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Abstract

Purpose: For pediatric lymphoma, quantitative FDG PET/CT imaging features such as
metabolic tumor volume (MTV) are important for prognosis and risk stratification
strategies. However, feature extraction is difficult and time-consuming in cases of
high disease burden. The purpose of this study was to fully automate the
measurement of PET imaging features in PET/CT images of pediatric lymphoma.

Methods: 18F-FDG PET/CT baseline images of 100 pediatric Hodgkin lymphoma
patients were retrospectively analyzed. Two nuclear medicine physicians identified
and segmented FDG avid disease using PET thresholding methods. Both PET and CT
images were used as inputs to a three-dimensional patch-based, multi-resolution
pathway convolutional neural network architecture, DeepMedic. The model was
trained to replicate physician segmentations using an ensemble of three networks
trained with 5-fold cross-validation. The maximum SUV (SUVmax), MTV, total lesion
glycolysis (TLG), surface-area-to-volume ratio (SA/MTV), and a measure of disease
spread (Dmaxpatient) were extracted from the model output. Pearson’s correlation
coefficient and relative percent differences were calculated between automated and
physician-extracted features.

Results: Median Dice similarity coefficient of patient contours between automated
and physician contours was 0.86 (IQR 0.78–0.91). Automated SUVmax values matched
exactly the physician determined values in 81/100 cases, with Pearson’s correlation
coefficient (R) of 0.95. Automated MTV was strongly correlated with physician MTV (R
= 0.88), though it was slightly underestimated with a median (IQR) relative difference
of − 4.3% (− 10.0–5.7%). Agreement of TLG was excellent (R = 0.94), with median
(IQR) relative difference of − 0.4% (− 5.2–7.0%). Median relative percent differences
were 6.8% (R = 0.91; IQR 1.6–4.3%) for SA/MTV, and 4.5% (R = 0.51; IQR − 7.5–40.9%)
for Dmaxpatient, which was the most difficult feature to quantify automatically.
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Conclusions: An automated method using an ensemble of multi-resolution pathway
3D CNNs was able to quantify PET imaging features of lymphoma on baseline FDG
PET/CT images with excellent agreement to reference physician PET segmentation.
Automated methods with faster throughput for PET quantitation, such as MTV and
TLG, show promise in more accessible clinical and research applications.

Keywords: Pediatric lymphoma, Convolutional neural networks, Imaging biomarkers,
PET

Introduction
Approximately 10–15% of pediatric cancers are malignant lymphomas, with about 40%

of these lymphomas being Hodgkin lymphoma (HL) [1]. Treatment options for

pediatric HL generally have favorable outcomes, with 5-, 10-, and 15-year survival rates

of 95%, 93%, and 91%, respectively [2]. Pediatric patients, however, are uniquely vulner-

able to therapeutic toxicities and their potential side effects later in life (e.g., infertility,

secondary cancers). Several studies have shown therapies can be de-escalated in early

responding pediatric HL patients, reducing the risk for long-term toxicities [3, 4]. Clin-

ical trials have incorporated patient-specific risk stratification based upon interim ther-

apy positron emission tomography (PET) response assessment, with the goal of

overcoming resistance and reducing unnecessary therapy toxicity [5]. Current 18F-fluor-

odeoxyglucose (FDG) PET response assessment for both clinical and research studies

uses a visual response assessment following a 5-point Deauville score [6]. However,

quantitative PET metrics extracted from disease on baseline FDG PET/CT images have

shown potential for accurate early risk stratification for both adult [7–12] and pediatric

[13, 14] HL patients. These metrics most commonly include maximum uptake (SUV-

max); other metrics such as metabolic tumor volume (MTV) and total lesion glycolysis

(TLG) are more involved technically.

