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Abstract 

Purpose:  This project aims to develop and evaluate a method for accurately determin-
ing time-integrated activities (TIAs) in single-time-point (STP) dosimetry for molecular 
radiotherapy. It performs a model selection (MS) within the framework of the nonlinear 
mixed-effects (NLME) model (MS–NLME).

Methods:  Biokinetic data of [111In]In-DOTATATE activity in kidneys at T1 = (2.9 ± 0.6) 
h, T2 = (4.6 ± 0.4) h, T3 = (22.8 ± 1.6) h, T4 = (46.7 ± 1.7) h, and T5 = (70.9 ± 1.0) h post 
injection were obtained from eight patients using planar imaging. Eleven functions 
were derived from various parameterisations of mono-, bi-, and tri-exponential func-
tions. The functions’ fixed and random effects parameters were fitted simultaneously 
(in the NLME framework) to the biokinetic data of all patients. The Akaike weights were 
used to select the fit function most supported by the data. The relative deviations (RD) 
and the root-mean-square error (RMSE) of the calculated TIAs for the STP dosimetry at 
T3 = (22.8 ± 1.6) h and T4 = (46.7 ± 1.7) h p.i. were determined for all functions passing 
the goodness-of-fit test.

Results:  The function f4d(t) = A1/
1−α

�1+�phys
−

α
�2+�phys

−
1−2α

�bc+�phys
·

e
−�physt ·

{

(1− α) · e−�1t − α · e
−�2t − (1− 2α) · e−�bct

} with four adjustable 

parameters and �bc =
ln(2)
1 min was selected as the function most supported by the data 

with an Akaike weight of (45 ± 6) %. RD and RMSE values show that the MS–NLME 
method performs better than functions with three or five adjustable parameters. The 
RMSEs of TIANLME–PBMS and TIA3-parameters were 7.8% and 10.9% (for STP at T3), and 4.9% 
and 10.7% (for STP at T4), respectively.

Conclusion:  An MS–NLME method was developed to determine the best fit func-
tion for calculating TIAs in STP dosimetry for a given radiopharmaceutical, organ, and 
patient population. The proof of concept was demonstrated for biokinetic 111In-
DOTATATE data, showing that four-parameter functions perform better than three- and 
five-parameter functions.
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Introduction
Individual dosimetry in molecular radiotherapy (MRT) is often not performed in the 
clinic, as it requires sequential imaging to determine the time-integrated activity (TIA) 
[1–4]. These repeated measurements need several patient visits resulting in an addi-
tional burden for the patients and costs for the clinics. Therefore, developing methods 
to simplify individual dosimetry by reducing the total number of measurements is highly 
desirable.

Several studies have investigated the feasibility of using a low number of measurements for 
the determination of TIAs in radioimmunotherapy [5], radioiodine therapy [6, 7], peptide-
receptor radionuclide therapy (PRRT) [3, 6, 8–15], and [177Lu]Lu-PSMA therapy [16, 17]. 
Recently, Devasia et al. implemented a nonlinear mixed-effect (NLME) model to determine 
the TIAs of [177Lu]Lu-DOTATATE in kidneys during PRRT using a bi-exponential function 
and single-time-point (STP) imaging with SPECT/CT [8]. As a result, the NLME model was 
able to lower the number of TIAs with a bias > 10% (32 of 500 simulations, 6%) by a factor of 
about three compared to the number of TIAs with a bias > 10% obtained from dose mapping 
methods introduced by Hänscheid et al. [9] (102 of 500 simulations, 20%), and the curve-fit-
ting methods introduced by Madsen et al. [12] (85 of 500 simulations, 17%). Furthermore, we 
showed that individual dosimetry based on STP data, NLME, and a PBPK model could lead to 
relatively accurate determination of TIAs in various organs [15].

Although STP imaging and NLME modelling has shown promising results, using a 
bi-exponential function [8] might not be optimal for all radiopharmaceuticals, organs, 
or patient populations. For example, it has been demonstrated that model selection is a 
crucial step in estimating TIAs in MRT [18], as estimating TIAs highly depends on the 
chosen fit function [18, 19]. In this study, we developed and performed a model selection 
with NLME (MS–NLME) modelling to determine the fit function best supported by our 
data set as a proof of concept. Then, we compared the performance of the best fit func-
tion from NLME-PBMS to the performance of the bi-exponential function [8, 19, 20] in 
determining TIAs in STP dosimetry.

