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Introduction
In social society, no one is isolated and he must belong to some communities. Under-
standing his behavior needs to understand his groups [1]. People’s behavior is influ-
enced by group behavior and many of the world’s decisions are done by groups or 
teams. Various types of groups exist not only in real-world society but also online 
social networks (OSN). The size of some groups may be smaller with only several 
members like family, while some groups may consist with hundreds of people, for 
example a school, even a whole country. With the rapid development and rising pop-
ulation of OSN such as Facebook with about 2.2 B users, WeChat with more than 1.0 
B users, and Twitter with over 0.34 B users, etc. [2], hundreds of millions of users are 
able to be friends and exchange information with each other. Users with the same 
interests or hobbies may formulate group to talk over the common topics. In Wechat 
platform, WeChat group and circle of friends are very popular functions for each 
Wechat user. US Presidential Elections is another example. Presidential candidate will 
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gain all votes in one state if he gets the majority of tickets in the state. For simplifica-
tion, the benefits from all activated groups are assumed to be calculated as economic 
indicator. Then, in this paper, both the cost and benefit are considered as monetary.

Since group holds an important role not only in real-world society but also online 
social networks, the enterprise (such as company), or government attempts to activate 
group. For example, when we consider family’s decision, usually, only one decision is 
done to buy some brand product according to the advertise of different brands. Simi-
larly, a company need to purchase computers for their employees, while this company 
may use majority method to decide which brand of computer. The employee may be 
influenced by different brand of computers, while only one brand is purchased. A 
group is called to be activated if a certain percent of members are influenced. Enter-
prise producers often draw support from the OSN providers to diffuse their adver-
tisements, so that all possible potential groups could be influenced. Zhu et al. [3] have 
presented the group influence maximization problem in social networks. In which, 
a group is called to be activated if β percent of members in this group are activated. 
Enterprises will gain income from all activated groups. Simultaneously, to propagate 
influence, enterprise needs pay advertisement diffusion cost to the OSN provider, 
while the cost is usually up to total hits on these advertisements. In this paper, we 
aim to pick k seed users to maximize the expected profit that maximize the expected 
profit that equals the benefit of influenced groups minus the diffusion cost. This opti-
mization problem is called group profit maximization (GPM) problem. Given a social 
network G = (V ,E,P) , P is the influence probability for each directed edge (u, v) that 
means u could activate v with probability P after u becomes activated. β is called 
group activated threshold. For each activated group U, the benefit is b(U) ≥ 0 . Mean-
while, the diffusion cost c(v) ≥ 0 is required if v is activated. An example is shown in 
Fig.  1. There are 8 nodes in this graph and the influence probability equals 1. There 
are two groups. U = {U1 = {v1, v2, v3, v4},U2 = {v6, v7, v8}} . Benefit of group U1 is 20 
and U2 is 10, while diffusion cost of each node is 2. Assume the activation threshold 
β = 0.5 which means a group will be activated if at least half of nodes are activated. 
Figure  1(1) chooses v3 as the seed, and then, {v2, v3, v4, v5, v6} will be activated and 
only group U1 is activated under the activation threshold 0.5. Then, the total profit is 
b(U1) = 20− 5× 2 = 10.

Fig. 1  An example of group influence model with initial seed v3
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Related works

Kempe et al. [4] first presented influence maximization (IM) problem. They showed 
that IM problem was NP-hard under independent cascade (IC) model. And the objec-
tive function of IM was submodular. Following Kempe’s work,  [5–12] have studied 
different types of IM problems. Realizing the exist of crowd influence, IM problem 
with considering crowd influence was studied by Zhu [13–15].

Optimizing the profit return in viral marketing has proved much more difficult than 
only maximizing the influence propagation [16], since the number of seeds picked 
yields a trade-off between the benefit and cost of viral marketing. Several recent pub-
lications studied profit maximization problems from the advertiser’s point [16–18]. 
These works considered the cost of seed selection which is modular and implies that 
their profit metric is still submodular. Ref. [19] proposed a profit maximization prob-
lem which took into account the cost of information propagation, whose profit func-
tion could be decomposed into the difference of two submodular functions.

However, most of the existing methods are either too slow for billion-scale networks 
such as Facebook, Twitter, and World Wide Web or fail to retain the (1− 1/e − ǫ)

-approximation guarantees. The sampling method is the bottleneck of solving IM. 
Borgs et  al. [20] proposed a novel sampling method named reverse influence set 
(RIS) which can reduce the sampling complexity. Two-phase influence maximiza-
tion (TIM)/TIM+ [21] and Influence Maximization via Martingales (IMM) [22] were 
introduced for solving IM problem. Nguyen et al. [23] made a breakthrough and pro-
posed Dynamic-Stop-and-Stare Algorithm (D-SSA) which was much faster while 
guarantee the same approximation ratio. Zhu [13] presented weighted RIS sampling 
method.

