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Introduction
In recent years, universities and other research institutions have put a lot of emphasis on 
assessing and enhancing the productivity of their faculty. One aspect that has been tra-
ditionally deemed important in these efforts is the number and quality of a researcher’s 
publications. The popular metrics of publication productivity include various quantities 
based on an individual’s citation record (e.g., total number of citations, weighted cita-
tions, i10-index, h-index, etc.), typically accounting for the “prestige” measures of publi-
cation outlets (e.g., journal impact factors, 5-year impact factors, SNIP, CiteScore, etc.). 
However, besides publication output, another—possibly equally important—aspect of 
the academic profession success is associated with advising and mentoring Ph.D. stu-
dents. One can argue that a successful academician is not only the one who publishes 
many highly cited articles, but also the one who successfully advises students, and fur-
ther, whose students in turn become successful academic advisors, thus ensuring the 
continuity and prosperity of an academic discipline. Indeed, in the modern era, many 
universities emphasize the importance of effective mentorship and post-graduation aca-
demic productivity of their Ph.D. students.
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This paper makes contributions towards a systematic network-based analysis of large-
scale Ph.D. student advising data. We define and interpret a family of new network-based 
metrics (collectively referred to as “a-indices”) that can be used for “ranking academic advi-
sors” using the academic genealogical records of scientists. We rely on the well-known web-
based Mathematics Genealogy project resource that has collected a vast amount of data on 
Ph.D. student advising records in mathematics-related fields.

Due to its popularity and public availability, MathGenealogy dataset has been used as a 
testbed in several previous studies. The basic characteristics of the MathGenealogy net-
work snapshot from 2011, as well as those of the underlying network of countries, were 
presented in [1]. In [2], the authors analyzed the performance of students of those indi-
viduals who were near the beginning versus near the end of their academic careers and 
revealed interesting insights. Another study [3] used the data of Ph.D. degrees granted after 
1973 and used it to compose a network of universities, where some of the universities were 
then labeled as strong sources (“authorities”) of Ph.D. production, while the others were 
labeled as strong destinations (“hubs”). The authors of [4] presented a comprehensive analy-
sis of the MathGenealogy network with respect to the classification of mathematics-related 
subjects, as well as most influential countries in terms of the Ph.D. graduates output. Fur-
ther, they revealed the major “families” of mathematicians that originated in certain root 
nodes (“fathers” of mathematics’ genealogical families), in the different “eras”, covered by 
the project data. A new concept of eigenvector-based centrality was defined and tested on 
the MathGenealogy network in [5]. In [6], the authors proposed the so-called “genealogi-
cal index” for measuring individuals’ advising records. As it will be seen below, one of the 
indices proposed in this paper can be viewed as a special case of the “genealogical index” 
proposed in [6].

This paper takes a further step towards studying and ranking academic advising impact 
using MathGenealogy social network. The emphasis of this study is on taking into account 
not only the number of students advised by an individual but also subsequent academic 
advising records of those students, while providing the respective metrics that are easy to 
calculate, understand, and interpret. It should also be noted that this study does not aim 
to explicitly compare the proposed indices with other metrics/results available in the 
aforementioned related literature. However, we believe that the presented approaches and 
results provide a new perspective on this interesting subject and further demonstrate the 
utility of social network analysis tools in the considered context.

The paper is organized as follows. In the next section, we briefly describe the MathGe-
nealogy dataset and provide its basic characteristics along with definitions and notations 
that will be used in the paper. Next, we define and interpret the family of “a-indices” that 
we propose for ranking academic advisors. We then extend these definitions to take into 
account co-advising. Finally, we present the results obtained on the most recent snapshot of 
the MathGenealogy dataset, as well as investigate the evolution of individual and collective 
a-indices over the past several decades.
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Data description, notations, and basic characteristics of MathGenealogy 
network
To facilitate further discussion, we first describe the MathGenealogy dataset and provide 
its basic characteristics, as well as define graph-theoretic concepts that will be used in 
the paper.

Data description

The data were collected from the Mathematics Genealogy Project website1 using a web-
crawler software. The dataset contains the records about nearly 231,000 mathematicians 
(as of July 2018). The information for each mathematician in the database includes name, 
graduation year, university, country, Ph.D. thesis topic and its subject classification, as 
well as the list of students advised by this individual. This available data allowed us to 
construct the directed network of advisor–advisee relationships.