Materials and methods
Biokinetic data

In brief, biokinetic data of [111In]In-DOTATATE in kidneys from eight patients with either 
meningioma (n = 4) or neuroendocrine tumours (n = 4) were used in this study [15, 21]. An 
activity of (140 ± 14) MBq of [111In]In-DOTATATE was administered intravenously to the 
patients as a (51 ± 8) min infusion. Planar whole-body scintigraphies using a double-head 
gamma camera (ECAM, Siemens, Erlangen, Germany) were performed at T1 = (2.9 ± 0.6) 
h, T2 = (4.6 ± 0.4) h, T3 = (22.8 ± 1.6) h, T4 = (46.7 ± 1.7) and T5 = (70.9 ± 1.0) h p.i. 
[21] using a medium energy collimator with energy windows A1 = 171 keV (width 15%), 
A2 = 245 keV (15%), B1 = 142 keV (18%), and B2 = 205 keV (18%). Background correction 
and self-attenuation were included in the measurement of organ activity as a function of 
time according to the MIRD pamphlet number 16 [22]. The percentage of the administered 
activity in kidneys was used in this study [21]. Biokinetic data of [111In]In-DOTATATE were 
used as a surrogate for predicting the kinetics of [90Y]Y-DOTATATE used for peptide-radi-
onuclide therapy, as suggested in the literature [21, 23].
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Sums of exponential functions

In this study, the following sums of exponential (SOEs) functions with 3, 4, and 5 parameters 
and different parameterisations were used to fit the biokinetics of [111In]In-DOTATATE in 
kidneys (Eqs. 1–11). The different parameterisations were investigated to demonstrate that 
the NLME modelling yields different results for different parameterisations.

where fi is a fit function, i is the total number of the estimated parameters, Aj

(

j = 1, 2, 3
)

 
are the prefactors of the fit function with values ≥ 0 , �phys is the physical decay constant 
of 111In ( �phys = ln (2)/T1/2 = 1.72× 10−4 min−1 [21]), �bc is the rate of blood circula-
tion of 1 min 
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corresponding exponentials with values between 0 and 1. As described in Burnham et al. 
[24], existing prior knowledge should be taken into account when selecting the functions 
to be used for model selection. Therefore, on the one hand only sums of exponential 
functions were considered [19, 25] and on the other hand the constraint fi(t = 0) = 0 
was implemented. In addition, for functions with 4 and 5 parameters, a rapid increase in 
activity in the kidneys with a half-life of 1 min was added, which is caused by the blood 
circulation time in humans. SOE functions with less than three parameters did not pass 
the goodness-of-fit test and were not included in the analysis.

Nonlinear mixed‑effects model

Parameters in the NLME model consist of the fixed and random effects (Eqs. 12–13) as 
reported in the literature [8, 15, 26]. Fixed effects describe the mean values of the esti-
mated parameters in the population, while random effects describe the inter-patient var-
iability of the estimated parameters between subjects in the population [27].

where Pj is the estimated parameter j in an SOE function, TVPj is the fixed effect of the 
estimated parameter j , and ETAj the random effect. ETAj is a random number following 
a Gaussian distribution with mean zero and variance σ 2

i  . Parameters of the exponential 
functions in Eqs. (1–11) were modelled as the combination of a fixed effect and an inter-
patient variability (random effect) plus the intra-patient variability.

Study workflow

The parameters of the SOE functions (Eqs. 1–11) were fitted to the biokinetic data of 
[111In]In-DOTATATE in kidneys (“Biokinetic data” Section) using the NLME method. 
All NLME model fittings and simulations were performed in MATLAB software 
vR2020a. As suggested in the literature, an exponential error model with log transforma-
tion was used [15]. The MS–NLME method is performed using the Akaike weight. The 
SOE function with the highest Akaike weight was selected as the fit function most sup-
ported by the data. The Akaike weights indicate the probability that the model is the best 
among the analysed models [24, 28]. The Akaike weights [19, 24, 28] of the SOE func-
tions were calculated as follows:

(12)Pj = TVPj × exp
(
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)
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j

)

(14)AICc = −2 ln (P)+ 2K +
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where AICc is the corrected Akaike Information Criterion value, P is the obtained mini-
mum objective function, AICcmin is the lowest AICc value of the SOE functions, �j is 
the difference of the AICcj of SOE function j and AICcmin , F  is the number of SOE func-
tions in the model set, and wAICcj is the Akaike weight of function j . The stability of the 
best SOE function obtained from the MS–NLME method was tested using the Jackknife 
method [28, 29]. In this method, the leave-one-out method was applied eight times with 
only seven patients included for the calculation of the Akaike weights.