Since the objective function of GPM is non-submodular which will be shown in 
the following section, the existing social IM methods can not be applied to solve 
the GPM. Schoenebeck [24] presented the 2-quasi-submodular function optimiza-
tion problem whose objective was non-submodular. Narasimhan and Bilmes [25] 
presented an approximation method for solving submodular + supermodular func-
tion which substituted the supermodular function by a modular function. Bach [26] 
proved that any non-submodular function could decompose as a difference of two 
submodular function. Another approach named sandwich approximation strategy 
was presented by [27], which approximates the objective function by formulating its 
lower bound and upper bound. More recent results can be found in [28, 29].

Contributions

We summarize our contributions as follows: 

1.	 Motivated by the group structure in social network, group profit maximization 
(GPM) problem is presented which select k seeds, such that the expected profit is 
maximum.

2.	 We evaluate the challenges of the GPM by analyzing computational complexity. First, 
GPM is proved to be NP-hard under IC model. Second, the objective function of 
GPM is shown neither submodular nor supermodular.
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3.	 To obtain approximate solution, we propose a lower and upper bound for the objec-
tive function. We show that maximizing the lower bound and upper bound are still 
NP-hard. Meanwhile, both lower bound and upper bound can be decomposed to the 
difference of submodular functions. We also present a submodular–modular algo-
rithm to solve the difference of submodular functions.

4.	 Then, we propose a weighted group coverage maximization algorithm for solving 
GPM. Second, we formulate a sandwich approximation framework, which preserves 
a theoretical analysis result. We verify our algorithm on real-world data sets.

This paper is organized as follows: first, we present the group profit maximization 
(GPM) problem; then, the proof of NP-hardness and properties of objective function will 
be given; third, we propose lower bound and upper bound, and present our algorithms; 
experiments are presented in the following section; and finally, the paper is concluded. 
Table 1 summarizes the symbols and their meaning.

Problem formulation
Independent cascade (IC) model is an information propagation model with widely 
application. IC model will be introduced first, and then, the group profit maximization 
(GPM) problem is presented.

Independent cascade model [4]

Given an social network G = (V ,E,P) , where V is a set of users and E is a set of directed 
edges. For each edge e = (u, v) , Pe is the weight on e, representing the information acti-
vation probability ( 0 ≤ Pe ≤ 1 ). Specifically, u will attempt to activate v with activation 
probability Pe after u is activated.

Assume S ⊆ V  is the initial seed users. Let St be the nodes which are activated in step 
t(t = 0, 1, . . .) . At the beginning, S0 = S . The propagation process is as follows step by step. 
At step t, for each activated node in u ∈ St , u will try to activate each inactivated neighbor 

Table 1  Frequently used notation

Notation Description

G = (V , E , P) A social network with user set V and edge set E. P is the influence 
probability. Pe represents influence probability on edge e where 
0 ≤ Pe ≤ 1

G = (V , C , E , P, f ) A candidate seed set C ⊆ V  . Each user has a weight f

U The set of groups, b(U) is the benefit when U is activated for U ∈ U

c(v) ≥ 0 c(v) is the cost to activate v

n = |V | The number of users

m = |E| The number of edges

l = |U | The number of groups

β The threshold of a group being activated, 0 < β ≤ 1

k The number of seeds

β(S) The expected benefit of all activated groups with seed set S.

γ (S) The expected diffusion cost of all activated users with seed set S

ρ(S) = β(S)− γ (S) The expected profit with seed set S
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v with the activation probability of P(u,v) . IC model assumes that u has only one chance to 
activate its inactivated neighbor v.

Group profit maximization

Given an instance of GPM with directed graph G = (V ,E,P) , a  group U is a subset of V. 
Let U be a collection of groups. The number of total groups is l. 0 < β ≤ 1 is the activation 
threshold. When β percent of users in a group are activated, this group is said to be acti-
vated. For each activated group U, there is a benefit b(U) ≥ 0 . Simultaneously, there is a 
diffusion cost c(v) ≥ 0 for each activated user.