Related graph‑theoretic concepts

Due to the fact that the considered dataset is a directed network, it is represented by 
a directed acyclic graph G = (N ,A) , with a set of n nodes, N = {1, . . . , n} , and a set of 
m arcs (links) A , where the mathematicians are represented by the nodes of the graph, 
and the relation “i is an advisor of j” is represented by an arc from i to j. The in-degree 
( degin(i) ) and out-degree ( degout(i) ) of node i are the numbers of the arcs coming into 
and going out of node i, respectively. Clearly, the in-degree of node i is the number of 
this individual’s Ph.D. dissertation advisors (equal to one for many nodes in the network, 
although a substantial fraction of nodes do have higher in-degrees), whereas the out-
degree of node i is the number of Ph.D. students that this individual has successfully 
graduated. Node j is said to be reachable from node i if there exists a directed path from 
i to j. The number of links in the shortest path from i to j is referred to as the distance 
between these nodes and denoted by d(i,  j) ( d(i, j) = +∞ if there is no such path). A 
group of nodes is said to form a weakly connected component if any two nodes in this 
group are connected via a path and no other nodes are connected to the group nodes, 
where the directions of arcs in a path are ignored.

The harmonic centrality of node i is defined as Ch(i) =
∑

j∈N
1

d(i,j) [7, 8]. The decay 
centrality of node i is defined as Cd(i) =

∑

j∈N δd(i,j) [9, 10], where the parameter 
δ ∈ (0, 1) is user-defined, although it is often set at δ = 1/2 , which is the value used in 
this study (it is assumed that 1/d(i, j) = δd(i,j) = 0 if d(i, j) = +∞).

Basic characteristics of MathGenealogy network

The retrieved network had 12,263 weakly connected components, with the giant weakly 
connected component having 208,526 nodes and 238,212 arcs (thus containing about 
90% of all the nodes in the network). All the computational results presented below were 
obtained for this giant component. Further in the text, we will use the term “network” 
implying this giant weakly connected component.

1 http://www.genea logy.ams.org//

http://www.genealogy.ams.org/
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The analysis of many basic characteristics of an earlier snapshot of this network was 
conducted in [1]. Since such analysis is not the main focus of this study, we report only 
some of these basic characteristics for the most recent snapshot that are relevant to the 
material presented in this paper. The distribution of out-degrees in this network is pre-
sented in Fig. 1. As one can observe, it does resemble a power law, although it is not a 
“pure” power law, which is consistent with observations for many other real-world net-
works [11].

The out-degree correlation for all “tail-head” (or, “advisor–student”) pairs of nodes 
corresponding to all arcs (directed links) in the considered directed network was cal-
culated as follows. Consider an ordered list of all directed links l ∈ {1, . . . , |A|} in the 
network, let i and j be the head and tail nodes of link l, and let degoutl (i) and degoutl (j) be 
their out-degrees, respectively. Thus, we have an array of size |A| of head nodes (denote 
the average out-degree of all nodes in this array by degout(i) ) and an array of size |A| of 
tail nodes (denote the average out-degree of all nodes in this array by degout(i) ). Then, 
the out-degree correlation (also sometimes referred to as the out-assortativity) can be 
calculated as:

The value of the out-degree correlation for this network was found to be approximately 
0.055. This implies that on average there is a very minor correlation between the mentor-
ship productivity of an advisor and a student. Therefore, we believe that in the proposed 
metrics and rankings of academic advisors it makes sense to “reward” those prolific advi-
sors whose students are also successful academic mentors.

As for the in-degree distribution, it is not surprising that the majority of the nodes 
have in-degree equal to one. However, the network contains over 30,000 nodes with 
in-degree greater than one, which means that a substantial fraction (about 15%) of the 
mathematicians in the dataset had more than one Ph.D. advisor. Therefore, it is impor-
tant to take into account the effects of co-advising, which is why we define “adjusted” 
versions of the proposed metrics (indices).

rout =

∑|A|

l=1(deg
out
l (i)− degout(i))(degoutl (j)− degout(j))

√

∑|A|

l=1(deg
out
l (i)− degout(i))2

√

∑|A|

l=1(deg
out
l (j)− degout(j))2

Fig. 1 Out-degree distribution (log–log scale) of the MathGenealogy network
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Advising impact metrics
In this section, we define four metrics (“a-indices”) that we believe are appropriate for 
quantifying an individual’s advising impact, with a focus on taking into account the men-
toring success of an individual’s students (going beyond just the number of the Ph.D. 
students that an individual has graduated). One way to address this is to consider the 
numbers of students and students-of-students, whereas another approach is to take into 
account all the academic descendants of an individual. These considerations are reflected 
in the following definitions.

