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Abstract 

Introduction:  Estimation of brain amyloid accumulation is valuable for evaluation 
of patients with cognitive impairment in both research and clinical routine. The devel-
opment of high throughput and accurate strategies for the determination of amyloid 
status could be an important tool in patient selection for clinical trials and amyloid 
directed treatment. Here, we propose the use of deep learning to quantify amyloid 
accumulation using standardized uptake value ratio (SUVR) and classify amyloid status 
based on their PET images.

Methods:  A total of 1309 patients with cognitive impairment scanned with [11C]PIB 
PET/CT or PET/MRI were included. Two convolutional neural networks (CNNs) for read-
ing-based amyloid status and SUVR prediction were trained using 75% of the PET/
CT data. The remaining PET/CT (n = 300) and all PET/MRI (n = 100) data was used 
for evaluation.

Results:  The prevalence of amyloid positive patients was 61%. The amyloid status 
classification model reproduced the expert reader’s classification with 99% accuracy. 
There was a high correlation between reference and predicted SUVR (R2 = 0.96). Both 
reference and predicted SUVR had an accuracy of 97% compared to expert classifica-
tion when applying a predetermined SUVR threshold of 1.35 for binary classification 
of amyloid status.

Conclusion:  The proposed CNN models reproduced both the expert classifica-
tion and quantitative measure of amyloid accumulation in a large local dataset. This 
method has the potential to replace or simplify existing clinical routines and can facili-
tate fast and accurate classification well-suited for a high throughput pipeline.
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Background
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by parenchymal 
amyloid-β (Aβ) deposits [1], which can be investigated noninvasively by amyloid posi-
tron emission tomography (PET). Several clinically implemented PET tracers (e.g., [18F]
AV-45 ([18F]Florbetapir) and [11C]Pittsburg-compound-B ([11C]PiB)), that bind with 
high affinity to amyloid plaques, allow for the inference of amyloid status in dementia 
and the early diagnosis of probable AD [2, 3]. The development of high throughput fast 
and accurate data analysis strategies to detect or exclude the presence of Aβ plaques in 
PET scans could be an important tool in patient selection and monitoring for amyloid 
directed treatment presently FDA approved or in the pipeline [4, 5].

Amyloid PET imaging is performed as a clinical qualitative reading with specific cri-
teria for amyloid PET image interpretation, that may differ among available radiotracer 
as defined in recent imaging guidelines [6]. The inter-rater variability is generally low, 
as demonstrated by Yamane et al. [7] who found near perfect agreement between three 
raters (93.2% for binary criteria). The clinical interpretation is often supported by semi-
quantitative metrics for global cortical uptake, where tracer binding is assessed in 
a standard set of cortical regions normalized by a reference region, also known as the 
standardized uptake value ratio (SUVR) [8, 9]. Ideally, brain parcellation using a struc-
tural image (e.g., MRI) is performed. However, this may be impractical in routine clinical 
use, as MRI might not be available or was performed in unstandardized protocols, which 
can require laborious data management and quality assurance to secure adequate brain 
coverage, and detect inaccurate co-registration or segmentation [10, 11].

Deep learning, a subset of machine learning, is increasingly used in medicine and for 
assessment of brain disorders [12]. Most studies on disease detection focus on AD, partly 
due to the availability of the large public dataset Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI). Recently, end-to-end solutions based only on PET images as input have 
demonstrated high accuracy for classifying amyloid burden through training of a convo-
lutional neural network (CNN) [10, 11, 13, 14]. Kim et al. trained a CNN to predict the 
SUVR value from 850 [18F]Florbetapir scans extracted from ADNI that showed 94% accu-
racy when using a predefined SUVR threshold for amyloid test positive/negative [14], and 
Reith et al. [10] obtained a 95% accuracy when using 2066 [18F]Florbetapir ADNI scans as 
input to a CNN pre-trained on ImageNet (a dataset of natural images) [10].