Now, a realization of random graph will be introduced which can help us to understand 
the IC model. G = (V ,E,P) is a random directed graph, a realization g is a subgraph of G, 
where V (g) = V (G) and E(g) ⊆ E(G) . The influence probability of each edge in E(g) is 1. 
The generation process is: (1) for each edge e ∈ E(G) , uniformly generate a random number 
r between 0 and 1; (2) this edge e is kept in g if and only if r ≤ Pe . G represents the set of any 
realizations of G. Obviously, there are 2|E(G)| sample graphs in G . g is generated with prob-
ability P[g]. Then, we have:

Let Ug (S) represent the set of groups activated by the initial seed set S. Vg (S) is the set of 
nodes activated by the initial seed set S. Now, the benefit of activated groups is:

and the cost of activated nodes is:

We define the profit as ρ(S) = β(S)− γ (S) . Then, Group profit maximization (GPM) 
considers information propagation in social network. The objective aims to select k seed 
users to maximize the profit ρ(S):

Figure 1 shows an example to explain the information diffusion process of GPM, where 
there exists 8 nodes and the influence probability on each edge is 1. Let β = 0.5 . At the 
beginning, v3 is the seed. At the first time step, v2, v5 are activated by v3 , as shown in 
Fig. 1(1). At the second time step, v4 is activated by v2 and v6 is activated by v5 , as shown 
in Fig.  1(1). Finally, activated node set is {v2, v3, v4, v5, v6} . Since activation threshold 
β = 0.5 , group U1 is activated and U2 is inactivated.

P[g] =
∏

e∈E(g)

Pe
∏

e∈E(G)\E(g)

(1− Pe).

β(S) =
∑

g∈G

P[g]
∑

U∈Ug (S)

b(U),

γ (S) =
∑

g∈G

P[g]
∑

v∈Vg (S)

c(v).

(1)max ρ(S)

(2)s.t.|S| ≤ k .
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Properties of GPM
In this section, GPM will be proved to be NP-hard. The properties of the objective 
function ρ(·) will be discussed.

Hardness results

It is known that any generalization of an NP-hard problem is also NP-hard. Kempe 
et  al. have proved that the influence maximization (IM) problem is NP-hard [4], 
which is a special case of GPM. Each node is considered as a group and benefit of 
each group is 1. There does not exist cost on each node. Let β = 1 . Obviously, the 
GPM is NP-hard.,

Theorem 3.1  The group profit maximization problem is NP-hard.

For any instance of GPM, it is difficult to compute the objective ρ(S) even for fixed 
seed set S. To estimate ρ(S) , Monte Carlo method is always used to estimate ρ(S) . 
First, a large number of sample graphs of G are generated, and then computer ρ(S) on 
each sample graph. Finally, the average of ρ(S) is the estimation value. Kempe et al. 
have proved that computing the objective of IM was #P-hard [4], and then, the follow-
ing result is true.

Theorem 3.2  Given a seed node set S, computing ρ(S) is #P-hard under the IC model.

Modularity of objective function

A set function f : 2V ← R is called submodular [30] if it holds that 
f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B) for any subsets A ⊂ B ⊆ V  and v ∈ V \ B . 
On the other hand, if, for any subsets A ⊂ B ⊆ V  and v ∈ V \ B , it satisfies that 
f (A ∪ {v})− f (A) ≤ f (B ∪ {v})− f (B) , f is supermodular. A set function f : 2V ← R 
is called monotone nondecreasing if it satisfies f (A) ≤ f (B) for any A ⊆ B ⊆ V  . f is 
said to be a polymatroid function if it is monotone nondecreasing, submodular and 
f (∅) = 0.

Greedy algorithm guarantees (1− 1/e)-approximation for polymatroid maximiza-
tion problem with cardinality constraints [31]. Also, we have the following result for 
γ.

Theorem 3.3  γ (·) is monotone nondecreasing, submodular, and γ (∅) = 0.

Meanwhile, β(·) is neither submodular nor supermodular, although β(∅) = 0 and 
β(·) is monotone nondecreasing.

Theorem 3.4  β(·) is neither submodular nor supermodular under IC model even when 
b(U) = 1 for any U ∈ U.

Proof  We prove by a counter example. When b(U) = 1 for any 
U ∈ U , β(S) is the expected number of eventually activated groups for 
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initial seed set S. Consider an instance of GPM problem, as shown in Fig.  2 where 
there are 9 nodes and the influence probability of each edge is 1. There exist 4 
groups U = {U1 = {v1, v2, v3},U2 = {v1, v5},U3 = {v4, v7, v9},U4 = {v6, v8}} and 
b(U1) = 1, b(U2) = 1, b(U3) = 1, b(U4) = 1 . Assume the activation threshold β = 0.5 . �

First, we will prove that β(·) is not submodular. Let A = ∅,B = {v3} , and v9 ∈ V \ B . 
We have β(A) = 0,β(B) = 3 . Putting v9 into A and B, we have β(A ∪ {v9}) = 0 , since 
v9 can not activate any group. β(B ∪ {v9}) = 4 , since all groups are eventually acti-
vated. Thus, β(A ∪ {v9})− β(A) = 0 and β(B ∪ {v9})− β(B) = 4 − 3 = 1 . Therefore, 
β(A ∪ {v9})− β(A) < β(B ∪ {v9})− β(B) means β(·) is not submodular.