Definition 1 (a-index) The a-index2 of an individual i is the largest integer number 
n such that the individual i has advised n students (Ph.D. graduates) each of whom has 
advised at least n of their own students (Ph.D. graduates). Equivalently, this is the larg-
est number n of out-neighbors of node i in the directed network such that each of these 
neighbors has out-degree of at least n.

Definition 2 (a∞-index) The a∞-index of an individual i is the total number of their 
academic descendants, computed as the largest number of distinct nodes that are reach-
able from node i through a directed path.

Definition 3 (a1-index) The a1-index of an individual i is the harmonic centrality of the 
corresponding node i in the directed network: a1(i) = Ch(i) =

∑

j∈N
1

d(i,j).

Definition 4 (a2-index) The a2-index of an individual i is the decay centrality (with 
δ = 1

2 ) of the corresponding node i in the directed network: a2(i) = Cd(i) =
∑

j∈N
1

2d(i,j)
.

It can be seen from Definitions 1–4 that the a-index is a measure of the most “imme-
diate” advising impact of an individual, which takes into account their advising success 
simultaneously with the advising success of their students.3 Note that the a-index is sim-
ilar to the h-index well-accepted for citations record evaluation; however, it turns out 
that it is rather hard to achieve a double-digit value of the a-index over one’s academic 
career due to the fact that graduating a Ph.D. student is generally a less frequent event 
than publishing a paper. As it can be seen in Table 1, the highest a-index value in the 
considered dataset is 12 (achieved by only four mathematicians). Note that a relevant 
study [6] reported only one mathematician with the value of a-index ( g(1) measure in 
their terminology) equal to 12. Overall, the a-index may be applicable as a metric of the 
advising impact for middle- to late-career academic scientists.

Note that the a-index can be extended in a straightforward fashion to reflect a more 
“long-term” advising impact of an individual by considering third, fourth, etc., genera-
tions of an individual’s students as it was proposed in the definition of the “genealogical 
index” in [6]. However, the main issue with this approach is that close to 100% of the 

2 To be more consistent with the notation for the rest of the “a-indices” defined here, one may denote this index as a0
-index; however, for simplicity, throughout the paper we will call this metric the “a-index” (which may be viewed as an 
analogy to the h-index widely used as a citation metric).
3 Of course, the out-degree of a node, that is, the number of advised students, is the simplest measure that assesses 
immediate advising impact; however, it is not in the scope of this study as it does not reflect the advising impact of 
descendants.
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mathematicians in the considered dataset would have zero values of such index, which 
would not allow one to effectively rank advisors’ long-term impacts using this metric.

Therefore, in order to provide more practically usable quantifications of “long-term” 
advising impacts of individuals, especially for those scientists who are in the late stages 
of their careers and for those who have lived and worked centuries ago, we propose the 
a1 , a2 , and a∞ indices. The a∞-index essentially assigns equal weights to all the academic 
descendants of an individual, whereas the a1 and a2 indices prioritize (with different 
weights) the immediate (directly connected) students and students-of-students while 
still giving an individual some credit for more distant descendants. Possible practical 
interpretations of these indices are as follows.

Table 1 Top individuals by a-index, with the a-index of at least 10 and their corresponding 
adjusted a-index