The performance in determining the TIAs for STP dosimetry of the best SOE 
function obtained from the MS–NLME method was compared to the performance 
of the often used bi-exponential function f3d [8, 19, 20]. The parameters of the bi-
exponential function ( f3d Eq.  (4)) were fitted to a patient with only STP biokinetic 
data by simultaneously fitting within the NLME model framework this new patient’s 
limited measurement with all data points of all other patients. Biokinetic data at 
time points T3 = (22.8 ± 1.6) and T4 = (46.7 ± 1.7) p.i. were used for the STP fitting 
as suggested in the literature [15].

TIAs from the STP fitting using the bi-exponential function ( f3d ) were calculated 
by integrating the individual simulated time-activity curves from t = 0–100,000  min 
(TIASTP_f3d). The STP NLME model fittings were repeated using the best model 
obtained from MS–NLME method, followed by calculating the corresponding TIAs 
(TIASTP_MS–NLME).

Relative deviations (RDs) and root-mean-square errors (RMSEs) were used to analyse 
the accuracy of the calculated TIASTP_f3d and TIASTP_NLME–PBMS with the TIAs obtained 
from the all-time-point fittings using the best model obtained from MS–NLME 
(TIAATP_MS–NLME) as the reference. The relative deviation RDs and the RMSEs were cal-
culated according to

where RDk ,m is the relative deviation of STP method k of patient m, RMSEk is the root-
mean square over all patients of RDk ,m , SDRDk ,m is the standard deviation of RDk ,m , 
MeanRDk ,m is the mean of RDk ,m , and k determines the function used for the NLME 
modelling.

Results
Based on the MS–NLME approach, function f4d was selected as the function most sup-
ported by the data with an Akaike weight of 47.26% (Table 1). Function f4e was ranked as 
the second-best function with an Akaike weight of 44.25%. All bi-exponential functions 
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Table 1  The goodness of fits and Akaike weights for the investigated functions in the NLME model

The total number of biokinetic data N used in this analysis is 40; the number of parameters of the NLME model for the 
corresponding SOE function is given in column K
a The Jackknife analysis was based on functions with Akaike weights > 1%, i.e. f4b , f4d , and f4e
b Function f4d was used as the reference for the calculation of the RDs and RMSEs of the all-time-point TIAs
c Functions f4c , f5a , and f5b did not pass the goodness-of-fit test because CV > 50%; therefore, Akaike weights, RDs, and 
RMSEs were not calculated for these functions

Equation 
number

Function name K Akaike 
weight 
(%)

Jackknife Akaike 
weights (% mean (SD); 
% median [min, max])a

RD (% median [min, 
max])b

RMSE of 
the RD 
(%)b

1 f3a 7 0.08 – − 3.94 [− 4.39, − 2.05] 3.66

2 f3b 7 0.09 – − 3.79 [− 5.99, − 2.19] 4.06

3 f3c 7 0.09 – − 3.89 [− 4.61, − 2.16] 3.69

4 f3d 7 0.11 – − 3.64 [− 6.17, − 2.28] 4.04

5 f4a 9 0.77 – − 0.78 [− 1.72, 0.56] 0.97

6 f4b 9 7.35 10 (7); 11 [0,21] − 0.69 [− 1.91, 0.44] 1.09

7 f4c c 9 – – – –

8 f4d 9 47.26 45 (6); 43 [38,56] – –

9 f4e 9 44.25 45 (7); 43 [37,57] − 0.49[− 0.64,− 0.04] 0.49

10 f5a c 11 – – – –

11 f5b 
c 11 – – – –

Fig. 1  Time-activity data and ATP fit curves obtained using function f4d , which is chosen as most supported 
by the data using the presented MS–NLME method. Function f3d is shown for comparison, as it is the function 
with the highest Akaike weight from the group of functions with three and five parameters



Page 7 of 12Hardiansyah et al. EJNMMI Physics           (2023) 10:12 	

Table 2  Parameters estimated from ATP fitting using the best model obtained from the best 
function derived using MS–NLME method, i.e. f4d

a Biological decay �1 corresponds to biological half-life T1/2 = (77.0 ± 0.8) h
b Biological increase �2 corresponds to biological half-life T1/2 = (13.1 ± 0.1) h

Model parameters Fixed effect (% coefficient of 
variation)

Random effect (variance, 
inter-patient variability)

A 129.36 (10.5) min 0.08

α 0.31 (7.6) 0.01

�1
a 1.5 × 10–4 (9.8)/min 2.9 × 10−4

�2
b 8.8 × 10–4 (41.4)/min 1.1

Intra-patient variability 4.4 × 10–2 (21) –

Fig. 2  Comparison of the predicted TIAs calculated from STP measurements at T3 or T4 with functions f4d 
and f3d . Reference TIAs were calculated using the all-time-point data and function f4d .

