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Abstract: Absolute quantification of radiotracer distribution using SPECT/CT imaging
is of great importance for dosimetry aimed at personalized radionuclide precision
treatment. However, its accuracy depends on many factors. Using phantom
measurements, this multi-vendor and multi-center study evaluates the quantitative
accuracy and inter-system variability of various SPECT/CT systems as well as the
effect of patient size, processing software and reconstruction algorithms on recovery
coefficients (RC).

Methods: Five SPECT/CT systems were included: Discovery™ NM/CT 670 Pro (GE
Healthcare), Precedence™ 6 (Philips Healthcare), Symbia Intevo™, and Symbia™ T16
(twice) (Siemens Healthineers). Three phantoms were used based on the NEMA IEC
body phantom without lung insert simulating body mass indexes (BMI) of 25, 28,
and 47 kg/m2. Six spheres (0.5–26.5 mL) and background were filled with 0.1 and
0.01 MBq/mL 99mTc-pertechnetate, respectively. Volumes of interest (VOI) of spheres
were obtained by a region growing technique using a 50% threshold of the
maximum voxel value corrected for background activity. RC, defined as imaged
activity concentration divided by actual activity concentration, were determined for
maximum (RCmax) and mean voxel value (RCmean) in the VOI for each sphere
diameter. Inter-system variability was expressed as median absolute deviation (MAD)
of RC. Acquisition settings were standardized. Images were reconstructed using
vendor-specific 3D iterative reconstruction algorithms with institute-specific settings
used in clinical practice and processed using a standardized, in-house developed
processing tool based on the SimpleITK framework. Additionally, all data were
reconstructed with a vendor-neutral reconstruction algorithm (Hybrid Recon™;
Hermes Medical Solutions).

Results: RC decreased with decreasing sphere diameter for each system. Inter-
system variability (MAD) was 16 and 17% for RCmean and RCmax, respectively.
Standardized reconstruction decreased this variability to 4 and 5%. High BMI
hampers quantification of small lesions (< 10 ml).

Conclusion: Absolute SPECT quantification in a multi-center and multi-vendor
setting is feasible, especially when reconstruction protocols are standardized, paving
the way for a standard for absolute quantitative SPECT.
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Introduction
Accurate absolute quantification of radiotracer distribution is essential for dosimetry

aimed at personalized radionuclide therapy and may improve prediction of therapy

response, prevention of toxicity effects, and treatment follow-up [1, 2]. Both positron

emission tomography (PET) and single-photon emission computed tomography

(SPECT) hold the promise for absolute radioactivity quantification. However, for

SPECT, quantification is considered less straightforward [3, 4] since its accuracy

depends on a variety of factors, including the necessary use of a collimator, the varying

detector trajectory, and the need for more complicated scatter correction and attenu-

ation correction than in PET [4]. Furthermore, quantification is influenced by both the

reconstruction algorithm and settings. Recent developments in corrections for photon

attenuation and scatter, collimator modeling and 3D reconstruction, e.g., by including

resolution recovery and noise regulation, have improved reconstruction techniques,

thereby enabling absolute SPECT quantification [5]. The addition of an integrated com-

puted tomography (CT) system not only provides an anatomical reference but enables

accurate attenuation and scatter correction as well, improving quantification [6]. Now-

adays, combined SPECT/CT systems have become standard clinical practice.

Standardization of protocols in such a way that quantitative results can be reliably

compared between systems requires more insight in their quantitative accuracy and

performance. For PET/CT, differences in absolute quantification of various systems

have been extensively characterized through the European Association of Nuclear

Medicine initiative of EANM Research Ltd. (EARL). As part of this initiative, quantifi-

cation of the most widely used PET radiotracer, 18F-fluorodeoxyglucose (18F-FDG), has

been standardized in a multi-center setting through an accreditation program [7, 8].