On the other hand, β(·) is not supermodular. Let A = ∅,B = {v3} , and v7 ∈ V \ B . 
We have β(A) = 0,β(B) = 3 . Putting v7 into A and B, we have β(A ∪ {v7}) = 3 since 
v7 can activate {v4, v5, v6, v7, v8, v9} . β(B ∪ {v7}) = 4 , since all nodes are eventually acti-
vated. Thus, β(A ∪ {v7})− β(A) = 3 and β(B ∪ {v9})− β(B) = 4 − 3 = 1 . Therefore, 
β(A ∪ {v9})− β(A) > β(B ∪ {v9})− β(B) means that β(·) is not supermodular.

We also have the following corollary.

Corollary 3.1  ρ(·) is neither submodular nor supermodular under IC model.

Lower bound and upper bound
To optimize a non-submodular function is very hard. Lu et  al. presented a sandwich 
approximation framework (SAF) [27]. SAF attempts to find a lower bound and upper 
bound for the original objective function. Now, we will design lower bound and upper 
bound for ρ(·) . Simultaneously, the properties of these two bounds will be analyzed.

Fig. 2  A counter example

Fig. 3  An example for generation of super node: U is a group with profit b, and then add super node u and 
connect each node in U to u with influence probability 1; define the benefit of b(u) = b and the benefit of 
each node inside U as 0
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The upper bound

A new set function β(·) is defined which satisfies β(S) ≤ β(S) . In this paper, we for-
mulate the upper bound in two steps. First, a relaxed GPM (r-GPM) problem is gener-
ated by modifying group activation rules. For r-GPM, a group is said to be activation 
if at least 1 activated node is activated in this group. Second, we add a super node for 
each group. The benefit b(u) of this super node is defined as the benefit b(U) of the 
corresponding group. Then, connect every node in this group to this super node and 
set influence probability 1. An example is shown in Fig.  3.

W represents the super node set and E′ represents the edge set for nodes in V to 
super nodes in W. Next, a general weighted influence maximization (WIM) is defined 
as follows. V ∪W  is node set and E ∪ E′ is edge set. C ⊆ V  is the set of candidates of 
seed users. Node weight function f satisfies:

β(S) =
∑

v is activated f (v) is the expected weight of activated nodes for seed set S. Let 
G = (V ,C ,E,P, f ) be an instance of general Weighted IM problem, where C is the candi-
date seed set. We can prove β(·) is monotone, submodular, and β(S) ≤ β(S).

Theorem  4.1  Let G = (V ,E,P) be an instance of GPM, and then, we have β(·) is an 
upper bound of β(·).

Define ρ(·) = β(·)− γ (·) , and then, we have:

Theorem  4.2  Let G = (V ,E,P) be an instance of GPM, and then, we have ρ(·) is an 
upper bound of ρ(·). Simultaneously, ρ(·) can be represented as the difference of two sub-
modular functions.

The lower bound

In this subsection, a lower bound will be formulated. The idea is to keep some groups 
and delete some groups. If at least β percent of nodes in a group can be activated 
simultaneously, this group will be kept. It means that there must exist 1 node that con-
nects to β percent of nodes in this group. An example is shown in Fig.  4. The activa-
tion threshold is β = 0.5 . Since v1 and v2 connect to 2 nodes in group U, group U will 
be kept. A super node u related to group U will be generated, and new directed edges 

f (v) =

{
b(v), v ∈ W
0, v ∈ V

Fig. 4  An example for generation of lower bound problem
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(v1,u), (v2,u) will be added with influence probability p(v1,u) = p1p2, p(v2,u) = p3p4 . 
The benefit of u is set b and the other nodes are 0.