a‑index Name Grad. year Country of Ph.D. Adjusted 
a‑index

12 Heinz Hopf 1925 Germany 11

12 Jacques-Louis Lions 1954 France 11

12 Mark Aleksandrovich Krasnoselskii 1948 Ukraine 12

12 Erhard Schmidt 1905 Germany 10

11 Andrei Nikolayevich Kolmogorov 1925 Russia 10

11 C. Felix (Christian) Klein 1868 Germany 10

11 Heinrich Adolph Behnke 1923 Germany 9

11 Karl Theodor Wilhelm Weierstrass 1841 Germany 9

11 John Torrence Tate, Jr. 1950 United States 11

11 Ernst Eduard Kummer 1831 Germany 10

11 Reinhold Baer 1927 Germany 8

11 Salomon Bochner 1921 Germany 11

11 David Hilbert 1885 Germany 10

10 Lothar Collatz 1935 Germany 9

10 Günter Hotz 1958 Germany 10

10 Pavel Sergeevich Aleksandrov 1927 Russia 10

10 Edmund Hlawka 1938 Austria 9

10 Phillip Augustus Griffiths 1962 United States 9

10 Michael Francis Atiyah 1955 United Kingdom 9

10 Haim Brezis 1972 France 10

10 Thomas Kailath 1961 United States 10

10 R. L. (Robert Lee) Moore 1905 United States 10

10 Alan Victor Oppenheim 1964 United States 10

10 Shiing-Shen Chern 1936 Germany 10

10 Elias M. Stein 1955 United States 10

10 Richard Courant 1910 Germany 9

10 Hellmuth Kneser 1921 Germany 9

10 Emil Artin 1921 Germany 10

10 Lipman Bers 1938 Czech Republic 9

10 Issai Schur 1901 Germany 8

10 Roger Meyer Temam 1967 France 9

10 John Wilder Tukey 1939 United States 9

10 Philip Hall 1926 United Kingdom 10

10 Beno Eckmann 1942 Switzerland 9

10 Oscar Ascher Zariski 1925 Italy 10
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The a∞-index is appropriate for ranking the “root nodes” of the mathematics genealogy 
network, that is, nodes with zero in-degrees, which essentially correspond to “fathers” of 
mathematics’ “genealogical families”, such as those described in [4]. It is not practically 
significant to calculate this index for nodes with non-zero in-degree values, since their 
predecessors in the network would obviously have higher values of this index. Thus, 
the a∞ index is interesting primarily from the perspective of history of mathematics, 
although it can certainly be calculated very easily for any contemporary mathematician.

On the other hand, the a1-index and a2-index do not necessarily possess the aforemen-
tioned property of the a∞-index: the values of these indices may be higher for contem-
porary mathematicians than for the “fathers” of genealogical families due to the fact that 
an individual’s immediate students and any other early-generation students attain higher 
index values than do any distant descendants. These indices are based on the well-
known concepts of harmonic and decay centralities, which makes them easy to calculate 
and interpret, and hence, attractive from a practical perspective. These indices can be 
applied to an academic advisor from any era, thus providing a universal tool of assessing 
the academic advising impact. However, it is still likely that the advisors in the late stages 
of their careers would have higher values of these indices (especially the a1-index that 
gives higher weights to distant descendants) than those in early-to-mid-stages of their 
careers. This is not surprising, since these indices are designed to assess the long-term 
advising impact beyond the number of immediate students.

Further, note that there are several natural extensions of these definitions. First, all 
of these indices can be adjusted by taking into account the effects of co-advising, that 
is, giving a special treatment to the cases when multiple individuals have advised the 
same student j (that is, with node j having multiple incoming links). These particular 
extensions are addressed in greater detail in the next section. Second, the a-index can 
also be defined for a specific country or university (similarly to the h-index of a journal 
among citations metrics), that is, considering the respective country or university as a 
“super-node”, with the outgoing links directed to all the Ph.D. graduates ever produced 
(or produced during a specific time frame) by this country or university, respectively. 
The resulting collective advising impact values for universities and countries, based on 
MathGenealogy dataset, will also be presented below.

Advising impact metrics adjusted for co-advising
In this section, we define the extensions of our basic indices (Definitions 1–4) to handle 
the cases of co-advising, that is, the situations where one Ph.D. student was co-advised 
by more than one individual. It makes practical sense to introduce these definitions due 
to the fact that a substantial fraction of the individuals in the considered dataset were 
advised by more than one advisor. The basic assumption that we make in the definitions 
below is that the credit for advising such a student is split equally between each of the 
co-advisors (i.e., if there are n listed co-advisors for a student, then each of the co-advi-
sors receives 1 / n credit for graduating the student).

Adjusted a∞ , a1 , a2 indices

The definitions of a∞ , a1 , a2 indices can be modified to take into account co-advising as 
follows.
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Definition 5 (adjusted a∞-index) The adjusted a∞-index of an individual i is the total 
number of their academic descendants weighted by the reciprocals of their in-degrees, 
that is, a∞,adj(i) =

∑

j∈N
1

degin(j)
�{d(i,j)<+∞} , where �{d(i,j)<+∞} is the indicator function 

corresponding to the condition that node j is reachable from node i through a directed 
path.