Until date, no similar efforts for SPECT/CT have been carried out, which hampers

multi-center research trials involving absolute SPECT quantification, especially those

aimed towards dosimetry. The requirements on quantification for dosimetry are

described in MIRD Pamphlet No. 23 [9]. With the advent of, for example, 177Lu-PSMA

therapy [10–13], it is expected that dosimetry will play a pivotal role for reliable deter-

mination of dose response relationships. But also our understanding of biomarker stud-

ies and already well-established radionuclide therapies in thyroid cancer [14, 15] or

neuroendocrine tumors [16–20] may profit from optimized quantitative SPECT

imaging for sophisticated dosimetry. In addition, quantitative measurements are in-

creasingly used in diagnosis or disease monitoring [21]. Several studies investigated the

quantitative performance of SPECT for a variety of radionuclides, including

technetium-99m (99mTc) [22, 23], indium-111 (111In) [24–26], iodine-131 (131I) [27],

lutetium-177 (177Lu) [28], yttrium-90 (90Y) [29], or a combination of these [30, 31].

However, comparing these results of absolute quantification may be difficult as they

were obtained on different SPECT/CT systems. Seret et al. [32] compared four SPECT/

CT systems for their quantitative capabilities and found that for objects which dimen-

sions exceeded the SPECT spatial resolution several times, quantification was possible

within a 10% error. For smaller structures, larger errors were observed necessitating

partial volume effect correction. Furthermore, reconstruction artifacts degraded the

accuracy of quantification. Hughes and colleagues compared image quality [33] of three

SPECT/CT systems for cardiac applications. They showed that these systems

performed differently in terms of quantitative accuracy, contrast, signal-to-noise, and
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uniformity. In a different study [34] in which they compared the same three SPECT/

CT systems, they showed that image resolution is very much dependent on the recon-

struction algorithm. In recent years, various SPECT/CT and software vendors have

responded to the increasing need for SPECT quantification and now commercially offer

software packages for quantification of several radionuclides including 99mTc, 111In,
131I, and 177Lu [35–38].

The aim of this study is to compare absolute quantification for state-of-the-art

SPECT/CT systems from different vendors at different imaging centers for 99mTc.

Multiple quantitative reconstruction algorithms that are currently commercially avail-

able are included in the comparison. The quantitative accuracy and inter-system

variability of recovery coefficients (RC) are determined using various phantom experi-

ments. The effects of lesion volume, patient size, reconstruction algorithm, and post-

processing on RC are investigated. The results of these comparisons provide a first step

towards a vendor-independent standard for absolute quantitative SPECT/CT that

would allow transferability of the obtained metrics [39].

Methods
SPECT/CT systems

Data were acquired on five state-of-the-art SPECT/CT systems from three manufac-

turers: a Discovery NM/CT 670 Pro (GE Healthcare, Milwaukee, USA), a Precedence 6

(Philips Healthcare, Best, The Netherlands), a Symbia Intevo 6, and two Symbia T16’s

(Siemens Healthineers, Erlangen, Germany) (Table 1).