The following process is the detail. Let G = (V ,E,P) be an instance of GPM. For a 
group Ui with benefit bi , assume Hi = {v ∈ V |v links to at least β percent of nodes in Ui} . 
If Hi  = ∅ , a super node ui is generated and directed edges {(v,ui)|v ∈ Hi} are added. For 
each v ∈ Hi , let U ′

i  be the set of nodes in Ui which v links to. Then, p(v,ui) =
∏

v′∈U ′
i
p(v,v′) , 

b(ui) = bi , and benefits of all other nodes are 0. Next, a general weighted influence maxi-
mization (WIM) can be generated. The node set is V ∪W  , and the edge set is E ∪ E′ . E′ 
is the set of all new added edges. The candidate seed set C ⊆ V  . The weight function of 
node f satisfies:

β(S) =
∑

v is activated f (v) is the expected weight of activated nodes for seed set S. Let 
G = (V ,C ,E,P, f ) be the instance of general WIM problem. β(·) is monotone, submod-
ular, and β(S) ≥ β(S).

Theorem 4.3  Given an instance GPM G = (V ,E,P) , β(·) is an lower bound of β(·).

Certainly, let ρ(·) = β(·)− γ (·) , then we have the following result:

Theorem  4.4  Let G = (V ,E,P) be an instance of GPM, and then, we have ρ(·) is an 
lower bound of ρ(·). Simultaneously, ρ(·) can be represented as the difference of two sub-
modular functions.

Algorithm
Since computing the objective function of GPM is #P-hard, the reverse influence set 
(RIS) sampling method will be extended to estimate ρ(·) and ρ(·) . Next, an submodular–
modular algorithm will be proposed for solving the lower bound and upper bound prob-
lems. Then, we will propose an randomized algorithm which is base on weighted group 
coverage maximization strategy. Finally, a sandwich approximation framework will be 
presented with theoretical analysis.

We will apply (ǫ, δ)-approximation method [32] to analyze our algorithm. The 
absolute error is ǫ and the confidence is (1− δ) . Let ϒ = 4(e − 2) ln(2/δ)/ǫ2 and 
ϒ1 = 1+ (1+ ǫ)ϒ , and then, the Stopping Rule Algorithm [32] has been shown (ǫ, δ) 
approximation.

Extended reverse influence set (RIS) sampling

In this section, we will present an extended version of the RIS sampling method. Given a 
weighted directed graph G = (V ,C ,E,P, f ) , which represents a general weighted influ-
ence maximization problem and C is the candidate. The influence probability is P and f 
is the node weight function. Assume S is the seed set. ρ′(S) =

∑
v is activated f (v) is the 

expected weighted number of activated nodes. Looking for k seed users in C to maxi-
mize ρ′(S) . Obviously, φ(S) is submodular and monotone. Extended RIS generates a set 

f (v) =

{
b(v), v ∈ W
0, v ∈ V
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R of random weighted reverse reachable (WRR) sets. Let Rj be a WRR set which can be 
formulated as follows,

Definition 5.1  (Weighted reverse reachable (WRR) set) [13]. Given G = (V ,C ,E,P, f ) , 
a random WRR set Rj is generated from G by (1) selecting a random node v ∈ V  ; (2) gen-
erating a sample graph g from G; (3) returning Rj as the set of nodes that can reach v in g; 
and (4) w(Rj) = f (v).

S is the seed set. Let CovR(S) =
∑

Rj∈R
min{|S ∩ Rj|, 1} be the coverage number of set 

S and WCovR(S) =
∑

Rj∈R
w(Rj)· min{|S ∩ Rj|, 1} be the coverage weight. This weighted 

coverage of set S might be used to estimate ρ′(S).

Lemma 5.1  [13]. Given G = (V ,C ,E,P, f ), a random WRR set Rj generated from G. For 
each seed set S ⊆ C, where C ⊆ V  is candidate seed set:

The estimation procedure for computing φ(S) will be proposed as Algorithm  1, which 
also preserves the following theoretical result. 

Algorithm 1 Estimation Procedure (EP)
Input: G = (V,C,E, P, f) is an instance of WIM, 0 ≤ ε, δ ≤ 1, seed set S.
Output: φ̂(S) such that φ̂(S) ≤ (1 + ε)φ(S) with at least (1− δ)-probability.
1: Υ = 1 + 4(1 + ε)(e− 2) ln(2/δ)/ε2
2: Υ1 = 1 + (1 + ε)Υ
3: R ← generate Υ random WRR sets
4: L = CovR(S)
5: while L < Υ1 do
6: R′ ← generate a new WRR set
7: Add R′ to R
8: L = CovR(S)
9: end while
10: φ̂(S) ←

∑
v∈V f(v) ·WCovR(S)/

∑|R|
j=1 w(Rj)

11: return φ̂(S).

Theorem 5.1  Algorithm  1 outputs an estimation φ̂(S) of φ(S) which satisfies:

Submodular–modular algorithm

Theorems 4.2 and  4.1 perform ρ(·) and ρ(·) are the difference of two submodular func-
tions. Furthermore, β(·) and β(·) are objective functions of WIM problems. Then, we 
will propose a submodular–modular algorithm for solving such a function φ(S)− γ (S) 
which satisfies φ(·) and γ (·) are submodular functions.

