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Abstract 

Background:  COVID-19 infection, especially in cases with pneumonia, is associated 
with a high rate of pulmonary embolism (PE). In patients with contraindications for 
CT pulmonary angiography (CTPA) or non-diagnostic CTPA, perfusion single-photon 
emission computed tomography/computed tomography (Q-SPECT/CT) is a diagnostic 
alternative. The goal of this study is to develop a radiomic diagnostic system to detect 
PE based only on the analysis of Q-SPECT/CT scans.

Methods:  This radiomic diagnostic system is based on a local analysis of Q-SPECT/CT 
volumes that includes both CT and Q-SPECT values for each volume point. We present 
a combined approach that uses radiomic features extracted from each scan as input 
into a fully connected classification neural network that optimizes a weighted cross-
entropy loss trained to discriminate between three different types of image patterns 
(pixel sample level): healthy lungs (control group), PE and pneumonia. Four types of 
models using different configuration of parameters were tested.

Results:  The proposed radiomic diagnostic system was trained on 20 patients (4,927 
sets of samples of three types of image patterns) and validated in a group of 39 
patients (4,410 sets of samples of three types of image patterns). In the training group, 
COVID-19 infection corresponded to 45% of the cases and 51.28% in the test group. In 
the test group, the best model for determining different types of image patterns with 
PE presented a sensitivity, specificity, positive predictive value and negative predictive 
value of 75.1%, 98.2%, 88.9% and 95.4%, respectively. The best model for detecting 
pneumonia presented a sensitivity, specificity, positive predictive value and negative 
predictive value of 94.1%, 93.6%, 85.2% and 97.6%, respectively. The area under the 
curve (AUC) was 0.92 for PE and 0.91 for pneumonia. When the results obtained at 
the pixel sample level are aggregated into regions of interest, the sensitivity of the PE 
increases to 85%, and all metrics improve for pneumonia.

Conclusion:  This radiomic diagnostic system was able to identify the different lung 
imaging patterns and is a first step toward a comprehensive intelligent radiomic sys‑
tem to optimize the diagnosis of PE by Q-SPECT/CT.
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Highlights:  Artificial intelligence applied to Q-SPECT/CT is a diagnostic option in 
patients with contraindications to CTPA or a non-diagnostic test in times of COVID-19.
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Background
Although CT pulmonary angiography (CTPA) is the most widely used imaging test for 
diagnosing pulmonary embolism (PE) [1, 2], another test is needed for patients with 
contraindications (allergy to iodinated contrast, kidney failure) or non-diagnostic on 
CTPA. Ventilation/perfusion single-photon emission computed tomography/computed 
tomography SPECT/CT (V/P-SPECT/CT) is a validated technique for PE diagnosis even 
in the presence of pneumonia [3, 4], but during the COVID-19 pandemic the use of ven-
tilation has been discouraged due to the high risk of aerosol production [2, 5].

Thromboembolic disease has been a major complication in patients with COVID-
19 pneumonia. In severe cases of COVID-19, an association with hyperinflammatory 
syndrome [6, 7] has been reported, as well as coagulation abnormalities and thrombo-
sis [8–10]. Venous and arterial thromboembolic events occur in 31–59% of hospitalized 
patients with COVID-19 [8, 11], especially if they require critical care [12–16]. Diagno-
sis of PE in the latter situation can be challenging [17].

Due to the need to adapt the test to the safety standards required by the pandemic 
and in search of an alternative for patients for whom CTPA is not an option, it is worth 
considering perfusion single-photon emission computed tomography/computed tomog-
raphy (Q-SPECT/CT) as a diagnosis alternative [18–21]. The value of Q-SPECT/CT was 
reported even prior to the COVID-19 pandemic [22], showing a sensitivity and specific-
ity of 100% and 83%, respectively, for the diagnosis of PE with the Q-SPECT/CT tech-
nique [23]. Nevertheless, the diagnosis of PE can be difficult in large areas of pneumonia. 
In these cases, reporting takes longer and frequently needs to be validated by senior 
nuclear physicians to prevent errors.

The early detection of COVID-19 by medical imaging has aroused great interest 
within the artificial intelligence community. However, to the best of our knowledge, to 
date there are no published studies that use artificial intelligence to improve the diagno-
sis of COVID-19 PE through Q-SPECT/CT.