Despite their clinical utility, the full potential of quantitative PET imaging metrics

may not be reached in both adult and pediatric lymphoma due to the difficulty of delin-

eating the entire lymphoma volume. Lymphoma can be highly heterogeneous in shape,

size, and location. In order for physicians to extract quantitative PET information from

disease, an analysis workflow can take up to 30–45 min per patient for difficult cases

[15]. For comparison, feature extraction guided by automated methods can consistently

reduce analysis times to less than 10 min per patient [15]. In addition, high rates of

inter-observer variability in detection and interpretation are attributed to both the ex-

perience of the observer and to the extent of the patient’s disease [16].

Several methods have been developed that automatically detect and segment disease

on FDG PET/CT images of adult lymphoma patients specifically [17–20] and in a large

database including adult lung cancer and lymphoma patients [21]. Reporting in these

previous studies has been limited to detection or segmentation performance (e.g., Dice

similarity coefficients) or performance of classifiers. The impact of final lymphoma seg-

mentation performance on subsequent quantitative PET feature extraction has not

been assessed. In addition, automated quantification of prognostic PET metrics has not

been assessed in pediatric lymphoma.
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The purpose of this work was to develop a fully automated method for extraction of

PET features for pediatric HL. The model was trained and tested using PET images of

pediatric HL patients acquired at multiple centers as part of a multi-center clinical

trial.

Materials and methods
Patient population

Patients included in this study were enrolled in a multi-center Children’s Oncology

Group (COG) clinical trial, AHOD0831 high-risk pediatric HL phase 3 clinical trial

(NCT01026220) using risk-adapted therapy in pediatric patients with high-risk HL [5].

Patients were located across North America and FDG PET/computed tomography

(CT) images were acquired at a variety of imaging centers. All patients were under the

age of 21 with high-risk (stage IIIB or IVB) HL. Baseline FDG PET/CT images were

gathered and transferred from IROC-Rhode Island where they were permanently ar-

chived to the University of Wisconsin-Madison. One hundred of 166 patients enrolled

on this clinical trial with good quality PET/CT images amenable for PET quantitative

analysis were selected for retrospective analysis.

Using Mirada XD (Oxford, UK) imaging software, PET images for each patient were

analyzed by one of two nuclear medicine physicians with experience and board certifi-

cation in nuclear medicine (JK and IL). Large template regions of interest (ROIs) were

placed around areas containing disease (nodal, spleen, and liver), excluding areas of

osseous/bone marrow involvement and normal physiology such as the heart. Two

thresholding segmentation methods were then applied (40% of tumor SUVmax and SUV

> 2.5) within the template ROIs for segmentation of the lymphoma disease. Final seg-

mentations, which were used for training and testing of the CNN, were generated by

taking the union of the output of the two thresholding methods. This was done to en-

sure small, low-uptake lesions that can occur next to large, high-uptake lesions were

not missed due to thresholding based on SUVmax. Small, 1-voxel islands that can occur

with thresholding algorithms were removed.

Image pre-processing

PET and CT images were resampled to a cubic voxel size (2 × 2 × 2 mm) using

linear resampling and normalized such that values inside the patient had a mean

of 0 and a variance of 1. Labels were resampled to the same voxel size using near-

est neighbor resampling. Patients were split randomly for 5-fold cross-validation (N

= 20 patients per fold).

Convolutional neural network approach

A 3D, multi-resolution pathway convolutional neural network (CNN), DeepMedic [22],

was used (Fig. 1). The DeepMedic network has 8 convolutional layers (kernel size 3 × 3

× 3) for each resolution pathway, followed by two fully connected layers implemented

as 1 × 1 × 1 convolutions and a final classification layer. Three resolution pathways

were implemented, one at a normal image resolution, and two that down-sample the

image by factors of 3 and 5 (thus increasing the receptive field by the same amount),

which allows the network to consider context in addition to fine detail. Patches of size
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25 × 25 × 25 voxels were extracted for training using class balancing of 50% of samples

centered on a positive lymphoma voxel and 50% centered on a voxel not containing

lymphoma.

DeepMedic [22] was trained for each fold of cross-validation. For each fold, 20 pa-

tients were in the training set, and the remaining 80 patients were split randomly such

that 70 patients were used for training and 10 patients for validation. An ensemble

CNN (3CNN) was created by training each model 3 times with different random initial-

izations. Training was done on NVIDIA Tesla V100 GPUs.