At first, a modular upper bound and lower bound will be presented for γ (·) according 
to [33]. The following formulas are two tight modular upper bounds which are tight at 
the given set X:

φ(S) =
∑

v∈V

f (v)Pr[S covers Rj].

Pr[(1− ǫ)φ(S) ≤ φ̂(S) ≤ (1+ ǫ)φ(S)] ≥ 1− δ.
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For briefness, we use mX to refer either one. A modular lower bound hX which is tight at 
a given set X will be formulated as follows. Assume π is any permutation of V and place 
all the nodes in X at the front. Let Sπi = {π(1),π(2), . . . ,π(i)} be a chain constructed by 
this permutation, where Sπ0 = ∅ and Sπ|X | = X . Define:

hπX (S) =
∑

v∈S h
π
X (v) will be a lower bound for γ (S) , and it is tight at X. Then, 

hπX (S) ≤ γ (S) holds for any S ⊆ V  and specially hπX (X) = γ (X) . The following results 
can be proved.

Theorem 5.2  φ(S)−mX (S) ≤ φ(S)− γ (S) ≤ φ(S)− hπX (S) and these two bounds are 
difference of submodular and modular functions.

Using φ(S)−mX (S) ≤ φ(S)− γ (S) , we can propose the submodular–modular algo-
rithm. In each iteration, run maximization procedures for these two modular upper 
bounds and select the better one. Algorithm   2 can be proved convergency to a local 
maximal solution. 

Algorithm 2 Submodular-Modular Algorithm (SMA)
1: X0 = ∅; t ← 0
2: while not converged (i.e., (Xt+1 �= Xt)) do
3: Randomly choose a permutation πt whose chain contains the set Xt

4: Xt+1 := arg maxX φ(X)−mXt (X)
5: t ← t+ 1
6: end while
7: return Xt.

Theorem  5.3  Algorithm  2 monotonically increasing. Furthermore, assuming a local 
maxima φ(X)−mXt (X) is returned from the submodular maximization procedure, then 
Algorithm 2 outputs a local optima solution.

Proof  For either modular upper bound, we have:

To show that this algorithm converges to a local maxima, we assume the submodular 
maximization procedure converges to a local maxima. Then, if the objective value does 
not increase in an iteration under both upper bounds, it implies that φ(Xt)−mXt (Xt) is 
already a local optimum in that (for both upper bounds), we have φ(Xt ∪ {j})−mXt (Xt ∪ {j}) 
≤ φ(Xt)−mXt (Xt), ∀j /∈ Xt and φ(Xt \ {j})−mXt (Xt \ {j}) ≤ φ(Xt )−mXt (Xt ), ∀j ∈ Xt . Note that 

(3)m1
X (S) � γ (S)−

∑

j∈X\S

γ (j|X \ {j})+
∑

j∈S\X

γ (j|∅)

(4)m2
X (S) � γ (S)−

∑

j∈X\S

γ (j|V \ {j})+
∑

j∈V \X

γ (j|X).

(5)hπX (π(i)) = γ (Sπi )− γ (Sπi−1).

φ(Xt+1)− γ (Xt+1) ≥ φ(Xt+1)−mXt (Xt+1)

≥ φ(Xt)−mXt (Xt) = φ(Xt)− γ (Xt).
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m1
Xt (X

t \ {j}) = γ (Xt )− γ (j|Xt \ {j}) = γ (Xt \ {j}) and m2
Xt∪{j}

= γ (Xt)+ γ (j|Xt) = γ (Xt ∪ {j}) , 

and hence, if both modular upper bounds are at a local optima, it implies 

φ(Xt)− γ (Xt) = φ(Xt)−m1
Xt (X

t) ≥ φ(Xt \ {j})−m1
Xt (X

t \ {j}) = φ(Xt \ {j})−

γ (Xt \ {j})   . 
Similarly, φ(Xt )− γ (Xt ) = φ(Xt )−m2

Xt (X
t ) ≥ φ(Xt ∪ {j})−m1

Xt (X
t ∪ {j}) = φ(Xt ∪ {j})− γ (Xt ∪ {j}) . 

Hence, Xt is a local optima. �

Group coverage maximization algorithm

In this section, we will propose weighted group coverage maximization algorithm for 
solving GPM. Let U be the set of groups. U(S) represents the set of groups which includes 
at least one node in S, i.e., U(S) = {U ∈ U |U ∩ S �= ∅} . Then, b(U(S)) =

∑
U∈U(S) b(U) . 