An artificial intelligence system to support physicians in the diagnosis of PE 
through Q-SPECT/CT would improve the specificity of PE diagnosis in cases of asso-
ciated pneumonia and reduce the reading time of the test, and for this reason, we 
have decided to apply radiomics and artificial intelligence techniques as an innovative 
alternative that responds to the requirement of an alternative test to the CTPA to rule 
out PE during the COVID-19 pandemic.

Existing methods addressing the diagnosis of COVID-19 pathologies focus mainly 
on the detection of COVID-19 pneumonia from an analysis performed through a sin-
gle modality (either X-ray or CT scans). Most methods are deep learning approaches 
based on well-known architectures that have proved successful in other fields (like 
ResNet [24], U-net [25] or EfficientNet [26], among others) that have been adapted 
and fine-tuned for managing COVID-19 diagnosis.
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Regardless of the imaging modality and architecture, the usual approach is to use a 
classification scheme that provides a single diagnosis for each image/scan [27, 28]. 
Patients with severe COVID-19 have several lung image patterns at the same time. A 
main challenge is the accurate localization inside the lungs of pathologies affecting a 
small percentage of lung tissue (as is the case with PE).

The objective of the present work is to seek the best radiomic signature to detect image 
patterns of PE or pneumonia in patients with COVID-19 based only on Q-SPECT/CT. 
For that purpose, we present a combined approach that uses radiomic characteristics 
extracted from each scan and a classification network trained from scratch based on an 
analysis of a segmented region of interest (local analysis) of the images.

Material and methods
Patient recruitment

Patients were recruited from Hospital Universitari Germans Trias i Pujol (HUGTiP), 
a university referral hospital covering an area of 800,000 inhabitants in Barcelona 
(Spain).

The Q-SPECT/CT protocol is prospective and all COVID-19 patients (positive 
RT-PCR) were collected prospectively in 2020 (April to September 2020). In order 
to have a control group of patients not affected by COVID-19, we reviewed patients 
from a 2018 database (January–December 2018) and selected a retrospective group to 
ensure that they had not presented with a COVID-19 infection.

The cases were divided into two subsets, one of which was used to perform the algo-
rithm training (training group) and the other to perform the validation (test group).

The study’s exclusion criteria were the patient’s refusal to participate in the study, 
and the detection of severe alterations in the patients’ lungs caused by other patholo-
gies unrelated to COVID-19 infection such as severe emphysema, bullae or interstitial 
lung diseases.

This study was performed in accordance with the principles of the Declaration of 
Helsinki. The research protocol was approved by the regional ethics committee (Eth-
ics Committee for Clinical Research of Germans Trias i Pujol University Hospital), 
with the reference PI-20–161, and subjects gave their written informed consent.

Demographics

The total number of patients included was 61, from which two cases were discarded 
due to technical failures in the image acquisition process or to the presence of severe 
abnormalities in the patients’ lungs caused by pathologies other than COVID-19.

Thus, the resulting database contained data from 59 patients, 20 in the train-
ing group (4,927 sets of samples of three types of image patterns) and 39 in the test 
group (4,410 sets of samples of three types of image patterns). In the training group, 
COVID-19 infection corresponded to 45% of the cases and to 51.28% in the test 
group. The demographic characteristics of each group are given in Table 1.
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Image data acquisition

A perfusion single-photon emission computed tomography/computed tomogra-
phy (Q-SPECT/CT) based on the intravenous administration of 6  mCi (222  MBq) 
of 99mCt-macroaggregates of human albumin (99mCt-MAA) was acquired for each 
patient, with the subsequent acquisition of a tomo-scintigraphy (SPECT) and a CT in 
two hybrid devices indistinctly: a Symbia T2 Gamma camera (brand Siemens, based 
in Munich, Germany) and a Discovery NM/CT 670 ES Gamma camera (brand Gen-
eral Electric, based in Boston, Massachusetts, US).