The output of the CNN was further processed by applying the same thresholding

scheme (union of SUV > 2.5 and SUV > 40% SUVmax) within each of the contours gen-

erated by the 3 separately trained CNNs. The intersection of the 3 contours was taken

as the final ensemble model output. As bone marrow activity was not considered in

our model, any contours containing bone (CT Hounsfield Units > 150) were excluded

from analysis.

Statistical analysis

The performance of the final 3CNN model was assessed by measuring the sensitivity,

positive predictive value (PPV), and Dice similarity coefficient (DSC) of a patient’s

contours.

From final contours, quantitative imaging metrics were extracted, including SUVmax,

total body lymphoma MTV, and TLG. Two additional quantitative features were ex-

tracted for analysis: the ratio of tumor surface area to metabolic tumor volume (SA/

MTV) and the distance between the two lesions that are farthest apart (Dmaxpatient), as

both have been shown to be independent prognostic metrics in lymphoma [23, 24]. Au-

tomated feature extraction and physician-based feature extraction were compared using

Pearson’s correlation coefficients, calculated for each extracted metric. In addition, rela-

tive percent differences were calculated and summarized with median and interquartile

range values.

Subgroup analysis was performed to see if errors in segmentation and MTV estima-

tion were influenced by certain characteristics of the subjects’ disease. Patient groups

were dichotomized by median MTV, SA/MTV, and Dmaxpatient, and differences in

DSC and MTV relative percent difference (RPD) were compared between subgroups.

Fig. 1 DeepMedic network design, adapted for lymph node detection. The number of features in all
convolutional layers was 90, 90, 110, 110, 110, 110, 130, and 130. The number of features in the two fully-
connected layers was 250. The input segment size of the downsampled pathways are set so that the
feature maps prior to the final connected layer are of equivalent size, as in [22].
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Wilcoxon rank sum tests were used to assess differences in DSC and absolute RPD of

MTV.

Results
A summary of the patient and scan characteristics is shown in Table 1. Patient ages

ranged from 5 to 21 years with a median of 15.8 years, and 40/100 were female. Scans

were acquired on nine different scanner models. Information on reconstruction settings

for the images in this study is included in the Supplemental Material.

Segmentation performance of the final model is shown in Fig. 2, plotted as a function

of different cut points of the CNN’s probabilistic output. Using p = 0.5 as the cut point,

median DSC was 0.86 (IQR 0.78–0.91). The median (IQR) for sensitivity and PPV were

0.85 (0.79–0.90) and 0.88 (0.80–0.96), respectively.

A comparison of PET metrics measured by physicians and by the model is shown in

Fig. 3. SUVmax values matched exactly in 81/100 cases, with a Pearson’s correlation co-

efficient for SUVmax of R = 0.86. Automated MTV was strongly correlated with phys-

ician MTV (R = 0.88), though the model slightly underestimated MTV with a median

(IQR) relative difference of − 4.2% (− 10–5.7%). Agreement of TLG was excellent (R =

0.94), with median (IQR) relative difference of − 0.4% (− 5.2–7.0%). Results were largely

influenced by a handful of outlier patients (Fig. 3).

Examples of the model’s performance for 9 patients, including an outlier patient with

MTV overestimation and one with MTV underestimation, are shown in Fig. 4. False-

positive contours were most commonly located in the salivary glands, tonsils, and

ureters.

For SA/MTV and disease dissemination (Dmaxpatient), the agreement between the au-

tomated measurements and the physician measurements are shown in Fig. 5. Agree-

ment for SA/MTV was much better than for Dmaxpatient, with median relative percent

differences for SA/MTV of 6.8% (R = 0.91; IQR 1.6–14.3%) and for Dmaxpatient of 4.5%

(R = 0.51; IQR − 7.5–40.9%).