Algorithm  3 is shown below by selecting the maximum marginal gain at each step 
and at most O(knl) time complexity. Greedy algorithm may give better solution, but 
the running time is O(knŴ(nm+ nl)) . We will compare several different strategies by 
experiments. 

Algorithm 3 Weighted Group Coverage Maximization Algorithm (WGCMA)
Input: An instance of GPM G = (V,E, P ), the number of seeds k.
Output: a set of seed nodes, Sk.
1: Sk = ∅
2: for i = 1 to k do
3: v∗ ← arg maxv∈V (b(U(S ∪ {v}))− b(U(S)))
4: Add v∗ to Sk

5: end for
6: return Sk.

Sandwich approximation framework

For GPM, we have formulated the lower bound and upper bound for ρ(·) . Algorithm  4 
gives the sandwich approximation framework. 

Algorithm 4 Sandwich Approximation Framework
Input: Given an instance of CPM G = (V,E, P ), 0 ≤ ε, δ ≤ 1 and k.
Output: a set of seed nodes, S.
1: Let SL be the output seed set of solving the lowerbound ρ by Submodular-Modular algorithm

(Algorithm 2)
2: Let SZ be the output seed set of solving the upperbound ρ by Submodular-Modular algorithm

(Algorithm 2)
3: Let SA be the output seed set of solving G = (V,E, P ) by Algorithm 3.
4: S =arg maxS0∈{SL,SZ ,SA}EP(G, ε, δ, S0) (by Algorithm 1)
5: return S

 For sandwich approximation framework, we can prove the following theoretical result.

Theorem 5.4  Let S be the seed set returned by Algorithm  4, and then, we have:

(6)ρ(S) ≥ max

{
ρ(SZ)

ρ(SZ)
,
ρ(S∗L)

ρ(S∗)

}
1− ǫ

1+ ǫ
αρ(S∗),
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where S∗L is the optimal solution to maximize the lower bound problem, S∗ is the optimal 
solution of GPM, and α is the approximation ratio of Algorithm 2.

Proof  Let S∗Z be the optimal solution to maximize the upper bound problem. Then, we 
have:

and

Let Smax = arg maxS0∈{SL,SZ ,SA} ρ(S0) , and then:

Since ∀S0 ∈ {SL, SZ , SA} , (1− ǫ)ρ(S0) ≤ ρ̂(S0) ≤ (1+ ǫ)ρ(S0) , we have:

It follows that:

�

Sadly, the performance of sandwich framework depends on α . Although we have 
proved the convergence of Algorithm 2 to a local optimal, the ratio α is still an open 
problem. According to Theorem   5.4, the difference between ρ(S∗) and ρ(S∗L) has 
great influence on the performance of Algorithm  4. Iyer and Bilmes [33] studied the 
minimization problem of the difference between submodular function. While the 
difference between ρ(S∗) and ρ(S∗L) may be bounded, we have the following result.

Theorem 5.5  Let S∗L be the optimal solution to maximize the lower bound problem and 
S∗ is the optimal solution of GPM, and then, we have:

Comparison with different heuristic strategies

We will compare Sandwich Approximation Framework (SAF) with Greedy Strategy 
(GS) proposed by Kempe [4] and Maximum Outdegree (MO) method by choosing 
the first k largest outdegree nodes. Algorithm 3 is called Weighted Group Coverage 
Maximization Algorithm, which represents as MC for simplification.

ρ(SZ) =
ρ(SZ)

ρ(SZ)
ρ(SZ) ≥

ρ(SZ)

ρ(SZ)
αρ(S∗Z)

≥
ρ(SZ)

ρ(SZ)
αρ(S∗) ≥

ρ(SZ)

ρ(SZ)
αρ(S∗)

ρ(SL) ≥ ρ(SL) ≥ αρ(S∗L) ≥
ρ(S∗L)

ρ(S∗)
αρ(S∗).

ρ(Smax) ≥ max

{
ρ(SZ)

ρ(SZ)
,
ρ(S∗L)

ρ(S∗)

}
αρ(S∗).

(1+ ǫ)ρ(S) ≥ ρ̂(S) ≥ ρ̂(Smax) ≥ (1− ǫ)ρ(Smax).

ρ(S) ≥
1− ǫ

1+ ǫ
ρ(Smax) ≥ max

{
ρ(SZ)

ρ(SZ)
,
ρ(S∗L)

ρ(S∗)

}
1− ǫ

1+ ǫ
αρ(S∗).