However, the reported accuracies might not be representative of local performance, 
since PET scans in ADNI do not represent the variation found in a clinical cohort caused 
by deviations from scan protocols, incl dose, patient motion, and acquisition delay or 
period. Furthermore, ADNI consists of a highly selected cohort consisting of healthy 
controls, mild cognitive impairment (MCI) and AD patients, and recently also subjective 
cognitive decline (SCD), and excludes other patients that are referred to amyloid PET 
in a clinical setting. This could be patients where MRI cannot be performed, because 
of metal implants or patients with suspected competing pathology that may manifest 
as cognitive deficits, e.g., structural brain lesions or deformations caused by as stroke, 
trauma, or normal pressure hydrocephalus (NPH), and other neurological or psychi-
atric conditions.1 Furthermore, there are a significant proportion of other non-AD 

1  https://​clini​caltr​ials.​gov/​ct2/​show/​NCT00​106899.

https://clinicaltrials.gov/ct2/show/NCT00106899
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neurodegenerative conditions with cognitive deficits, such as frontal temporal lobar 
dementia (FTLD), and atypical parkinsonism, both with subgroups of specific clinical 
and imaging manifestations, that are not represented in ADNI.

In this study, we aimed to develop an automated classification model for assessing 
amyloid status as well as a regression model for predicting the amyloid SUVR from a 
[11C]PiB PET image in a mixed memory clinic cohort. The amyloid status is compared 
against a visual clinical interpretation of the images by an expert reader, and the pre-
dicted SUVR is compared against the semi-quantitative reference. Furthermore, we 
wished to assess the added value of an automated classification model vs. other simpli-
fied methods such as the SUVR threshold. Our study took inspiration from several novel 
studies in the field [10, 13, 14], but deviates from these by utilizing a large local dataset 
for training and evaluation.

Materials and methods
Patients

We identified all patients undergoing [11C]PiB PET using PET/CT or PET/MRI between 
March 2010 and October 2020 at Rigshospitalet, Copenhagen, Denmark. All patients 
were referred from a memory clinic specialist after standard clinical evaluation for 
dementia with the suspicion of an underlying amyloid pathology according to appro-
priate use criteria [15]. Patients with a non-interpretable scan and patients referred 
for suspected cerebral amyloid angiopathy were excluded. Thirteen hundred and nine 
patient examinations were included in this study. The patients had an average age at the 
examination time of 69 ± 9 years (range: 39–89 years). Test set data were independent 
from the training data; we divided the subsets according to scanner type and compet-
ing structural pathology on current or previous CT or MRI, see Table 1. The training 
set (n = 872) consisted of 75% of the PET/CT examinations randomly sampled from the 
subjects that did not have any suspected competing pathology. The training set was used 
to develop both our automatic classification models and determine the SUVR threshold. 
The methods were mainly evaluated using two test sets consisting of the hold-out PET/
CT examinations (n = 300) and the hold-out PET/MRI examinations (n = 100). In a sep-
arate evaluation, we evaluated the methods’ ability to overcome challenging cases with 
significant co-morbidity including patients with previous brain trauma or surgery, brain 
infarcts, hemorrhages, meningiomas, cysts, or multiple sclerosis (n = 37).

Table 1  Patient demographics for each dataset

p.i., post-injection

*n = 30 examined on PET/CT and n = 7 on PET/MRI

Cohort Age [yrs] Dose [MBq] Scan start p.i. [min] N

Training set 69 ± 8 (40–89) 367 ± 111 (27–754) 42 ± 4 (32–63) 872

Hold-out tests

PET/CT 69 ± 9 (40–87) 347 ± 112 (51–716) 42 ± 4 (32–58) 300

PET/MRI 68 ± 9 (39–86) 422 ± 109 (170–709) 43 ± 5 (35–62) 100

Competing pathology 68 ± 11 (35–81) 435 ± 104 (227–702) 42 ± 3 (38–52) 37*
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Image acquisition