Fig. 3  RDs of TIAs obtained from the function f4d and f3d for STP dosimetry at T3 and T4. TIAs from 
all-time-point fittings calculated using function f4d were used as the reference values
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with three parameters had Akaike weights ≤ 0.10%. The Jackknife method was applied to 
the subset of functions with Akaike weights > 1%, i.e. f4b , f4d , and f4e (Table 1). Based on 
the Jackknife method, the selection of f4d was stable with median Akaike weight of 43% 
and range 38–56% (Table 1). Functions f4c , f5a , and f5b did not pass the goodness-of-fit 
test with maximum CV of the estimated fixed effect > 50%.

Figure  1 compares the time-activity curves of the best function obtained from the 
MS–NLME ( f4d ) with the function f3d . Visual inspection of the fitted graphs in Fig. 1 
shows that function f4d has a better performance than function f3d . All fitted param-
eters using the MS–NLME function ( f4d ) showed a precise value with a coefficient of 
variation < 50% (Table 2). Predicted TIAs of STP dosimetry using function f4d showed 
better results in most of the patients compared to the predicted TIAs of STP dosimetry 
using function f3d (Fig. 2).

Figure  3 and Additional file 1: Table  S1 show the RD and RMSE of the TIAs of the 
MS–NLME ( f4d ) function and function f3d to the reference TIAs calculated from all-
time-point fitting (“Study Workflow” Section). The MS–NLME ( f4d ) function has a bet-
ter performance than the function f3d by a factor of two based on the RMSEs values 
(Additional file 1: Table S1) for STP dosimetry at T4. Figure 3 shows the %RD of TIAs 
from STP dosimetry using functions f4d and f3d . As a result, the RMSE value of function 
f4d (4.9%) is lower by a factor of 2 compared to when using function f3d (10.7%) (Fig. 3 
and Additional file 1: Table S1).

Discussion
The NLME model is a promising population-based method for calculating TIAs in MRT 
[8, 15]. Implementation of the NLME model using a bi-exponential function ( f3d ) in 
STP dosimetry showed a better result [8] than the STP methods introduced by Hänsc-
heid et al. [9] and Madsen et al. [12]. However, using a bi-exponential function in STP 
dosimetry [8] might not be optimal for all radiopharmaceuticals, organs, or patient data 
sets: It will depend on the biokinetic data set, e.g. the number and schedule of the time-
activity data, the radiopharmaceutical, and the organ. Different groups have used various 
exponential functions in their STP dosimetry analyses [8, 9, 12]. The lack of standard-
ised methods for finding functions for calculating TIAs might lead to reproducibility 
issues [18]. To find the function that best describes the biokinetic data model selection is 
needed for reproducible and optimal estimation of TIAs in STP. In this study, we devel-
oped the MS–NLME method and investigated the effect of choosing the best function 
on the accuracy of TIAs in STP dosimetry in our data set. As a result, we showed with 
our data set that this method offers, on the one hand, a more reproducible approach 
than choosing a function based on a simple rule of thumb and, on the other hand, also 
improves the achieved TIA accuracy.

