraxia) [83, 86]. 
Unfortunately, the definitive diagnosis method for AD 
can only be obtained postmortem examinations of brain 
tissues [87, 88]. A combination of brain imaging and clin-
ical assessment questions for signs of memory impair-
ment have been used to identify patients with AD and 
other dementias [79, 87].

Mechanisms of “risk factors” for AD
The average age of diagnosis of AD in humans is around 
50  years, with a progressive increase in incidence with 
increasing age. In fact nearly 50 % of individuals over the 
age of 85 is affected with this pathology [83, 89]. If well 
age itself is the single most important risk factor for spo-
radic AD, the development of this pathogenesis is multi-
factorial, with genetic, environmental and lifestyle factors 
implicated [83, 90]. There is an AD that runs in family 
history of dementia, primarily in those with early onset 
AD compared with those with late onset [83, 91, 92]. This 
familial form of AD is due to alterations in three specific 
genes: presenilin-1 (PS1, on chromosome 14), prese-
nilin-2 (PS2, on chromosome 1) and amyloid precursor 
protein (APP) that can be inherited as an autosomal 
dominant disorder and accounts for less than 1 % of the 
total number of AD cases [79, 82, 92].

Gender is another risk factor for AD, being two to 
three times more common in females than males [92–
94]. Female’s cognitive impairments may also be more 
severe than males [93–95]. These major sex differences 
in the incidence and age of onset of AD lies in that dif-
ferent hormone enter in the brain at different times [93]. 
Estrogens are neuroprotective with respect to neuronal 
degeneration [92, 96]. When estrogens levels drop at 
menopause the brain volume beings to decline, particu-
larly in the hippocampus and parietal lobe (areas asso-
ciated with memory and cognition) [92, 94, 97]. Studies 
with estrogen replacement therapy showed a delay of 
29 % on the onset of AD and even an improve memory in 
Alzheimer’s patients [93, 96, 98]. On the other way, males 

are relatively spared because their continuing testoster-
one secretion is converted, to some extent, to estradiol in 
the brain (e.g., a men over the age of 60 have three times 
more circulating estadiol than women of a similar age) 
[92, 93, 99].

Epidemiological studies have demonstrated the role of 
environmental factors as diet, activities, or diseases (e.g., 
type 2 diabetes, hypertension, obesity), psychosocial fac-
tors (e.g., depression), as a well history of brain trauma 
(e.g., cerebrovascular disease, and vasculopathies) to 
influence both the onset and the progression of AD [83, 
100]. For example, due to the high metabolic demand 
for energy in the brain, small perturbations in glucose 
metabolism are been expected to affect cognitive perfor-
mance [79, 101]. Type 2 diabetes (T2DM) has been linked 
with lower levels of neuronal growth factors, a decreased 
brain volume and also as an important risk factor for AD 
development [100, 102]. Lifestyle factors like obesity, 
poor diet and sedentary behavior, in association with 
heredity represent the major risk factors for development 
of insulin resistance, a proximal cause of T2DM [103, 
104] and other hypertension, dyslipidemia and cardiovas-
cular disease [86, 105]. There is substantial evidence in 
animal studies and humans linking diet induced obesity 
to development and progression of cognitive dysfunction 
such that higher adiposity means a major risk of develop-
ing memory impairment [86, 106]. Furthermore, studies 
have confirmed association between an increased body 
mass index with decreased brain volume [107]. Other 
clinical studies outlined that overweight in humans is 
associated with reductions in several brain areas involved 
in the regulation of taste, reward, and behavioral control 
[108]. Altogether insulin resistance pathology and obesity 
may lead to much higher incidence and prevalence of AD 
(86; 104). Other medical conditions that can increase the 
risk of developing AD include the presence of other dis-
ease processes such as Parkinson’s disease, Huntington’s 
disease, multiple sclerosis and HIV. Down syndrome and 
some other learning disabilities also increase a person’s 
risk of dementia [91, 109].

Additional studies suggest that lack of social affiliation 
(e.g., small social network, participating in small quanti-
tative and low quality of social relations) or social isola-
tion (i.e., physical or contact absence of other members 
within a social species) has been associated with rapid 
decline of cognitive function and may contribute to 
develop AD in late life [110, 111]. Furthermore, investiga-
tions of the role of the social environment in health pro-
moting from the stand point of cognitive develop showed 
that increasing positive social interactions led to improve 
cognition and buffering against to stressors [112, 113]. 
For example, animals subject to social isolation devel-
oped cognitive impairment and present an early onset 
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and accelerate progression of AD via enhancing activity 
of certain proteins which plays important role in the pro-
duction of Aβ peptide and phosphorylation of tau [114, 
115]. In humans community, socially isolated individu-
als have increased risk of developing AD and two to four 
times increased risk of dead compared with individuals 
with social ties to friends and relatives [110, 114]. Thus, 
a high lifelong level of social attachments represents 
dynamic and complex social systems that affect health 
outcomes, particularly attaining environmental protec-
tion against AD.