The patients were injected with 368 ± 113 MBq (range: 27–754 MBq) [11C]PiB and was 
examined on either a PET/CT or a PET/MRI scanner 42 ± 4  min (range: 32–63  min) 
post-injection (p.i.) of the radiotracer. PET data were acquired for 20 min (n = 1077) or 
30 min (n = 232) over a single bed-position. Examinations were originally reconstructed 
following clinical protocol used at our institution at the time, which is individually tai-
lored for each scanner. Variations include reconstructed scan period, usually 40–60 
and 40–70 min p.i., but could be delayed because of scan failure or patient compliance, 
matrix size, voxel spacing, and post-filtering (3 mm, 4 mm, and 5 mm Gaussian). Details 
are given for each of the four different scanners used in Additional file 1: Table S1. We 
used the original reconstructed PET images extracted from our imaging archive system.

The scan protocol included a low-dose CT image (120 kVp, 30 or 40 mAs, 
512 × 512 × 74 matrices, 0.59 × 0.59 × 3  mm3 voxels) for PET/CT and T1-weighted 
(T1w) MPRAGE (512 × 512 × 192 matrices, 0.49 × 0.49 × 1  mm3 voxels) for PET/MRI. 
Same-day low-dose CT was acquired for all PET/MRI examinations and used for attenu-
ation correction of the PET signal following a co-registration to the T1w MPRAGE [16].

Image pre‑processing

The PET images were first transferred into common MNI space using the associated 
anatomical image (CT or MRI). For PET/CT examinations, we first smoothed the low-
dose CT with a 1 mm kernel and clamped the values to lie between 0 and 100 HU using 
fslmaths [17], followed by skull stripping using FSL-BET [18]. For the PET/MRI exami-
nations skull stripping was performed on the T1w MPRAGE using HD-BET [19]. Skull 
stripped anatomical images were registered to MNI space using affine registration only 
(RegAladin, niftyreg [20]). The PET images were subsequently warped to MNI space 
using the same affine transformation matrix, followed by a brain extraction using the 
brain mask obtained from skull stripped CT or MRI. The resulting resampled PET vol-
umes had a matrix size of 256 × 256 × 256 with 1 mm3 isotropic voxels. PET intensities 
were normalized to 0–1 by dividing by the 95% quantile value and clipping the maxi-
mum value at 1 for each brain extracted PET image in MNI space.

Visual interpretation of amyloid PET and SUVR calculation

The visual reading was performed by a board-certified nuclear medicine physician (IL), 
who had all images available during reading, including any previous examinations (e.g., 
MRIs performed prior to the PET/CT). PET images were interpreted after registration 
to available MRI or CT and reviewed in coronal, sagittal and transaxial planes. PET 
scanning was classified on a two-point scale as amyloid negative or positive based on 
the criteria developed for [18F]Florbetapir: A positive scan had two or more brain areas 
each larger than a single cortical gyrus in which there were reduced or absent gray-white 
matter contrast or one or more areas in which gray matter uptake is intense and clearly 
exceeds that in adjacent white matter.

Interpretation was supported by the calculation of SUVR normalized to cerebellar 
gray matter. A set of cortical standard regions was developed based on FreeSurfer (6.0, 
http://​surfer.​nmr.​mgh.​harva​rd.​edu) segmented MRI from 40 healthy elderly subjects of 
the prefrontal, orbitofrontal, parietal, temporal, anterior cingulate, posterior cingulate, 

http://surfer.nmr.mgh.harvard.edu
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precuneus cortex, and cerebellar gray matter. The regions were transferred to MNI 
standard space and averaged within region between subjects, and a threshold selected so 
that the size of each averaged region was equal to the average between subject’s volume. 
For analysis of patient scans, we reverse transformed the projections of standard corti-
cal regions to native space using the individual affine MNI registration described above 
and obtained the median volume weighted activity values for the calculation of refer-
ence SUVR (rSUVR). Visual quality assurance of correct placement of the regions was 
performed for each subject based on standard printouts of 9 axial slices on PET and CT/
MRI.