Determination of the set of functions is a critical step in model selection. To get a good 
model selection output, the functions in the set of model functions should include prior 
knowledge [24], for example, about the physiology of the considered organ. Therefore, 
characteristics of the functions used in our study based on the prior knowledge of the 
biokinetic data in kidneys were (1) the value of fi(t = 0) = 0 , and (2) a fast uptake of 
T1/2 = 1 min was used for functions f4a , f4b , f4c , f4d , and f4e . This fast uptake was fixed, 
as it could not be fitted because the first measured time point was T1 = (2.9 ± 0.6) h.
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Exponential functions with one and two parameters are not presented here as they 
either did not pass the goodness-of-fit criteria (Table  1 in [19]) or had a negligible 
Akaike weight. In general, functions with four parameters have relatively higher Akaike 
weight compared to that of functions with three and five parameters (Table 1). Function 
f4d was the best function of the investigated functions with four parameters. Based on 
the Jackknife analysis results, functions f4d and f4e have almost an equal performance 
with Akaike weights of median [min, max] of 43% [38%, 56%] and 43% [37%, 57%], 
respectively. This is a consequence of the high similarity of both functions, which are 
just two different parameterisations of the same underlying function. Therefore, the 
NLME model fits also look indistinguishable (Additional file  1: Figure S2), although 
there is a difference in the TIAs from the all-time-point fittings from both functions; 
consequently, it is not shown in Fig. 1. This result shows the importance of having differ-
ent parameterisations of the same function in the model set when applying the NLME 
model. Also, differences between different functions are larger compared to differences 
between the various parameterisations of the same function (Table 1).

Functions with five parameters had a high coefficient of variation of the fitted fixed 
effect (> 50%) and were thus not included in the calculation of Akaike weights (Table 1). 
These could be attributed to the limited number of data used in this study which were 
not enough to estimate two biological decay rates ( f5a ) or two biological uptake rates 
( f5b).

Function f4d was selected as the best function for our data set based on the Akaike 
weight (Table 1). Function f3d was used as the function of interest to analyse the perfor-
mance of function f4d because [1] function f3d has the highest Akaike value of all inves-
tigated functions with three and five parameters, and [2] function f3d was used for the 
STP dosimetry with NLME modelling in the literature [8]. Visual inspection of the indi-
vidual all-time-point fitted graphs in Fig. 1 (especially P7 and P8) shows that function 
f4d performs better than function f3d . Furthermore, STP dosimetry using function f4d 
has superior performance than STP dosimetry using function f3d in predicting the TIAs 
(Additional file 1: Table S1, Figs. 2 and 3). Presumably, when a better fit function is used, 
the accuracy and precision of STP dosimetry also become higher. Model averaging was 
not used in this study as it would not change the major finding that 3- and 5-parameter 
functions are less good than 4-parameter functions.

More sophisticated models for describing the kinetics of radiopharmaceuticals, e.g. 
physiologically based pharmacokinetic models [3, 30, 31], can also be used to investigate 
the effect of the model selection to the STP dosimetry. This would allow for incorpo-
rating more knowledge of pharmacokinetic and physiological processes. However, most 
practitioners of dosimetry use mono-, bi-, and tri-exponentials for fitting the time-activ-
ity data [8, 19, 20, 25, 32]. Therefore, in this study, we decided to show how to apply the 
population-based model selection method for sums of exponential functions.

A limitation of our proof-of-concept study is that the total number of patients 
included in this study is relatively low. However, even for this small number of patients, 
the Akaike weight uncertainty using the Jackknife method demonstrates a clear priority 
for functions with 4 parameters. This translates into a benefit also reflected in the lower 
value of the RDs for the corresponding functions (Fig. 3). Nevertheless, further studies 
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are needed with larger sets of patient biokinetic data for various radiopharmaceuticals 
and organs.

Biokinetic data of [111In]In-DOTATATE were used for the proof of concept of STP 
approach with NLME modelling plus a model selection for the fit function. Biokinetic 
data of [111In]In-DOTATATE can be used as a surrogate for predicting the kinetics of 
[90Y]Y-DOTATATE [20, 22].

In the clinical setting, the presented STP method would be essential in the sequence of 
steps as follows:

(1)	 Collect biokinetic data of a patient population either from pretherapeutic or thera-
peutic measurements,

(2)	 Derive the fit function most supported by the data according to the here presented 
MS–NLME method.

(3)	 Perform STP dosimetry for “new” patients using the derived best function and the 
NLME model fitting with the inter- and intra-individual variabilities determined in 
item 2.

Conclusions
To determine the best fitting function for calculating TIAs in STP dosimetry for a 
given radiopharmaceutical, organ and patient population, we proposed a population-
based model selection method (MS–NLME). The application of this method was dem-
onstrated for the biokinetics of [111In]In-DOTATATE as proof of concept: Since STP 
dosimetry depends on the fit function used, determining the best fit function is essential 
for an optimal STP dosimetry method. In general, NLME modelling, a standard proce-
dure in pharmacokinetic science, is a promising approach to individualise MRT dosim-
etry by STP measurements.
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