Phantoms

A NEMA IEC body phantom without lung insert was used (Fig. 1). This phantom rep-

resents a patient with a body mass index (BMI) of 25 kg/m2 (which is considered

Table 1 Characteristics of all used SPECT/CT systems with LEHR collimator

System Discovery NM/CT
670 Pro

Precedence 6 Symbia Intevo 6 Symbia T16

Detector crystal 3/8” NaI 3/8” NaI 3/8” NaI 3/8” NaI

PMT* 59 55 59 59

FOV* 40 × 54 cm 38.1 × 50.8 cm 38.7 × 53.3 cm 38.7 × 53.3 cm

Hole shape Hexagonal Hexagonal Hexagonal Hexagonal

Number of holes (× 1000) Not specified 86.4 148 148

Collimator hole diameter 1.50 mm 1.40 mm 1.11 mm 1.11mm

Hole length 35 mm 32.8 mm 24.05 mm 24.05 mm

Septal thickness 0.2 mm 0.152 mm 0.16 mm 0.16mm

Sensitivity for 99mTc @ 10 cm 72 cps/MBq 66 cps/MBq 91 cps/MBq 91 cps/MBq

Septal penetration @ 140 keV 0.3% 1.3% 1.5% 1.5%

Planar resolution† 7.4 mm 7.4 mm 7.5 mm 7.5 mm

SPECT central resolution† 6.4 mm 4.4 mm 4.4 mm 4.4 mm

SPECT peripheral radial resolution† 5.7 mm 4.2 mm 4.0 mm 4.0 mm

SPECT peripheral tangential resolution† 5.1 mm 4.3 mm 3.9 mm 3.9 mm

* (C)FOV (center) field of view, PMT photomultiplier tube
† Spatial resolution without scatter (LEHR collimator at 10 cm, (full width at half maximum (FWHM) in CFOV [mm],
3/8” crystal)

Peters et al. EJNMMI Physics            (2019) 6:29 Page 3 of 14



normal) and contains six spheres with inner diameters (and corresponding volumes) of

10 mm (0.5 ml), 13 mm (1.2 ml), 17 mm (2.6 ml), 22 mm (5.6 ml), 28 mm (11.5 ml), and

37mm (26.5 ml). To evaluate the effect of patient size on SPECT quantification, two

additional custom-made phantoms were used on some systems that were similar to the

shape of the NEMA IEC body phantom, but with larger diameters, reflecting a larger

BMI of obese patients (Table 2). The spheres from the NEMA IEC body phantom were

also used for the increased body size phantoms.

For all phantoms, the spheres and background compartment were filled with a homo-

geneous solution of 99mTc-pertechnetate in water with a concentration of approxi-

mately 100 kBq/ml and 10 kBq/ml, respectively, resulting in a sphere-to-background

ratio of 10:1 similar to EARL guidelines for 18F-FDG PET imaging [8]. All 99mTc-per-

technetate activities were measured in the clinical radionuclide dose calibrators present

in the participating hospitals, which undergo regular quality control according to

national guidelines [40].

Fig. 1 The phantoms used to determine the RC. Upper phantom: NEMA IEC body phantom. Lower two
phantoms: custom-made phantoms reflecting a larger body mass index (BMI, kg/m2) of patients. Note that
the lower two phantoms are depicted without spheres inset
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Data acquisition and reconstruction

Harmonized acquisition protocols were used for all measurements. Images were ac-

quired with a low-energy high-resolution (LEHR) collimator (Table 1) in step and shoot

mode, 128 projections (64 per detector head) (Discovery NM/CT 670 Pro: 120 projec-

tions, 60 per detector head), 20 s per projection, zoom factor 1.0, matrix size 128 × 128

(Symbia Intevo, 256 × 256), a photon energy window of 140 keV ± 15% and the

detector trajectory set to body contour. Data from the standard NEMA phantom were

acquired five times repetitively to assess system-specific repeatability. The time per

angle was adjusted to obtain similar count statistics for each replicate.

Data were reconstructed with two reconstruction methods to assess its influence on

quantification. First, vendor-specific 3D iterative reconstruction algorithms that in-

cluded scatter correction, CT-based attenuation correction (for acquisition parameters

see Additional file 1: Table S1) and resolution recovery with institute-specific settings

used in clinical practice [3] were used. This included two quantitative reconstruction

algorithms that are currently commercially available (GE Q.Metrix and Siemens

xSPECT Quant). Second, data were reconstructed with a vendor-neutral quantitative

reconstruction algorithm (Hybrid Recon v1.1.2; Hermes Medical Solutions, Stockholm,

Sweden) (Table 3).

Calibration factor

SPECT/CT systems were cross-calibrated for 99mTc with the corresponding dose

calibrators according to the manufacturer’s recommendation or to the center’s

standard practice (Additional file 1: Table S2). Either one large or multiple smaller

cylindrical regions of interest (ROIs) where drawn to obtain a calibration factor

(CF) according to:

CF
cps=ml
kBq=ml

� �
¼

μ
t∙n∙ν

� �
A

ð1Þ

where μ is the mean voxel value in the reconstructed image, t is the time per projec-

tion, n is the number of projections, ν is the voxel size, and A is the actual activity con-

centration in the phantom.