The acquisition parameters were the following. The SPECT was obtained with a cir-
cular orbit with a 360º arc, 128 × 128 matrix, zoom 1, 140 keV photopeak, obtaining 
90 images of eight seconds per image. The acquired CTs used 120  kV, 50–350  mA, 
with a slice thickness and interval of 1.25 mm (General Electric) and 3 mm (Siemens). 
With reconstructions of B41S, B80S, B08 and 1 soft, recon 2 lung, respectively, for CT 
and three-dimensional reconstruction and the format with attenuation correction for 
scintigraphy were used, 512 × 512 matrix.

Ventilation lung scintigraphy was not allowed due to the risk of COVID-19 cross-
contamination, and ventilation alterations were therefore determined only by CT 
scans.

The images were extracted from PACS in DICOM format and were anonymized to 
guarantee the confidentiality of the data.

All the CT images obtained for the Q-SPECT/TC were reviewed by a pulmonolo-
gist, nuclear medicine physician or radiologist with more than seven-year experience, 
and their opinion of the expert clinicians was considered the gold standard. These 
experts segmented areas of healthy lung, PE or pneumonia in Q-SPECT/CT images 
from each patient using in-house software. For each patient scan, an expert anno-
tated 2D regions containing pixels of one of the target tissues (healthy lungs, TEP or 
pneumonia). In the cases with COVID-19 pneumonia and PE, we selected and noted 
areas in which only one of the image patterns existed. 2D regions were identified by a 
single reader. The average number of 2D ROIs annotated for each patient was 25. The 
number of pixels of each ROI was 473.4738 on average, with a minimum of 48 and a 
maximum of 2,964.

Table 1  Demographic data–patients

* Extra categories: areas with abnormal CT and low perfusion; black background (areas with no tissue uptake); body tissue 
(areas of the body not belonging to the lungs)
†  All cases registered with Pneumonia + PE were cases with COVID-19

Training set Test set

Patients (n) 20 39

Age (average, years, SD) 60 68

Gender female, n (%) 12 (60%) 18 (46.15%)

COVID-19, n (%) 9 (45%) 20 (51.28%)

Pneumonia (n) 4 9

Pneumonia + PE (n) † 3 10

PE (n) 4 10

Healthy lungs 6 10

Extra categories* 3 0
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Radiomic features were computed pixel-wise using the values of neighboring pixels 
contained in windows centered at each pixel in the 2D region. Each pixel in the 2D 
region such that a window of side equal to sze (in our case 3, 5 pixels) that is con-
tained in the region is a sample to be used for either training or test. The analysis was 
performed upon these multiple samples and not on the final diagnosis of the patient. 
Since the number of samples is given by the pixels whose window is contained in 
the annotated ROIs, we have a different number of samples for each window size. In 
order to perform the statistical analysis, the data obtained for windows of size 3 × 3 
pixels was resampled to match the samples obtained for the windows of size 5 × 5 pix-
els. The training group had 4,927 image pattern samples (2,096 healthy lung patterns, 
1,204 pulmonary embolism patterns and 1,627 pneumonia patterns), while the test 
group had 4,410 (2.442 healthy lung patterns, 597 pulmonary embolism patterns and 
1,371 pneumonia patterns) (Fig. 1).

Image processing

Since the final diagnosis requires a combination of information from both the 
SPECT and CT scans, the first step consists of the registration of the two volumes in 
order to fuse both image modalities. In order to register volumes, first SPECT vol-
umes were resized to match the same number of CT slices using HOROS, an open-
source medical image viewer (Horos Project). Then, we used an affine unimodal [29] 

Fig. 1  Illustrative flowchart of the stages of the system pipeline
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transformation to register a segmentation of the lungs in CT and SPECT resized 
volumes. By registering binary masks instead of intensity volumes, we can account 
for multimodal differences using the mean squared error as a cost function and thus 
minimize the risk of premature convergence associated with multimodal approaches 
using mutual information. The computed transformation was applied to intensity 
SPECT volumes to register them to CT scans.

The segmentation of lungs was computed using thresholding and morphological oper-
ations. CT lungs were selected as the largest connected component of the voxels with an 
intensity between 950 and -300 Hounsfield Units. The thresholded volumes undergo a 
post-processing step called morphological closing [30] that fills in interior holes of the 
lung mask and small concave entries at the boundary of the lung mask. The size and 
shape of the filled mask is given by a binary volume representing a 3D shape called a 
structuring element. In our case, the structuring element is a sphere of radius 5 (also 
refer to as size among the image processing community).