Definition 6 (adjusted a1-index) The adjusted a1-index of an individual i is defined as 
a1,adj(i) =

∑

j∈N
1

degin(j)
1

d(i,j).

Definition 7 (adjusted a2-index) The adjusted a2-index of an individual i is defined as 
a2,adj(i) =

∑

j∈N
1

degin(j)
1

2d(i,j)
.

As one can clearly see from these definitions, the values of these adjusted indices are 
always less than or equal to the respective values of their “regular” counterparts, as com-
mon sense would suggest.

Adjusted a‑index

The above definition of a-index can also be modified to take into account co-advising, 
although this extension is not as straightforward as those in the previous subsection. The 
“adjusted a-index” of node i can be calculated as follows:

1. Calculate the “adjusted” out-degree of node i: degoutadj (i) =
∑

j:(i,j)∈A
1

degin(j)
 . Clearly, 

this value can be fractional and is reduced to simply the out-degree of node i if none 
of the students of the corresponding individual i were co-advised.

2. Compute and sort the adjusted out-degrees (defined as indicated above) of all nodes 
{j : (i, j) ∈ A} in the non-increasing order. Denote this sorted array as D1,D2, . . . and 
let Dk be the kth element of this array such that k is the largest integer satisfying 
⌈Dk⌉ ≥ k . Calculate min{Dk , k}.

3. Calculate the adjusted a-index of node i, aadj(i) , as the minimum over the values 
obtained in the steps 1 and 2 above.

This computational procedure ensures that the adjusted a-index of any node i is always 
less than or equal to its “regular” a-index, whereas the possibility of fractional values 
of the adjusted a-index provides a more diverse set of its possible values. This would 
potentially allow one to create a more “diversified” ranking of academic advisors based 
on their own productivity and productivity of their students, while taking into account 
co-advising.

Results for MathGenealogy dataset
In this section, we present the results obtained on the MathGenealogy network 
using the metrics proposed above. Figure  2 shows the distribution of the values of 
the a-index and the adjusted a-index over the entire network. One can observe that 
while the “regular” a-index is always integer by definition, the adjusted a-index does 
often take fractional values, especially for lower spectrum values of the index, thus 
providing a more diverse set of possible values in a ranking. Further, Table 1 provides 
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a ranking of top academic advisors with an a-index of at least 10, many of whom are 
prominent mathematicians from the nineteenth and twentieth centuries (note that 
none of the mathematicians who worked before the nineteenth century made it into 
this ranking). Their respective adjusted a-index values are also given in the same table 
for comparison. One can observe that this ranking would change if it was done using 
the adjusted a-index, thus showing that co-advising is indeed a significant factor to 
consider in this context.

Table 2 presents the collective advising impact rankings of universities and countries 
based on their respective values of a-index. It can be observed that universities and 
countries with prominent reputation in mathematics-related research fields lead these 
rankings, which shows that (i) not surprisingly, there is correlation between collective 
university-scale and country-scale research and advising impacts, and (ii) the a-index 
appears to be a realistic and appropriate metric for collective advising impact of a uni-
versity or a country. Note that we do not consider adjusted a-index in this case (although 
it would be possible), since it is rare in the dataset that an individual’s co-advisors come 
from different universities or countries.

Figure 3 shows the distribution of regular and adjusted a1 and a2 indices in the net-
work. It appears that both of these distributions are close to power-law, whereas the 
range of values of the a1-index is larger than that of the a2-index, which follows from 
the respective definitions. Tables  3 and 4 present the rankings of the top 25 advisors 
by regular versus adjusted a1 and a2 indices. For each index, mostly the same group of 
advisors appears in the regular versus adjusted index rankings, although their order 
slightly changes in both tables. Moreover, one can observe that the a1-index-based rank-
ing favors earlier generations of mathematicians (those from sixteenth, seventeenth, 
and eighteenth centuries), whereas the a2-index-based ranking features mathematicians 
from the nineteenth and the twentieth centuries. This is a direct consequence of the 
impact of the different weights given by these indices to distant academic descendants 
of an individual.