End‑to‑end training

The networks were trained by fivefold cross validation using the training PET/CT sub-
jects (n = 872). The hold-out test sets served as input to each of the five CNNs, and a 
final prediction was achieved by averaging the outputs. An overview of the data split is 
provided in Fig. 1. The scripts for inference and the trained model weights used in this 
manuscript are available at https://​github.​com/​CAAI/​amylo​idAI.

We trained two separate networks: the first predicting the amyloid status and the sec-
ond predicting the continuous SUVR (pSUVR). Both networks were 3D CNNs with 
four convolutional blocks followed by a dense layer for the two networks, respectively 
(Fig. 2). The first three convolutional blocks consisted of a 3D convolution layer, batch 

Fig. 1  Overview of k-fold cross-validation training and ensemble predictions. The training/validation set 
consisted of 75% of the PET/CT scans. Hold-out test set was made up by the remaining 25% PET/CT scans 
(n = 300), all the PET/MRI scans (n = 100), and a set of challenging patients with significant co-morbidity 
scanned on a PET/CT (n = 30) or a PET/MRI (n = 7)

https://github.com/CAAI/amyloidAI
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normalization, rectified linear unit (ReLU) activation, dropout layer, and a max pool 
layer for down-sampling with pool-size and stride of 2. The last block did not contain a 
max pool layer. For each network individually, we performed a hyper parameter search 
for the optimal kernel size, number of filters, dropout fraction, and learning rate. The 
search space and chosen parameters are given in Additional file 1: Table S2 and S3. We 
used He kernel initialization and L2 penalties (l2 = 1 × 10–4) for kernel regularization on 
the convolutional layers. Both networks accepted full 3D PET volumes as input; the amy-
loid status network in 1 mm3 resolution (256 × 256 × 256), whereas the images were first 
downsampled to 2 mm3 resolution (128 × 128 × 128) for the quantitative SUVR network. 
The proposed networks were implemented in PyTorch (version 1.7.1). Random data aug-
mentation was performed, which included rotation, translation, zoom, and axis flipping. 
Our experiments used binary cross entropy with logits and mean squared error as loss 
function for the classification and regression networks, respectively, trained using the 
Adam optimizer [21]. The classification network was trained for up to 25 epochs, with 
a batch size of 4 and a learning rate decay every 10th epoch by a factor ⌊epoch/10⌋ × 10. 
The SUVR regression network was trained for up to 1000 epochs with a batch size of 32. 
Validation loss and accuracy was monitored to choose the best epoch for each fold. All 
computations were performed on an IBM POWER9 server with four NVIDIA TESLA 
V100 GPUs.

Statistical analysis

Each scan was classified as amyloid positive or negative using a predefined threshold 
of 0.5 on the average predictions across the five amyloid status classification CNNs. 
Furthermore, binarized categories (positive/negative) based on a standard threshold 
on rSUVR were created. The threshold was determined by performing conventional 
receiver operating characteristic (ROC) analysis with expert classification as the binary 
variable and using only the training patients (n = 872). The threshold was used on both 
reference and predicted SUVR for the test patients to determine the SUVR-driven 

Fig. 2  Overview of network architecture consisting of four convolutional blocks and a final dense layer. 
Layers in each block are indicated above each arrow. The final convolutional block (red arrow) deviates from 
the first three blocks (yellow arrows) by not containing a max pooling layer. The information above each 
box represents the size of the resulting activation maps, which are difference between the classification and 
regression networks. Values used are given in Additional file 1: Table S2 and S3
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amyloid status accuracy. The predicted SUVR was determined by the median of the 
five network outputs. Measures of agreement (Cohen’s kappa), accuracy ((TP + TN)/
(TP + TN + FP + FN)), sensitivity (TP/(TP + FN)), specificity (TN/(TN + FP)), and 
F1-score (2 * TP/(2 * TP + FP + FN)) were calculated for the validation and each of 
the hold-out test-sets independently, where TP = True Positive, TN = True Negative, 
FP = False Positive, and FN = False Negative. The ability to predict the SUVR value were 
compared against the reference by computing the coefficient of determination (R2).