Analysis

To evaluate the absolute quantification of different SPECT/CT systems, RC for back-

ground and all six spheres were determined. RC was defined as the ratio of the mea-

sured activity concentration (a) and the true activity concentration (A) for each sphere:

Table 2 Phantom sizes and corresponding patient characteristics

Phantom Volume (l) Waist circumference (cm) Corresponding patient BMI* (kg/m2)

Small (NEMA phantom) 9.70 85 25

Medium 14.73 100 28

Large 25.96 130 47

* BMI body mass index
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RC ¼ a
A

ð2Þ

Volumes of interest (VOIs) for each sphere were determined with a region growing

algorithm for which the cut-off threshold was calculated by [41]:

VVthresh ¼ 0:5∙ VV max;sphere þ VVmean;bg
� � ð3Þ

where VVthresh is the threshold voxel value, VVmax,sphere is the maximum voxel

value in the sphere VOI, and VVmean,bg is the mean voxel value in the background

VOI. VVmean,bg was determined by placing six cylindrical VOIs (diameter 4–5 cm)

in a uniform region within the phantom.

The maximum and mean activity concentration for each sphere were determined,

which resulted in both maximum and mean RC values, denoted as RCmax and

RCmean, respectively.

Table 3 Reconstruction and quantification parameters and processing software used in this study

System Discovery
NM/CT 670 Pro

Precedence 6 Symbia
Intevo 6

Symbia T16
system 1

Symbia T16
system 2

All

Imaging
center

Leiden
University
Medical Center

Maastricht
University Medical
Center

Noord West
ziekenhuis
Groep

Radboud
University
Medical
Center

Erasmus
University
Medical
Center

All

Reconstruction OSEM* +
Evolution with
PSF* correction

OSEM* + Astonish
with PSF*
correction

Weighted
Conjugate
Gradient +
xSPECT with
PSF*
correction

OSEM* +
Flash 3D
with PSF*
correction

OSEM* +
Hybrid
Recon V1.2
with PSF*
correction

OSEM* +
Hybrid
Recon V1.2
with PSF*
correction

Quantification Q.Metrix Manual analysis xSPECT
Quant

Manual
analysis

Hermes SUV
SPECT

Hermes SUV
SPECT

Iterations 9 [5] 3 24 6 5 5

Subsets 10 16 2 16 16 16

Post-reconstruction
filter

None None 7.5 mm
(Gaussian)

8.4 mm
(Gaussian)

5 mm
(Gaussian)

5 mm
(Gaussian)

Processing GE Xeleris 4.0
workstation

Philips Extended
Brilliance
Workspace

Siemens
Syngo.via

Siemens
Inveon
Research
Workplace

Hermes
Hybrid
Viewer

In-house
developed
Python
algorithm

Attenuation
correction

CT-based,
bilinear
conversion
of HU into
attenuation
coefficients
at 140 keV

CT-based, HU
segmentation
using a step-like
law, bilinear
conversion of
HU into
attenuation
coefficients
at 140 keV

CT-based,
bilinear
conversion
of HU into
attenuation
coefficients
at 140 keV

CT-based,
bilinear
conversion
of HU into
attenuation
coefficients
at 140 keV

CT-based,
Bilinear
conversion
of HU into
attenuation
coefficients
at 140 keV

CT-based,
bilinear
conversion
of HU into
attenuation
coefficients
at 140 keV

Scatter Correction DEW* (120
keV ± 10%)

Kernel based DEW* (119
keV ± 7.5%)

DEW* (119
keV ± 10%)

Monte
Carlo-based

Monte
Carlo-based

Image voxel size 2.21 × 2.21
× 2.21 mm3†

4.7 × 4.7
× 4.7 mm3

2.54 × 2.54
× 2.54 mm3

4.8 × 4.8 ×
4.8 mm3

4.8 × 4.8 ×
4.8 mm3

4.8 × 4.8 ×
4.8 mm3

* OSEM ordered subset expectation maximization, PSF point spread function, DEW dual energy window
† Initial acquisition was performed with 128 × 128 matrix size and corresponding voxel size of 4.42 × 4.42 × 4.42 mm3.
For quantification purposes this was interpolated to a 256 × 256 matrix size and corresponding voxel size of 2.21 × 2.21
× 2.21 mm3, as recommended by the vendor.
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The repeatability of the RC for each system was assessed with the reconstructed data

of the five repetitive measurements by calculating the median absolute deviation

(MAD) for each sphere diameter according to:

MAD ¼ median RCi−fRC��� ���� �
ð4Þ

where RCi is the recovery coefficient of measurement i and fRC is the median recov-

ery coefficient of all repetitive measurements.