(7)ρ(S∗)− ρ(S∗L) ≤ max
S,|S|=k

(ρ(S)− ρ(S)).
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Experiments
To evaluate our algorithms, we will test on two datasets coming from [34, 35]. Face-
book-like Forum Network is the first dataset which was collected from the online 
community of Facebook. Users’ activities in this forum are recorded in this dataset, 
in which there are one-mode and two-mode data. There are 899 users and the rela-
tionship between users is stored in the one-mode data. Beside one-mode data, there 
are 522 topics and the two-mode data contain the interesting network of 899 users 
and 522 topics. Users related to a topic are represented as a group. Newman’s scien-
tific collaboration network is the second dataset, which represents the co-authorship 
network. These data are based on preprints published to Condensed Matter section 
of arXiv E-Print Archive from 1995 to 1999. The one-mode data indicate the relation-
ship among the co-authors. The relation between an author and the paper is shown in 
the two-mode data. The authors related to the same paper are considered as a group. 
Table 2 shows the details of these two datasets.

Procedure

The instances are formulated from the above datasets. The basic graph is constructed 
by the one-mode dataset. The set of groups come from two-mode dataset. The benefit 
of a group is derived from the size of group. In this paper, by multiplying the size of 
the group by a factor of 10 is defined as the benefit. The cost of each activated node is 
generated as a random number from 0 to 1. We use Python 3.6 to write all programs 
and run on a Linux server with 16 CPUs and 256 GB RAM.

Experimental results

From the comparison of three different seed selection strategies, Greedy Strategy (GS) 
returns a comparatively higher benefit than SAF and MO methods. The MO strategy ini-
tially gives higher profit than the MC. The SAF outperforms MO as the number of seed 
nodes increasing. Figures 5 and 6 show the experimental results. Figures 7 and  8 show 
performance of SAF for dataset 1 and 2, respectively. The main results are as follows:

Profit increases with increase of seed number for fixed β

The experiments are carried out with three values for beta values 0.5, 0.8, and 1. From 
the graphs, it can be observed that, for a given beta value, the profit increases with the 
increase in the number of seeds in a set. Initially, a seed set of lesser number of seeds is 
able to activate fewer groups, thus resulting in a lesser profit being generated. However, 
as the size of seed set increases, it is more likely for larger number of groups to be acti-
vated, thus increasing the profit with an increase in the number of seeds.

Table 2  Data statistics

Nodes Edges Groups Average 
group 
size

Dataset 1 899 142,760 522 14.6

Dataset 2 16,726 95,188 22,015 3.7
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Profit decreases with increase in β

The experiments are carried out with three values for beta values 0.5, 0.8, and 1. As the 
beta increases, it is observed that the number of groups activated decreases for a given 
seed set, which, in turn, results in the profit decreasing. As beta is the determining factor 
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Fig. 5  Comparison of different strategies for dataset 1
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Fig. 8  Performance of sandwich framework vs lower bound and upper bound for dataset 2
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for activation of the group, as beta becomes larger and larger, lesser groups get activated. 
As a result, the profit generated by a lower beta value is much higher as compared to the 
profit generated by a higher beta value. The seed set activates more nodes, but the acti-
vation of number of group decreases.

Gap of upper bound and lower bound

It is observed from the graphs of dataset 1 that with an increase in the beta value, the 
gap between upper bound and lower bound increases. The reason behind this result is 
because of the formulation of upper bound in our problem and the size of each group in 
dataset 1. In our experiments, the upper bound is fixed even as the beta varies. As beta 
increases, the profit decreases, and as the upper bound is fixed, the gap between upper 
bound and lower bound becomes large. However for dataset 2, the gap remains almost 
the same even as beta increases as the group size are smaller having an average group 
size of 3.7 as compared to group size in dataset 1 having average 14.6 as the group size.

Conclusion
This paper studied profit maximization problem of information propagation in online 
social networks. Group activation was considered in this novel IM model. Each activated 
group would give a benefit, while information diffusion cost was needed for every acti-
vated users. Then, our group profit maximization (GPM) problem attempted to look for 
k seed users to propagate information, such that the expected profit was maximum. The 
profit combined benefit of activated groups and the cost on each activated users. GPM 
was proved to be NP-hard and the objective set function was shown neither submodu-
lar nor supermodular. We proposed a weighted version of group coverage maximization 
strategy for solving GPM. Simultaneously, a sandwich approximation framework was 
presented with theoretical analysis. Finally, the experiment results shown that our pro-
posed algorithms were effectiveness and the efficiency. For future research, novel effi-
cient methods for solving non-submodular optimization are eager for paying attention.
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