The ranking of individuals with in-degree zero in the network (that is, “fathers” of 
genealogical families) by their a∞ and adjusted a∞-index values is given in Table 5. The 

Fig. 2 The counts of individuals against their respective index values (blue for the a-index, orange for the 
adjusted a-index)
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top-ranked scientist with respect to both of these indices is Sharaf al-Din al-Tusi, who 
lived in the twelfth century and currently has 149,942 academic descendants.

Evolution of individual and collective a-indices in MathGenealogy dataset
As a natural further step in the analysis of individual and collective advising impacts 
using a-indices, we consider the dynamics of year-by-year evolution of the aforemen-
tioned indices over the past several decades. Specifically, we consider the time period 
starting from 1900 till 2017 (which was the last full year for which MathGenealogy 
data was collected in this study). The main reasons for considering only the data 
starting from 1900 are that (i) the growth of mathematics as a major research field 

Table 2 Top universities and countries by a-index

University name a‑index Country a‑index

Harvard University 31 United States 54

Princeton University 30 Germany 45

University of California, Berkeley 29 United Kingdom 33

Massachusetts Institute of Technology 28 Russia 31

Stanford University 28 Netherlands 29

The University of Chicago 25 France 26

Lomonosov Moscow State University 25 Switzerland 25

University of Cambridge 24 Austria 22

Columbia University 24 Canada 21

ETH Zürich 24 Belgium 19

Georg-August-Universität Göttingen 22 India 19

University of Wisconsin-Madison 22 Sweden 18

California Institute of Technology 22 Ukraine 17

University of Michigan 21 Australia 17

University of Oxford 21 Romania 17

Universiteit van Amsterdam 21 Poland 17

Yale University 20 Spain 17

University of Illinois at Urbana-Champaign 20 Israel 17

Universität Berlin 20 Japan 16

Ludwig-Maximilians-Universität München 20 Italy 15

Carnegie Mellon University 20 Finland 15

Fig. 3 The counts of individuals against their respective a1 (left) and a2 (right) index values (blue for the 
respective “regular” index, orange for the “adjusted” index), binned by ten consecutive index values per bin, 
plotted on a log–log scale
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occurred during the twentieth century with many new Ph.D. degrees awarded during 
that time frame, and (ii) the collected data itself is more reliable and complete for this 
most recent time frame, which makes the results on a-indices evolution correspond-
ing to this time interval more interesting. We should also note that some of the plots 
presented below reflect the data starting from 1950, which is done for visual clarity 
purposes.

Figure 4 shows the year-by-year evolution of a-index values of top 10 mathemati-
cians (according to their a-index value at present, as indicated in Table  1) starting 
from 1900 and until 2017. An interesting observation is that for most of these indi-
viduals, it took around 20–30 years to grow their a-index from 0 to 1 (that is the time 
period from the year an individual received his/her own Ph.D. degree to the year 
when his/her first student successfully graduates a student of their own). Further, it 
took another ∼ 30 years to grow their respective a-index value from 1 to around 10. 
The overall time period of 50–60 years to grow the a-index from zero to a high value 
of 10 or more is on the same order of magnitude as the length of a lifetime academic 
career (i.e., from the receipt of a Ph.D. degree till retirement). This shows that most of 
these “high-impact” advisors followed a similar temporal pattern of their careers. This 
observation is also consistent with the intent for this index to reflect an individual’s 
career-long rather than short-term advising impact.

Table 3 Top 25 individuals ranked by the a1-index (left) and adjusted a1-index (right)