For the lung segmentation of the perfusion volumes, a threshold of intensity of 20 was 
selected. An intensity of 20 is over the SPECT values which reflect the amount of radio-
active tracer absorbed by the lung tissue which reflects how blood is flowing within the 
lungs. Given that background pixels do not have a contrast agent, their baseline value is 
very low. Thus, voxels with an intensity over 20 were considered to be part of the lung.

The quality and interpretability of segmentations was performed visually according to 
the quality of the registered volumes.

In order to account for differences in SPECT intensities due to variations in contrast 
agent concentrations, SPECT scans were normalized using two different approaches. 
The normalization step was performed after the registration of volumes.

The first approach normalized SPECT values in the range [0, 1], using the maximum 
and minimum values of the intensities of each scan:

SPECT might have spots of high concentration of the agent that are not associated 
with a higher lung perfusion. Those artifacts associated with the technique itself deviate 
maximum intensity values and introduce a drop in the intensity of normalized volumes 
not related to a drop in perfusion. In order to alleviate the impact of this artifact in the 
predictions of PE, we have also applied a normalization based on the superior quantile of 
SPECT intensity values:

For percentile(SPECT, 99) , denoting the percentile leaving a right probability of 0.01 in 
the distribution of SPECT intensity values.

Intelligent radiomics for the detection of pulmonary embolism

The proposed radiomic system analyzes the intensity values of CT and SPECT volumes 
for each voxel in order to discriminate the three clinically relevant types of image pat-
terns defined by pulmonologist and nuclear medicine experts:

SPECT−min(SPECT)

max(SPECT)−min(SPECT)

SPECT−min(SPECT)

percentile(SPECT, 99)−min(SPECT)
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1. Control: healthy—normal CT and SPECT.
2. Pulmonary Embolism (PE): normal CT with a localized perfusion defect in the 
SPECT.
3. Pneumonia: abnormal CT with normal perfusion or with an atypical perfusion 
defect that does not meet PE criteria.

In order to avoid overfitting, three extra categories were added:

4. Areas with abnormal CT and low perfusion.
5. Black Background: areas with no tissue uptake.
6. Body Tissue: areas of the body not belonging to the lungs.

Our intelligent radiomic system was applied in three main steps. Firstly, scans were 
preprocessed as described in the “Image processing” section. Secondly, radiomic fea-
tures selected according to their reproducibility were extracted from the registered vol-
umes to define a radiomic feature space. Finally, a machine learning method was used 
to disseminate each value of the feature space between the four types of image patterns.

The radiomic features are a subset of PyRadiomics [31], an open-source python pack-
age for the extraction of Radiomic features from medical imaging volumes. PyRadi-
omics features include shape features, first-order features, and textural features (Gray 
Level Co-occurrence Matrix (GLCM), Gray Level Size Zone (GLSZM), Gray Level Run 
Length Matrix (GLRLM) and Gray Level Dependency Matrix (GLDM)) describing sev-
eral aspects of the lesion. The subset was selected according to reproducibility against 
different image acquisition conditions and interobserver variability in lesion identifica-
tion. Reproducibility is based on the correlation of feature values obtained from data 
collected using different conditions and settings [32]. The selected set of (17) features are 
given in Table 2.

Radiomic features are computed pixel-wise using the values of pixels in the neighbor-
hood of each pixel. These neighborhoods are squared areas (called windows) of side 
equal to sze (in our case 3, 5) pixels centered at each pixel of the annotated ROI. That is, 
for each pixel of coordinates (i0,j0) a window, w(i0,j0), of side sze is given by the pixels of 
coordinates (i,j) that satisfy:

w(i0,j0): = ROI(i,j), for i Î{i0-sze, i0-sze + 1, …, i0 + sze-1, i0 + sze}, j Î{j0-sze, j0-sze + 1, 
…, j0 + sze-1, j0 + sze}.

being ROI(i,j) the image area annotated by the expert. Given the formulation of the 
window used to compute radiomic features, we observe that radiomic features could 

Table 2  Features selected according to reproducibility

First order Texture GLCM Texture GLDM Texture LGRM

Entropy
TotalEnergy
Uniformity

Id
Idm
JoinEnergy
MaximumProbability

Dependence Non-Uniformity 
Normalized
Dependence Variance
Large Dependence Emphasis

Gray Level Non-Uniformity Normal‑
ized
Run Length Non-Uniformity Nor‑
malized
Run Percentage
Short Run Emphasis
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only be computed for pixels such that its neighboring window pixels are also inside the 
ROI. We call this set of pixels samples used for both training and testing.