The impact of using an ensemble CNN approach as opposed to a single CNN is

shown in Table 2. Performance of each of the three individual CNNs is shown and

compared to the ensemble 3CNN performance. The ensemble approach resulted in a

Table 1 Patient and scan characteristics

Sex (male/female/total) 60/40/100

Patient age at enrollment, years
Median (range)

15.8 (5.2, 21.4)

Post-injection time, min
Median (IQR)

73 (62, 82)

Injected dose, (MBq)
Median (IQR)

366.3 (270.1, 466.2)

PET/CT scanners (N = number of scans) Siemens Healthineers Biograph (N = 5)
Biograph HiRes (N = 12)
Biograph TruPoint (N = 11)

GE Medical Systems Discover 690 (N = 5)
Discovery LS (N = 13)
Discovery RX (N = 3)
Discovery ST/STE (N = 49)
Advance (N = 1)

Philips Healthcare Gemini TF TOF 64 (N = 1)
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large improvement on SUVmax quantification, but did not have a large impact on the

other quantitative metrics.

Results of the subgroup analysis are shown in Fig. 6. The accuracy of the automated

MTV measurements was not significantly different between groups with high MTV

and with low MTV. However, subjects with larger MTV had a significantly better DSC

than those with smaller MTV (p = 0.03). In addition, lesions with smaller SA/MTV

(i.e., more massive tumors) had significantly improved DSC compared to lesions with

higher SA/MTV (i.e., more fragmented, smaller tumors, p = 0.03). A large spread in

model performance was found across all subpopulations.

Discussion
In this study, an ensemble of 3D convolutional neural networks was implemented for

an automated assessment of 100 pediatric HL patients. Quantitative imaging features

that have been shown to be prognostic on baseline PET images in HL (SUVmax, MTV,

TLG, and SA/MTV ratio) were able to be automatically extracted with excellent agree-

ment with physician derived features. The implementation of an ensemble CNN

showed significant improvements to using only a single CNN.

Our model-based measurement of volumetric quantitative PET metrics strongly

agreed with physician-based quantification. This excellent performance was partially

due to how physician segmentations were acquired. Because physicians applied

PET SUV-based thresholding to label disease as opposed to manual contouring, we

were able to apply those same thresholds within the CNN-detected contours,

resulting in high Dice coefficients (median of 0.85, mean ± std of 0.81 ± 0.14). For

comparison, a recent automated method for segmentation of lymphoma using 2D

CNNs found mean ± std of DSC of 0.73 ± 0.06 when compared to manual phys-

ician contours in 80 adult patients [19]. Another method based on clustering of

Fig. 2 Segmentation performance as a function of baseline 3CNN probability threshold. Solid lines show
median value across the 100 patients, shaded areas show interquartile range
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supervoxels found a DSC of 0.74 ± 0.08 in 48 adult patients based on physician

contours using 41% SUVmax thresholding [25].

A metric describing the distance between the two lesions that are furthest apart,

Dmaxpatient, was not easily replicated using automated contours in this study. This was

primarily due to the model placing small false-positive regions in the salivary glands,

Fig. 3 Comparison of physician-based and automatically extracted features: SUVmax (a), MTV (b), and TLG
(c). Pearson correlation coefficients are shown in the top left corner of each plot, with unity lines shown
in cyan
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tonsils, and ureters. This poor performance has implications for the use of a fully auto-

mated method without physician adjudication for staging of lymphoma, as staging con-

siders whether disease is located on both sides of the diaphragm. As patients in this

study were all high risk, stage III–IV, the majority of patients had disease on both sides

of the diaphragm. It also illustrates that some imaging metrics are much more sensitive

to full automation than others. For example, MTV is hardly affected when the model

mistakenly contours very small benign regions, whereas these small false-positives can

have a large impact on metrics like Dmaxpatient or possibly staging.

The use of an ensemble CNN as opposed to an individual CNN was found to

produce only moderate improvements for quantification of volume-based metrics

(MTV and TLG). However, the ensemble model substantially improved measure-

ments of SUVmax. This was because the ensemble CNN reduced false-positives by

ensuring all three CNNs positively identified each region. As the majority of false-

positives were located in areas of high FDG uptake (ureter, salivary gland, tonsil),

the reduction of false-positives had a significant impact on SUVmax quantification.