The MAD was also used to assess variability between systems for each sphere diam-

eter. For each sphere, the median RC from each system was used in Eq. 4. This resulted

in a sphere-specific MAD.

In addition to center-specific image analysis, all images were processed automatically

in a standardized way using in-house developed software in Python which uses the

SimpleITK toolkit region growing algorithm to determine sphere-specific VOIs using

the same region growing algorithm as described above (Table 4) [42, 43].

Results
Calibration factor

The calibration factors that were used to determine the RC for each system can be

found in Table 4.

Recovery coefficient

Differences (indicated as mean ± standard deviation) between the RC determined using

standardized processing software versus center-specific processing software were 2 ±

3% for RCmean and 0 ± 3% RCmax. Since these differences were considered negligible,

all data were processed using the standardized processing software (Python) as

described earlier (performed centralized by two authors on all data).

The median recovery coefficient of the background compartment of the phantom

was 1.01 (range, 0.93–1.07). The sphere-to-background activity concentration ratio was

10.6 ± 0.4:1 for all systems. Images obtained on all five systems showed different visual

results (Fig. 2).

For all systems, both RCmean and RCmax decreased with decreasing sphere diameter

(Fig. 3a–e). RC for the smallest sphere diameter (10 mm) could not be obtained because

of the low contrast between the smallest sphere and the background for the used activ-

ity concentration ratio. Therefore, this sphere diameter is not considered in the remain-

der of this study. The variability in RC between systems is visualized in Fig. 3f.

Table 4 Calibration factors for center-specific and vendor-neutral reconstructions, calculated for
128 projections and 20 s/projection

System Center-specific CF* (cps/kBq) CF for Hermes SUV SPECT (kBq/cts)

Discovery NM/CT 670 Pro 0.075 0.128

Precedence 6 0.0986 0.143

Symbia Intevo 6 1.00 [-]† 0.112

Symbia T16 system 1 0.0951 0.114

Symbia T16 system 2 0.110 0.110

* CF calibration factor
† Data is already quantitative in kBq therefore no calibration factor is stated
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For each system, RC repeatability, expressed as the MAD, was best for the largest

spheres, but good repeatability was shown for all sphere diameters (Table 5).

Effect of reconstruction algorithm on RC

Vendor-neutral reconstruction showed a large decrease in inter-system variability

(Figs. 4 and 5). This finding is further confirmed by the MAD for reconstruction

with vendor-specific versus vendor-neutral software (Table 6), which shows a

median MAD of 0.10 and 0.17 (16 and 17%) for the RCmean and RCmax of

vendor-specific reconstruction, and a decreased median MAD of 0.04 and 0.05 (4

and 5%) for the RCmean and RCmax of vendor-neutral reconstruction, respectively.

Fig. 2 Images of the NEMA IEC body phantom for all systems, reconstructed with a
vendor-specific algorithm

Fig. 3 Recovery coefficient as a function of sphere diameter for all systems separately (a–e) and for all
systems combined (f), for data reconstructed with a vendor-specific algorithm. Median and box plot for five
repetitive measurements per system. (a) GE Discovery NM/CT 670 Pro, (b) Philips Precedence 6, (c) Siemens
Symbia Intevo 6, (d) Siemens Symbia T16 system 1, (e) Siemens Symbia T16 system 2, (f) Median RC values
for all systems combined
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Effect of patient size on RC

Medium and large phantom data were only reconstructed using a vendor-neutral algo-

rithm, since results for the small phantom showed the smallest variability between

systems for these settings. It can be seen in Fig. 6 that variability of RC between sys-

tems increased in larger phantom volumes. Furthermore, smaller sphere diameters

showed lower quantitative accuracy (lower RC values) indicating that reliable quantifi-

cation of small volumes (< 10ml) in larger (patient) volumes is more challenging.