The radiomic features computed for each sample, using the values of the neighboring 
pixels contained in a square window of side sze are the input for a fully connected net-
work which combines them in a multi-classification approach. The input for the network 
is the concatenation of the radiomic features extracted for the two pre-processed scans. 
The network has two fully connected layers with 128 neurons linked with one Relu layer 
and an output classification layer with sigmoid activation. To account for unbalancing in 
the training data, the loss function is the weighted cross-entropy given by:

where Lossi is the cross-entropy loss for the i-th class and the weights, wi are given by 
the inverse of the class frequency, wi, normalized to sum one:

for     ρi = NSampi/NSamp , NSampi andNSampbeing , respectively, the number of 
samples of the i-th class and the total number of samples.

Experiments

In order to assess the impact of the size of the window used to compute radiomic fea-
tures, we trained two different model with features extracted using windows of size, 
sze x sze = 3 × 3 and sze x sze = 5 × 5, to compute the pyradiomics texture feature in 
the neighborhood of each sample. To analyze the effect of the normalization of SPECT 
scans, a different model was trained with data normalized using the maximum and per-
centile criteria for each window size. A total number of four models were trained using 
the configurations reported in Table 3. From now on, models will be referred to using 
the labels given in Table 3.

Two different experiments were carried out:

1.	 Training and Selection of Models. A leave-1-out validation on a training set of sam-
ples from patients to select the best model for the detection of PE and pneumonia.

Loss =

i

wiLossi

wi =
ρi∑
j ρj

Table 3  Configuration of the different radiomic models

SPECT Normalization

Window size Max Percentile

3 × 3 ModelMx3: SPECT normalization based on 
maximum values with 3 × 3 windows

ModelPrct3: SPECT nor‑
malization based on upper 
percentile values with 3 × 3 
windows

5 × 5 ModelMx5: SPECT normalization based on 
maximum values with 5 × 5 windows

ModelPrct5: SPECT nor‑
malization based on upper 
percentile values with 5 × 5 
windows
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2.	 Testing and Assessment of Models Reproducibility. Validation of the best models on 
an independent set of samples from test patients to assess the reproducibility of 
results

Statistical analysis

All calculations were conducted in version 15 of STATA. Sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), area under the curve (AUC) 
and diagnostic accuracy were calculated using the dt command. The equality of ROC 
areas was tested using the rocgold command.  This command independently tests the 
equality of the ROC area of each of several test modalities against a “gold standard” ROC 
curve. For each comparison, rocgold reports the raw and the Bonferroni-adjusted signifi-
cance probability. A p-value of 0.05 was considered significant. The computation of the 
power and effect size of the tests was conducted using G*Power 3.1.9.2.

Results
Training and selection of models

Table 4 provides a statistical summary of the AUC score for the training set used for the 
selection of models. For each radiomic model (rows) and diagnoses (columns), we report 
the AUC, its 95% confidence intervals (CI) and p-values for the comparison of AUC. The 
P-value was adjusted with the Bonferroni correction. The blank cells with * correspond 
to the best AUC used to make the comparison.

For the diagnosis of PE, models normalized using the upper percentile performed 
significantly better (with AUC > 0.9) than those normalized using maximum values, 
with ModelPrct3 performing significantly better than ModelPrct5. For the diagno-
sis of pneumonia, models using the upper percentile normalization also performed 
significantly better (with AUC > 0.9). In this case, although the analysis detected that 
ModelPrct3 AUC was significantly higher than ModelPrct5 AUC, the analysis of CIs 