Taken together, these data suggest that genetic and envi-
ronmental influences could be one mechanism behind the 
wide variation in the onset and progression of AD.

Octodon degus, a model in integrative research 
of Alzheimer disease
Nonhuman animal research represents an important 
translational approach to elucidate the mechanistic 
aspects of the neuropathological characteristics of AD 
and to validate potential therapeutic targets [116]. There 
are an important number of nontransgenic animal mod-
els (e.g., nonhuman primates, dogs, rabbits, guinea pigs, 
rats and human) where amyloid deposition increase with 
age [117–121]. For example, with age, neurodegenerative 
changes in nontransgenic OXYR rats become amplified, 
accompanied by accumulation of soluble Aβ, and phos-
phorylation of the insoluble tau protein, as well as synap-
tic losses and neural cell death [122].

Additionally, the development of transgenic animal 
models provides insights to study and understand the 
molecular mechanisms in AD [116, 123]. To this end, 
researchers incorporate in these animals human genes 
known to cause the disease [124] or to perform intracer-
ebral injections of Aβ aggregates that progress with age 
[125]. However, despite being vital tools, these transgenic 
animal models have been severely criticized because 
the development of AD not progresses at the same rate, 
not always reach the same regions of brain and also the 
mutated genes are often overexpressed, thus, they are 
unable to recapitulate all of the pathological features of 
AD [116, 126, 127].

The native rodent species from central Chile, degu 
(Octodon degus) are particularly appropriate for studying 
the “natural” development of AD [80, 127]. Aged degus 
spontaneously develops neuropathological hallmarks of 
AD, and constituting the first wild-type rodent model for 
the study of AD neuropathology [127], moreover, there is 
a high homology (97.5 %) between the human and degu 
Aβ peptide [127]. Thus, because of this, aged brains of 
degu (i.e., age 3 and 5) naturally develop accumulation 
of senile plaques and neurofibrillary tagles [127,128, also 
see Table 3 in Ref. [116]).

Degus are diurnal, medium sized rodents (ca. 180  g). 
Degus are socially plural breeding animals, where social 
group is comprise of 1–5 males and 1–8 multiple lactat-
ing females sharing underground nests with communal 
care of offspring [129–131]. Degu females have a gesta-
tion period of about 90  days, giving birth litters of 4–8 
pups [132]. Like human babies, degus are born with open 
eyes, present functional acoustic systems and the pups 
are capable of detecting even subtle social environmen-
tal changes and interact with their littermates and colony 
mates immediately after birth [132–134]. Despite their 
maturity at birth, degu pups show close dependence of 
maternal milk to complete their postnatal development 
[133, 135]. Although they are able to eat solid food before 
6  days of age, the weaning does not occur before than 
30  days age [133, 135]. Infant and juvenile degus also 
show strong social attachments [132]. In fact, stressful 
factors during the first weeks of life as maternal separa-
tion and deprivation of interactions with peers impair a 
host of neuropsychological and neuroanatomical changes 
in the brains of young degus [132, 136]. Similar altera-
tions have been found in human’s brain circuits in indi-
viduals growing up in adverse environments [132]. Taken 
together, this highly evolved social organization, which 
many times recapitulate the richness of human social 
relationships, degus have been proposed as a good model 
to study physiological and behavioral traits, including 
cognitive and sensory abilities [128, 132, 133].

Under laboratory conditions, degu are characterized 
with a generally docile temper, ease of breeding and 
maintenance. More notable is the fact that in laboratory 
environments, degu can live close to 8–10  years’ old, 
given the observation that between 85 and 95 % of degu 
under natural conditions do not survive to their sec-
ond year of age [137]. Age degu (i.e., more than 3 years) 
spontaneously develop several degenerative disease such 
as diabetes, atherosclerosis, cancer and Alzheimer’s dis-
ease, analogous in many cases to those experimented by 
humans [127, 128, 138]. Thus, degu constitute an ideal 
model for biomedical research in general and neuro-eth-
ological studies in particular [132].