Discussion
This study is a considerable step towards standardization of absolute SPECT quan-

tification by investigating the quantitative accuracy of different SPECT/CT systems.

The quantitative accuracy of individual SPECT-CT systems was assessed earlier for

the GE Discovery NM/CT 670 system [5], the Siemens Symbia Intevo system [44]

and the Hermes SUV SPECT quantitative reconstruction algorithm [36]. Although

an earlier study by Seret et al. [32] also compared the quantitative capabilities of

four SPECT/CT cameras, our study included the current state-of-the-art quantita-

tive SPECT/CT systems that enable absolute quantification that were not available

at that time.

Many factors contribute to the uncertainty in quantification even if acquisition proto-

cols are standardized, including VOI outlining methodology, operator variability and

activity measurement (dose calibrator uncertainty, cross calibration between dose

Table 5 MAD per system (median and range over all sphere diameters) for data reconstructed
using a vendor and center-specific algorithm

RCmean RCmax

Discovery NM/CT 670 Pro 0.02 (0.01—0.08) 0.06 (0.02—0.10)

Precendence 6 0.02 (0.00—0.04) 0.03 (0.00—0.06)

Symbia Intevo 6 0.01 (0.01—0.03) 0.01 (0.00—0.05)

Symbia T16 (1) 0.02 (0.00—0.04) 0.02 (0.01—0.05)

Symbia T16 (2) 0.07 (0.00—0.09) 0.09 (0.03—0.19)

Fig. 4 Images of the NEMA IEC body phantom for all systems, reconstructed with a
vendor-neutral algorithm
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calibrator, and SPECT/CT system) [45] and in our study also phantom preparation.

The median RC in the background compartment was found to be 1.01, which indicated

reliable acquisition, reconstruction and analysis. However, for some systems and mea-

surements, the background RC was as low as 0.93 or as high as 1.07. This deviation

might of course also influence the sphere RC values and thereby introduce an increase

in variability between quantification on different systems. Furthermore, this study

showed that the largest contribution for inter-system variation is due to vendor-specific

reconstruction settings. Vendor-neutral reconstruction reduced this variation two to

threefold (median MAD). It is therefore paramount to harmonize SPECT/CT image

reconstructions in a multi-center/multi-vendor setting.

In a clinical setting, it is expected that the variability in quantification between

SPECT/CT systems will increase, due to for example patient positioning and patient

volume (BMI). To this end, we compared the recovery of the hot spheres in differently

sized phantoms on several SPECT/CT systems. Only minor, not clinically relevant dif-

ferences between the phantoms representing a BMI of 25 and 28 kg/m2 were found,

while this change in BMI implies a rather significant increase in patient circumference.

We therefore expect that for patients with a normal to slightly increased BMI, it is not

necessary to take patient circumference into account for quantification. For a high BMI

of 47 kg/m2 on the other hand, activity could not be recovered for the smaller sphere

diameters. This might be explained by the increased attenuation, decreased signal-to-

noise ratio, and decreased spatial resolution due to increased source-detector distance

in these larger volumes. This means that in patients with a high BMI, quantifying

smaller lesions will be more challenging. Using more iterations in the reconstruction of

images of larger patients might improve convergence and thereby improve resolution

Fig. 5 Recovery coefficient for all systems combined as a function of sphere diameter for vendor-specific
reconstruction (a) and vendor-neutral reconstruction (b)

Table 6 MAD per sphere diameter for all systems combined, using either vendor-specific or
vendor-neutral reconstruction algorithms.