Table 4  AUC statistics for the leave-1-out training for model selection

Pulmonary Embolism Pneumonia Healthy Lung

Radiomic 
model

AUC​ 95% CI P-value* AUC​ 95% CI P-value* AUC​ 95% CI P-value

ModelPrct3 0.919 0.909–0.929 * 0.922 0.914–0.931 * 0.971 0.966–0.977 0.09

ModelPrct5 0.902 0.892–0.913 0.028 0.905 0.896–0.914  < 0.001 0.978 0.973–0.983 *

ModelMx3 0.835 0.822–0.848  < 0.001 0.825 0.814–0.837  < 0.001 0.928 0.920–0.937  < 0.001

ModelMx5 0.823 0.810–0.836  < 0.001 0.818 0.806–0.830  < 0.001 0.935 0.928–0.943  < 0.001

Table 5  Sensitivity, specificity, PPV and NPV statistics for the leave-1-out training of the best AUC 
model

Pulmonary embolism Pneumonia Healthy lung

Sensitivity 89.6% (95% CI 87.7–91.2) 92.5% (95% CI 91.1–93.7) 98.1% (95% CI 97.3–98.7)

Specificity 95.8% (95% CI 92.5–96.4) 94.2% (95% CI 93.4–94.9) 97.5% (95% CI 97.0–98.0)

Positive predictive value 87.0% (95% CI 85.0–88.8) 88.0% (95% CI 86.3–89.4) 95.2% (95% CI 94.1–96.1)

Negative predictive value 96.7% (95% CI 96.1–97.2) 96.5% (95% CI 95.8–97.1) 99.0% (95% CI 98.6–99.3)
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suggests that this difference is not very large. In fact, according to the effect size asso-
ciated with the sample size of the training set, this difference is at most 0.05. For both 
PE and pneumonia diagnosis, the AUC of ModelPrct3 was above 0.91, which confers 
percentile-based models a high diagnostic value. Regarding healthy lung, models nor-
malized using the upper percentile performed better (AUC > 0.97), with no significant 
differences between them.

Table 5 reports the sensitivity, specificity, positive predictive value, and negative pre-
dictive value for ModelPrct3, and we also report the average values and 95% confidence 
intervals (CI) of each score. Sensitivity for PE, pneumonia and healthy lung were 90% or 
higher with a PPV of over 87%. Specificity and NPV were over 94% and 96%, respectively 
(Figs. 2, 3, 4).

Fig. 3  Pneumonia ROC curve in the training set

Fig. 2  Pulmonary embolism ROC curve in the training set
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Test group

The AUC for ModelPrct3 in the test group is 0.922 (95% CI 0.090–0.935) for PE, 0.906 
(95% CI 0.896–0.916) for pneumonia and 0.908 (95% CI 0.900–0.917) for healthy 
lung, which proves that the model predictions are reproducible.

Table 6 shows the sensitivity, specificity, positive predictive value and negative pre-
dictive value for ModelPrct3, and we also report the average values and 95% confi-
dence intervals (CI) of each score. Values for pneumonia diagnosis are almost the 
same as for the training set. In the case of healthy lung, although there is a decrease in 
the metrics in relation to training, the values are still around 90%. Values for PE diag-
nosis are also comparable to those of the training set, except for sensitivity, which is 
lower (75%), while specificity reaches 98% (Figs. 5, 6, 7).

To further verify the diagnostic value of the proposed method, we aggregated the 
results obtained at pixel sample level to obtain a diagnosis for each annotated region 
(corresponding to a specific pulmonary lesion or region of interest). The final diag-
nosis is given by the most frequent image pattern on the diagnostic target: PE/noPE, 
Pneumonia/No Pneumonia and Healthy/not-Healthy.

Table 7 reports the sensitivity, specificity, positive predictive value, and negative pre-
dictive value for ModelPrct3, and we also report the average values and 95% confidence 
intervals (CI) of each score. The metrics increase for all image patterns. In particular, 
values for PE sensitivity increase to 85%, while keeping a high specificity very close to 
90%. For the detection of healthy lung, we have a score of 100% for all metrics.