Towards a unifying experimental approach
With the increase of average lifespan of human popula-
tion, AD is progressing rapidly and has become the major 
public health problem in the industrialized world. AD 
patients not only lose their memory and their cognitive 
abilities, but even their personalities may change dramat-
ically [139]. Scientific community is continually search-
ing new approaches aimed to prevention, delay the onset 
of symptoms and/or eventually prevent the disease. In 
this respect, the strong similarity between O. degus and 
human (e.g., lipoprotein metabolism, social organization, 
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cognitive capacities to manipulate objects and learn to 
use tools) make degu a unique comparative model to 
identify potential treatment therapies and for assess the 
complex social behavior at proximate and ultimate levels 
[126, 140, 141].

Moreover, degus have become an important model to 
test how variation in environmental factors (e.g., diet and 
social behavior) in the context of social interactions or 
lack thereof, superimposed to aging process, can deter-
mine amyloid formation and deposition, and neurofibril-
lary tangles in the brain and may start process associated 
to AD (see Fig. 1). Understanding how this animal species 
perceive and process their sensory environment under 
different factors superimposed upon the aging process, is 
vital to understand whether brain aging is successful or 
unsuccessful, and examines the disease states. We there-
fore suggest neuroecological approaches to examine how 
key elements of the environment may affect neural and 
cognitive mechanisms associated with learning, memory 
processes and brain structures involved in social behav-
ior in particular those associated with social bonding. We 

therefore summarize the following three core objectives 
of a program comprising interdisciplinary research in 
degus (Fig. 1):

1.	 To determine whether diet types provided after 
weaning can lead to cognitive impairment associ-
ated with spatial memory, learning and predisposing 
to develop AD in younger ages. For instance, since O. 
degus spontaneously can develop diabetes, and dia-
betes is one of the major risk factor for AD develop-
ment, a high sugar diet can lead to development of 
diabetes during the first years of life and similarly 
increase the risk for AD in younger ages.

2.	 To examine if early life social experience (i.e., stress-
ful social environment) has long term effects on 
behavior and cognitive responses and risk for devel-
opment AD in later life (infancy, adolescence, adult-
hood or aging).

3.	 To determine if an increase of social interactions in 
adult degu reared in different degree of social stress-
ful conditions alter their behavior and cognitive 

Fig. 1  Conceptual model of a program comprising interdisciplinary research proposed in Octodon degus. Variation in environmental conditions 
(e.g., presence or absence of conspecifics, food resources, predators, temperature) can perturb an animal´s homeostasis, and should be act has 
a potential stressor. Stable social environment in which the presence of the social partners reduce stress responses either before, during, or after 
stressor exposure to stressors has been associated with control ongoing activity of the HPA of the hypothalamic–pituitary–adrenocortical (HPA) 
system, which act as the body’s primary stress-responsive neuroendocrine system. Additionally, positive social interactions also have positive 
effects on other physiological responses, particularly those of the sympathetic nervous system (SNS). Whereas instable social bonding or social 
isolation during infancy have the opposite effects, which in turn produce more frequent activation of the HPA and SNS systems. The increase in this 
endocrine activity was associated with more rapid cognitive impairment associated with learning, memory processes and brain structures involved 
in social behavior in particular those associated with social bonding. Positive social interactions can partially ameliorate this brain injury, and has 
positive effects in health. Then, social interactions or lack thereof, superimposed to aging process, can determine a progressive amyloid formation 
and deposition, and neurofibrillary tangles in the brain and may start process associated to AD. Understanding how Octodon degus perceive and 
process their sensory environment under different factors superimposed upon the aging process, is vital to understand whether brain aging is suc-
cessful or unsuccessful, and examines the disease states
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responses. For instance an increase in social interac-
tion can help to re socialize behaviorally disturbed 
degus and mitigate the effects of stress experimented 
during early life, ameliorating some pathological fea-
tures as cognitive impairment such as decrease in 
learning and memory processes.

Conclusions
Summarizing, cognitive ecologist posits that animal cog-
nition is a biological trait that has been molded by nat-
ural selection, thus, the more efficiently an animal uses 
information from the biotic and abiotic environment, the 
more adaptive are its cognitive abilities. Nevertheless, 
this approach does not test for natural neurodegenerative 
processes under field or experimental conditions, which 
may improve animals information processing and deci-
sion making and may explain, mechanistically, maladap-
tive behaviors. Overall, we call for integrative approaches 
to explain the relationship between ultimate (e.g. group 
stability) and proximate (e.g., cognitive processes) mech-
anisms behind social behavior. We also emphasize the 
importance of using the endemic O. degus as a valuable 
natural model for mechanistic studies of social behav-
ior and to explain how physical environments can shape 
social experiences that might influence impaired cogni-
tive abilities and the onset and progression of neurode-
generative disorders.
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