Benchmarking with public data

To provide a benchmark for our method, [11C]PiB PET/CT data (n = 224) were obtained 
from the ADNI database. The ADNI was launched in 2003 as a public–private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI 
has been to test whether serial magnetic resonance imaging, positron emission tomog-
raphy, other biological markers, and clinical and neuropsychological assessment can be 
combined to measure the progression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease. For up-to-date information, see http://​www.​adni-​info.​org. The PET 
images from the ADNI database originated from different scanners, and were obtained 
using the co-registered, averaged, and standardized image and voxel size PET pre-pro-
cessing applied. We computed rSUVR using the same method as described in “Visual 
interpretation of amyloid PET and SUVR calculation” Section and evaluated the per-
formance of our method using the same metrics as introduced in “Statistical analysis” 
Section. We did not perform a visual reading of the ADNI data, and thus, the reference 
amyloid status is purely based on rSUVR.

Results
Expert reading and reference SUVR

Expert reading resulted in 61% of scans to have increased amyloid deposition; 62% prev-
alence in train/validation group, 62% in hold-out PET/CT group, and 46% in hold-out 
PET/MRI group. Figure 3 illustrates the distribution of rSUVR across all patients. The 
ROC analysis determined an optimal cut-off of 1.35 to categorize rSUVR into amyloid 
positive/negative read status based on the training/validation cohort. The agreement of 
rSUVR with the expert reader is shown for the two hold-out test cohorts in Table 2.

Fig. 3  Distribution of rSUVR values for the entire cohort (n = 1309). The SUVR threshold (1.35) for binary 
classification into amyloid positive/negative read status is illustrated with a vertical dashed line. The threshold 
was determined using only the 872 training/validation subjects

http://www.adni-info.org
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Classification model

The amyloid status classification model was trained using five-fold cross-validation, 
which each took up to 8 h to converge. The time to predict the diagnosis for a new 
patient was < 1  s. The proposed ensemble deep learning model correctly classified 
amyloid status in 296/300 (99%) of the hold-out PET/CT subjects, 4 were misclas-
sified (3 false positive). The hold-out PET/MRI subjects were correctly classified in 

Table 2  Performance of an optimal semi-quantitative rSUVR threshold of 1.35 for categorization 
into amyloid positive/negative visual read status

PET/CT PET/MRI
Hold-out test n = 300 Hold-

out test 
n = 100

Cohen’s kappa 0.94 0.96

Accuracy 97% 98%

Sensitivity 97% 98%

Specificity 98% 98%

F1-score 98% 98%

Table 3  Performance of the amyloid status classification deep learning model

*The validation subjects represent the sum of all five validation folds (n = 872)

PET/CT PET/MRI

Validation n = 872* Hold-out test n = 300 Hold-
out test 
n = 100

Cohen’s kappa 0.96 0.97 0.96

Accuracy 98% 99% 98%

Sensitivity 98% 99% 98%

Specificity 97% 97% 98%

F1-score 98% 99% 98%

Fig. 4  ROC curves for the hold-out test sets (n = 400). A show the result for the classification network against 
the expert reading. B show the result for the deep learning derived (regression network) pSUVR-driven 
amyloid status against the expert reading
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98/100 (98%) of the cases, 2 was misclassified (1 false positive). Four of these mis-
classified subjects were borderline with rSUVR close to the cut-off of 1.35, one was 
affected by motion, and one had abnormally low activity in the image. The agreement 
with the expert reader classification is shown for the validation cohort and the two 
hold-out test cohorts in Table 3 and ROC curves are plotted for the hold-out test sets 
in Fig. 4A. Ensemble classification accuracy (99%, hold-out PET/CT) was an improve-
ment over any of the individual predictions for each k-fold model (94–97%).