Fig. 4  Healthy lung ROC curve in the training set

Table 6  Sensitivity, specificity, PPV and NPV statistics for the test set of ModelPrct3

Pulmonary embolism Pneumonia Healthy lung

Sensitivity 75.1% (95% CI 71.8–78.2) 93.3% (95% CI 91.8–94.6) 92.2% (95% CI 91.0–93.2)

Specificity 98.2% (95% CI 97.7–98.6) 93.0% (95% CI 92.1–93.9) 89.3% (95% CI 87.9–90.6)

Positive predictive value 88.9% (95% CI 86.2–91.2) 83.9% (95% CI 81.8–85.7) 91.3% (95% CI:90.1–92.3)

Negative predictive value 95.4% (95% CI 94.7–96.0) 97.3% (95% CI 92.3–93.8) 90.4% (95% CI89.0–91.6)
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Discussion
The diagnosis of pulmonary embolism in COVID-19 patients is challenging. In this 
sense, radiomics is a tool that could help the physician in the diagnosis of PE and pneu-
monia, since it is able to detect different image patterns obtained by Q-SPECT/CT, with-
out the need to perform the ventilation technique.

To the best of the authors’ knowledge, there are no published studies that apply artifi-
cial intelligence to ventilation/perfusion SPECT/CT or Q-SPECT/CT. This is an experi-
mental study and is a first step toward a complete intelligent radiological system capable 
of diagnosing PE and pneumonia image patterns only by Q-SPECT/CT.

Fig. 5  Pulmonary embolism ROC curve in the test set

Fig. 6  Pneumonia ROC curve in the test set
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Our algorithm uses images obtained by Q-SPECT/CT and have proved to be useful to 
detect both PE and pneumonia image patterns. The results obtained for a training set of 
20 patients using leave-1-out sampling show that the size of the window used to com-
pute local radiomic features is not a critical parameter. In contrast, the normalization of 
the PE needed to compensate different concentrations of the contrast agent has a signifi-
cant impact on the performance of the models, with a normalization based on percen-
tiles being particularly recommended. The results obtained for an independent set of 39 
test patients show the reproducibility of results and a high diagnosis capability and rule 
out for both PE and pneumonia. The sensitivity and AUC for the detection of pneumo-
nia (93.3% recall and AUC = 0.906) is comparable to deep learning approaches using a 
larger number of training cases including COVNet [24] (90% recall and 0.96 AUC) and 
the early work of Zhang et  al. [33] (88% recall and 0.92 AUC). Regarding PE, in spite 
of an AUC = 0.92 in tests, the sensitivity dropped to 75%. Nevertheless, with a positive 
predictive value of over 88%, we consider that this does not invalidate the model for PE. 
Moreover, the specificity and negative predictive values reach 98% and 95%, respec-
tively, which indicates that it is an adequate technique to rule out this pathology, which 
is clinically useful. When the results obtained at the pixel sample level are aggregated 
into regions of interest, the sensitivity of the PE increases significantly to 85% but the 
specificity is lower (89.5%). Nevertheless, all metrics improve for both pneumonia and 

Table 7  Sensitivity, specificity, PPV and NPV statistics for diagnosis at lesion level

Pulmonary embolism  Pneumonia Healthy lung

Sensitivity 85.0% (95% CI 84.1–85.8) 95.0% (95% CI 93.9–95.6) 100% (95% CI 100–100)

Specificity 89.5% (95% CI 88.6–90.3) 100% (95% CI 99.1–100) 100% (95% CI 100–100)

Positive predictive value 89.5% (95% CI 88.6–90.3) 95.0% (95% CI 93.9–95.6) 100% (95% CI 100–100)

Negative predictive value 85.0% (95% CI 84.2–85.8) 100% (95% CI 99.1–100) 100% (95% CI 100–100)

Fig. 7  Healthy lung ROC curve in the test set
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healthy lung. These results suggest that aggregating the results into regions of interest 
provides the clinician with a better tool for diagnosing PE.