Because the false-positives were typically small, the ensemble had only a minor im-

pact on the other PET imaging metrics.

Consistent performance of MTV quantification was found across different subgroups

of patients. However, significantly better performance in DSC was achieved in larger

Fig. 4 Example segmentation results of the physician contours (green) and automated method (magenta).
Two examples of outlier are shown in the middle row: one for which MTV was largely overestimated
(middle row, middle column) and one for which widespread liver disease was missed (middle row, right
column). Units for SUVmax are in g/ml, and for MTV are in cm3, and values were extracted from
physician contours
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lesions (MTV > 487 cm3) and lesions with a low surface-area-to-volume ratio (SA/

MTV < 2.4 cm−1). These significant differences in DSC across MTV are not surprising,

as in general a high DSC value is easier to achieve in larger volumes. In addition, dis-

ease with a low SA/MTV are larger, more massive lesions, and are easier to contour

with a high DSC value compared to smaller, more fragmented disease. More patients

are needed to ensure this trend remains across a wider variety of disease types.

The main limitation of this study is that ground-truth contours were obtained from

only a single physician using PET SUV-based thresholding techniques. This prevents

an analysis of interphysician variability in labeling, although this interphysician variabil-

ity is expected to be somewhat low given that PET SUV-based thresholding was used

to define tumor boundaries. The use of thresholding as opposed to manual segmenta-

tion results in better repeatability across observers, but its use remains controversial

due to its many limitations. This study was limited to high-risk stage IIIB and IVB

pediatric HL patients. Similar results are expected for adult lymphoma populations with

high disease burden [20]; however, it is unknown how this approach would perform in

patients with a low disease burden. Lastly, a large number of PET/CT scanners from

various institutions were used in this study, many of which were older scanner models.

Thus, while the model is expected to better generalize than models that are trained

using data from a single scanner or institution, it is unclear how accurate the model

Fig. 5 Comparison of SA/MTV (left) and dissemination of lesions (right) on baseline imaging between
automated and physician-based contours. Pearson’s correlation coefficients are shown in top left of
each plot

Table 2 Impact of using an ensemble of CNNs on quantification for the pediatric lymphoma
population. Shown are results for SUVmax, MTV, and TLG as summarized by Pearson’s correlation
coefficient, R, and the relative percent difference when compared to physician measurements

SUVmax MTV TLG

Method R Cases incorrect
(of 100)

R RPD
Median [IQR]

R RPD
Median [IQR]

1st CNN
initialization

0.73 24 0.89 − 3.5
[− 11.4, 4.2]

0.95 0.4
[− 5.2, 7.7]

2nd CNN
initialization

0.74 25 0.87 − 4
[− 11.7, 3.9]

0.94 − 0.1
[− 5.1, 7]

3rd CNN
initialization

0.59 24 0.89 − 3.8
[− 12.4, 5.3]

0.95 0
[− 6.7, 7.6]

Ensemble CNN 0.86 19 0.88 − 4.2
[− 10, 5.7]

0.94 − 0.4
[− 5.2, 7]
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would perform on images acquired with new scanner models without the inclusion of

images acquired on new scanner models during training.

Conclusion
A fully automated, 3D CNN-based method of lymphoma identification and quantita-

tion in PET/CT images showed good agreement with physician labels. Overall, these

techniques show promise in standardizing and improving lymphoma patient care, while

also expanding the potential of quantitative PET imaging in lymphoma.

Fig. 6 Subgroup analysis of the model’s segmentation and quantification performance. Disease was
dichotomized by MTV (left), surface-area-to-volume ratio (SA/MTV, center), and dissemination of disease
(Dmaxpatient, right) based on median values. Note plots are cropped, concealing an outlier at approximately
200% MTV RPD, for better visualization. Histograms in the top row show the spread of characteristics and
are colored by median values
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