Predicted SUVR

The training time for the five regression networks was 14 h each, and again took less 
than 1  s to predict pSUVR for a new patient. The median of the five pSUVRs are 
shown against rSUVR in Fig. 5. The model successfully predicted values comparable 
to the rSUVR, as demonstrated by high coefficient of determination scores of 0.96 
and 0.95 for the PET/CT and PET/MRI hold-out test sets, respectively. When apply-
ing the determined SUVR threshold of 1.35 for binary classification, amyloid status 
corresponded with the expert classification in all but 10 cases across both hold-out 
test cohorts for both the reference and predicted SUVR (Table 4). The ROC-curves 

Fig. 5  Correlation between reference and predicted SUVR for the PET/CT (left, n = 300) and PET/MRI (right, 
n = 100) hold-out test sets. The dotted gray lines illustrate the 1.35 threshold. The dashed black line is the 
identity line

Table 4  Performance of the deep learning derived pSUVR-values to determine amyloid read status 
using a SUVR threshold of 1.35

PET/CT PET/MRI
Hold-out test n = 300 Hold-

out test 
n = 100

Cohen’s kappa 0.94 0.96

Accuracy 97% 98%

Sensitivity 98% 98%

Specificity 97% 98%

F1-score 98% 98%
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are shown for the hold-out test sets in Fig. 4B. Strictly comparing SUVR-driven amy-
loid status of the predicted and reference SUVR, we found congruent classification 
in all but four cases in the hold-out PET/CT test set. The expert classification agreed 
with the rSUVR-driven status in two cases and with the pSUVR-driven status in the 
other two equivocal cases.

Competing pathology

The classification networks were able to correctly classify all but two subjects from 
the cohort of 37 patients with competing pathology and PET images characterized by 
a combination of anatomical distortions with borderline or atypical amyloid distribu-
tion (Additional file 1: Fig. S1). The SUVR-driven amyloid status agreed with the expert 
reader in all but 2 subjects (one different than above) using pSUVR and all but 3 subjects 
using the rSUVR.

Benchmarking with public data

The classification networks agreed with the SUVR-driven amyloid status in all but 5 sub-
jects (accuracy 98%, sensitivity 97%, specificity 100%) for the ADNI data. The regres-
sion networks were able to predict SUVR values with good correlation to the reference 
(Additional file 1: Fig. S2), which agreed with the reference SUVR-driven status in all but 
8 subjects (accuracy 97%, sensitivity 99%, specificity 91%).

Discussion
Development of disease modifying therapies directed toward the removal of amyloid 
deposits in AD may require fast and accurate classification methods in patient selec-
tion. Quantification of amyloid deposition is challenged by multiple processing steps 
and require structural MRI image segmentation to achieve highest accuracy [2, 3]. We 
developed end-to-end deep learning models that were able to classify amyloid status and 
semi-quantitative SUVR from only an amyloid PET image, pre-processed using an MRI 
or CT. It should be stressed that the predicted output was clinical reading, and not clini-
cal outcome on follow-up evaluation or pathology. Our model reproduced the diagno-
sis made by an expert reader in two large independent test cohorts with high accuracy 
(99% accuracy compared to 97% when using standard SUVR method), and, thus, has the 
potential to support or replace visual reading in the future.

In general terms [11C]PiB amyloid PET imaging is very effective in separating patients 
into read positive and negative [22, 23], illustrated by our finding of 97% accuracy based 
on simple SUVR thresholding of 1.35. The positive read patients below this threshold 
(n = 7) were dominated by patients with intense uptake in just one region, which may be 
difficult to identify when several regions are weighted together as for SUVR, where the 
active region may simply not be measured or have an insignificant volume. Our model 
was able to further improve the already high accuracy to 99%, which could be due to 
application of a global evaluation that is not limited to a set of predefined regions where 
amyloid uptake typically is most pronounced. The global evaluation might further make 
the method less susceptible to changes in smaller regions caused by structural abnor-
malities, misregistration, motion, or atypical amyloid uptake. During quality assessment 
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in routine clinical use, we have found the model useful to identify borderline cases that 
require more detailed reading based on divergent classifications on measured SUVR and 
AI.