In relation to the working approach, an artificial intelligence diagnosis based on the 
analysis of whole images/scans might only detect the main pathology while ignor-
ing secondary ones which are also clinically relevant. For this reason, the local analysis 
approach adopted by this study is important. Another issue is the clinical interpretability 
of results. Although interpretability can be improved with the use of a heatmap (such 
as gradient-weighted class activation mapping [34]), deep learning approaches are still 
difficult to interpret and lack the ability to accurately locate the injured tissue. Another 
recently identified concern [35] is the sensitivity of models to the quality and quantity 
of the cases used for training and testing, which can lead to overestimating the results. 
Deep learning methods require a large number of annotated images for training. This is 
not a major issue in most fields of application, but, unfortunately, there is a limited avail-
ability of images in the case of COVID-19 patients. Moreover, it is suspected that its pro-
tocol of acquisition may introduce bias in models [36]. In particular, it has been reported 
[37] that the high-performance of machine learning methods could be attributed mainly 
to the presence of image patterns (such as corner labels or instrumentation), device 
acquisition parameters or population factors (such as sex or age). If these characteristics 
are specific to some of the classes (groups of patients), models may learn to recognize 
these biases in the data set, rather than focusing on the pathologies they are trying to 
detect. This bias, of course, limits the generalization and reproducibility of results when 
tested on data sets with a different origin from the ones used in training and testing. We 
believe that adopting a local approach that analyzes small regions rather than the entire 
scan could minimize the need for a large number of annotated cases, as well as reducing 
the impact of image bias.

This study has some limitations. First, the local identification of image patterns must 
be added for each case (similar to [24]) to produce a multiple clinical diagnosis and to 
be able to produce a global diagnosis. Second, although the training group and the test 
groups are different, the models must be tested in cases originating from other hospi-
tals to fully validate the generalizability and clinical applicability of the models. Third, 
we have excluded cases with emphysema and pulmonary fibrosis due to the difficulties 
involved in interpreting Q-SPECT/CT without ventilation, and for future studies we 
will include this type of cases in order to be able to make a useful algorithm in real life. 
Fourth, despite the fact that there are many samples analyzed, the number of patients 
is small, so for future studies we must have a larger number of patients that allows us 
to consolidate our algorithm. Finally, a model based on 2D radiomics, though similar 
to a histological analysis of the lesion, might not reflect 3D aspects of the lesion, like 
the spatial distribution of tissue patterns and volumetric measures of the extent of each 
pathology. However, given that the goal is to detect the presence of either TEP or pneu-
monia, this is not a main limitation for this particular study. For the computation of the 
extension and volume of the diseased lung tissue a 3D analysis should be carried out. 
This could be done by either accumulating the presented 2D radiomics or training a 3D 
radiomic model using 3D ROIs.

The main strength of this study is the novelty of using artificial intelligence to focus 
on PE and COVID-19 pneumonia diagnosed with Q-SPECT/CT images, which may 



Page 15 of 17Baeza et al. EJNMMI Physics  2022, 9(1):84	

provide a diagnostic alternative for patients for whom CT pulmonary angiography 
(CTPA) is not capable of diagnosing PE or for when the technique is contraindicated. 
It is important to mention that it also provides a safer alternative to V-Q/SPECT-CT 
by avoiding aerosol contamination that occurs in ventilation, preventing the spread of 
diseases such as COVID-19. Although our system does not provide a global diagnosis 
of the patient, it is capable of classifying different image patterns and identifying areas 
affected by PE, as well as providing reliable information on the areas affected by pneu-
monia and healthy lung areas.

Our next step is to analyze the impact of our method on the final diagnosis of 
patients and to apply and adjust this algorithm to the current practice of V/Q-SPECT 
for PE not associated with COVID-19 and to include all types of respiratory diseases 
(emphysema, pulmonary fibrosis).

Our ultimate goal is to build a software for clinical use that can provide us with a 
diagnosis of PE and pneumonia only with an “intelligent Q-SPECT/CT” to be vali-
dated with our standard Ventilation/Perfusion-SPECT/CT. If this is achieved, venti-
lation could even be avoided, saving time and healthcare costs. This would mean a 
paradigm shift in the use of SPECT/CT for the diagnosis of these pathologies in times 
of COVID-19 or future epidemics, not only to minimize the risk of contagion by aero-
sols, but also to avoid unnecessary examinations and reduce test times.

Conclusion
In summary, a combined approach based on artificial intelligence and radiomics can 
detect areas of pneumonia and areas of pulmonary embolism using a limited amount of 
annotated data. The ability to detect different image patterns in patients with COVID-19 
encourages us to continue working to achieve a global diagnosis through a local analysis 
that allows us to develop a software for clinical use based on SPECT/CT.
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