Sphere
diameter

RCmean RCmax

Vendor-specific Vendor-neutral Vendor-specific Vendor-neutral

37 mm 0.01 0.05 0.03 0.05

28 mm 0.10 0.02 0.16 0.04

22 mm 0.20 0.04 0.28 0.06

17 mm 0.11 0.04 0.18 0.11

13 mm 0.09 0.04 0.13 0.04
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and prevent artifacts, which was also shown for SPECT/CT myocardial perfusion stud-

ies by Celler et al. [46]. The effect of increased attenuation could be canceled by an

increase in scan time per projection or by increasing patient dose. The impact of scan

time and dosage on image quality and image quantification is interesting to investigate

further, but this was not within our scope.

The phantom used in this study did not contain lung, air, or bone components.

Therefore the results mainly reflect quantification accuracy for soft tissue lesions.

Experiments were performed using 99mTc-pertechnetate. This radionuclide is the most

widely used in SPECT imaging, and quantification of 99mTc holds potential in for

example myocardial perfusion imaging [47], functional lung scanning [48], selective

internal radiation therapy (SIRT) of liver tumors [49, 50], quantification in bone lesions

[51, 52], and therapy monitoring in locally advanced breast cancer [5]. In addition,

since the radiotracer is widely available, it served as a suitable radionuclide to compare

absolute quantification performance of SPECT/CT systems.

In the current study, an activity concentration ratio of 1:10 was used between the

background and spheres, based on the ratio used for the same phantom in the EARL

accreditation program. With lower activity concentration ratios, lower RC values are

expected due to partial volume effects.

For one system, matrix size changes were necessary between vendor-specific and

vendor-independent reconstructions. With this change, it is uncertain whether the

improved inter-scanner variability is due to the vendor-neutral reconstruction algo-

rithm, or to the change in matrix size. It was, however, the aim of our study to assess

whether vendor-neutral reconstruction would improve inter-scanner variability. Which

underlying parameter caused this improvement was not the goal of our study.

Both vendor dependent as well as vendor-neutral reconstructions showed Gibbs arti-

facts for all systems, which is a known result of resolution modeling. These artifacts

occur especially in phantom reconstructions, with high contrast changes between

different structures. In our study, a large contrast change was present between the

inside and outside of the spheres. Despite this large contrast change, and its accom-

panying Gibbs artifact, all systems showed RCmean values approaching unity for larger

Fig. 6 RC per sphere diameter for (a) small phantom (BMI, 25 kg/m2), (b) medium phantom (BMI, 28 kg/m2),
(c) large phantom (BMI, 47 kg/m2), (d–e) RCmean and RCmax for all three phantom volumes (median only).
All data was reconstructed using a vendor-neutral algorithm
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sphere sizes. When sphere size decreases, the edge ring artifacts will come very close to

each other and eventually merge, resulting in a too high activity in the center of the

sphere.

In this study, only one vendor-neutral reconstruction algorithm was used. In theory,

another reconstruction algorithm, although not commercially available at this moment,

could potentially influence the resulting metrics. For the current study, however, our

aim was to assess the influence of the reconstruction algorithm on RC measurements

which could be assessed by using a vendor-neutral algorithm.

Knowledge gained from this study can be used to assess the absolute quantitative ac-

curacy for other radionuclides as well. This can serve as input for a standardization

program for absolute SPECT quantification which can be used to improve sophisticated

clinical dosimetry in radionuclide therapy studies, especially in a multi-center setting.

Conclusion
This study shows that absolute SPECT quantification is feasible in a multi-center and

multi-vendor setting. With center-specific reconstructions, variability between systems

was 0.01–0.20 and 0.03–0.28 (MAD) for RCmean and RCmax, respectively. Standardized

reconstruction decreases this variability to 0.02–0.05 and 0.04–0.11. Variation between

centers is mainly caused by the use of different reconstruction algorithms and/or set-

tings. Patient size showed to be relevant for quantification, as it was observed that high

patient volume (BMI 47 kg/m2) resulted in an increased variability among systems and

impeded quantification of small lesions (< 10ml). Close agreement between vendors

and centers is key for reliable multi-center dosimetry and quantitative biomarker stud-

ies. This study serves as a first step towards a vendor-independent standard for absolute

quantification in SPECT/CT.
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