Simply classifying amyloid status without providing measures quantifying the 
degree of pathology, challenges the usability of such a method in clinical routine. 
Thus, providing an estimate of the amyloid burden alongside the classification results 
in a higher confidence in the reached diagnosis [24]. The predicted or measured 
SUVR could also serve as a metric to prioritize resources for a more detailed read-
ing of the patient. In practice there were no read negative patients above rSUVR of 
1.61 or read positive patients below rSUVR 1.12, essentially defining an approximate 
SUVR range for borderline cases encompassing 23% of patients that require closer 
scrutiny by the reader.

The main strength of our model is that it was trained with PET data from multiple 
scanners, injected doses, real-life imaging guideline violations, reconstruction param-
eters, and resulting image noise characteristics and resolutions, which resulted in the 
model being highly generalizable. This was demonstrated by the PET/MRI hold-out 
test set where the model achieved 98% accuracy despite not having seen any PET/
MRI data during training. Using patients from the ADNI database the accuracy was 
retained. These results, thus, suggest that our model is probably directly applicable 
across sites. The model furthermore appeared robust toward delayed acquisition, 
head motion, and pathology that affected the structural integrity of the brain, such 
as infarcts, hemorrhage, traumatic lesions, NPH and meningioma, and was trained 
and validated on a population, that reflect clinical patient throughput more accurately 
than the ADNI cohort. The model was also able to correctly classify the six patients 
in the test set that had received a dose less than 100  MBq. This indicates that the 
model has potential for ultra-low activity injection or fast acquisition imaging directly 
or after transfer learning. This needs to be confirmed in a separate study.

The largest deep learning amyloid PET study based on the ADNI database was pro-
posed by Reith et  al. [10] who utilized 2066 patients examined with [18F]Florbetapir. 
The model correlated well with MRI-derived SUVR but less with visual inspection by 
four expert readers. Compared to the model by Reith et al. that accepts three slices as 
input, our model accepts the full 3D volume, and is therefore not blinded to any parts 
of the brain. Kim et al. [14] further demonstrated that a model trained on [18F]Florbeta-
pir PET data was transferable without loss of accuracy to an independent test cohort 
from the ADNI database imaged with [18F]Florbetaben without any retraining. Nai et al. 
[25] trained a model using [11C]PiB data partly from the ADNI database, and achieved a 
maximum accuracy of 95%, and de Vries et al. [11] similarly obtained an accuracy of 95% 
when using n = 22 [18F]Florbetapir patients from the ADNI database as test cohort. Only 
few studies exist based on local data. An example is Kang et al. [26] who obtained 92% 
accuracy with a slice-based classification model after applying gray matter masking in a 
small cohort of 176 patients. Validation on local data is important since models trained 
on public databases might not be transferable to local routine data, as outlined above.

Our study had several limitations. While using only a minimum of pre-processing, 
our method does rely on skull stripping and spatial normalization by affine regis-
tration. However, we found that local inaccuracies in either step did not appear to 
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change the precision of the model. When developing the method, we investigated the 
impact of neglecting the spatial normalization, and found that this resulted in inferior 
performance (results not shown). Another limitation is the use of data solely from 
scanners by a single vendor and a single site. Despite appearing robust toward scan-
ner type, it remains to be shown whether the model generalizes across vendors, radi-
otracers, and sites.

Conclusion
We have trained a deep learning network capable of predicting amyloid status, agreeing 
with expert diagnosis in 99% of a mixed memory patient cohort in a large local dataset, 
while also predicting amyloid burden represented by the subjective semi-quantitative 
metric SUVR. This method has the potential to replace or simplify the existing clinical 
routine, can act as a tool for patient triaging, and can facilitate fast and accurate classifi-
cation well-suited for a high throughput pipeline for patient selection for disease modi-
fying therapy.
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