Name Year a1‑index Name Year Adj. a1‑index

Simeon Denis Poisson 1800 11800.58 Simeon Denis Poisson 1800 10486.00

Abraham Gotthelf Kästner 1739 10719.19 Abraham Gotthelf Kästner 1739 9509.77

Joseph Louis Lagrange 10557.30 Joseph Louis Lagrange 9380.81

Pierre-Simon Laplace 10555.30 Pierre-Simon Laplace 9379.31

Jakob Thomasius 1643 10254.40 Jakob Thomasius 1643 9175.63

Leonhard Euler 1726 9969.036 Emmanuel Stupanus 1613 8852.32

Emmanuel Stupanus 1613 9907.44 Leonhard Euler 1726 8836.15

Christian August Hausen 1713 9712.28 Christian August Hausen 1713 8621.04

Johann Friedrich Pfaff 1786 9601.81 Friedrich Leibniz 1622 8565.26

Friedrich Leibniz 1622 9569.92 Giovanni Beccaria 8491.40

Giovanni Beccaria 9556.55 Jean Le Rond d’Alembert 8491.15

Jean Le Rond d’Alembert 9555.55 Johann Friedrich Pfaff 1786 8479.49

Carl Friedrich Gauss 1799 9395.80 Carl Friedrich Gauss 1799 8264.47

C. Felix (Christian) Klein 1868 9316.05 Petrus Ryff 1584 8262.28

Petrus Ryff 1584 9245.31 C. Felix (Christian) Klein 1868 8111.17

Johann Bernoulli 1690 9126.35 Johann Bernoulli 1690 8090.71

Johann Andreas Planer 1686 8885.37 Johann Andreas Planer 1686 7889.29

J. C. Wichmannshausen 1685 8882.86 J. C. Wichmannshausen 1685 7887.46

Johann Elert Bode 8707.06 Felix Plater 1557 7748.45

Felix Plater 1557 8669.28 Johann Elert Bode 7693.68

Jacob Bernoulli 1676 8400.77 Jacob Bernoulli 1676 7447.01

Nikolaus Eglinger 1660 8398.77 Nikolaus Eglinger 1660 7445.01

Julius Plücker 1823 8210.41 Johannes W. von Andernach 1527 7322.90

Johann Pasch 1683 8189.74 Guillaume Rondelet 7296.20

Rudolf Jakob Camerarius 1684 8189.74 Otto Mencke 1665 7274.00
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It should also be noted that the “outliers” in this plot are E.E. Kummer and K.T.W. 
Weierstrass, who received their own Ph.D. degrees substantially earlier than the other 
individuals in this list, and their a-indices were already equal to 6 in 1900. Interest-
ingly, both of their a-index values have “saturated” at 11 around 1920 and have not 
changed since then. This is most likely due to the fact that all of their direct descend-
ants (students) finished their own academic careers by that time; therefore, they did 
not produce any more students after that, which means that the respective a-index 
cannot increase anymore. Thus, the a-index is a good measure of an individual’s life-
time advising impact; however, it does not reflect any further advising impact that 
an individual might achieve after the end of his/her own and his/her students’ aca-
demic careers. On the other hand, an individual’s a1 , a2 , and a∞ indices clearly can 
grow indefinitely, even decades or centuries after the end of one’s career (as it will be 
illustrated below). Therefore, a long-term advising impact may need to be evaluated 
by considering a combination of metrics (such as the indices defined in this paper) 
rather than by taking into account only one metric.

It is also worth mentioning that a collective a-index of a university or a country 
does not exhibit the “saturation” behavior that was mentioned above for an individ-
ual a-index. Indeed, a university or a country would typically keep producing Ph.D. 
graduates indefinitely (unless a university/country ceases to exist). Figures  5 and 6 

Table 4 Top 25 individuals ranked by the a2-index (left) and adjusted a2-index (right)

Name Year a2‑index Name Year Adj. a2‑index

David Hilbert 1885 1099.72 David Hilbert 1885 949.74

C. Felix Klein 1868 1016.04 C. Felix Klein 1868 873.30

C. L. Ferdinand Lindemann 1873 907.25 C. L. Ferdinand Lindemann 1873 780.80

Erhard Schmidt 1905 667.56 E. H. Moore 1885 597.00

E. H. Moore 1885 639.77 Erhard Schmidt 1905 550.32

Ernst Eduard Kummer 1831 636.78 Ernst Eduard Kummer 1831 535.59

K.T.W. Weierstrass 1841 575.10 K.T.W. Weierstrass 1841 484.32

Julius Plucker 1823 522.36 Solomon Lefschetz 1911 466.55

Solomon Lefschetz 1911 510.06 Julius Plucker 1823 449.19

R. O. S. Lipschitz 1853 508.52 R. O. S. Lipschitz 1853 436.90

Oswald Veblen 1903 474.34 Oswald Veblen 1903 431.94

Richard Courant 1910 458.12 Richard Courant 1910 400.25

Heinz Hopf 1925 446.18 George David Birkhoff 1907 388.12

George David Birkhoff 1907 415.53 Heinz Hopf 1925 349.33

Jacques-Louis Lions 1954 385.92 Nikolai Nikolayevich Luzin 1915 335.95

Nikolai Nikolayevich Luzin 1915 366.49 Jacques-Louis Lions 1954 329.44

Simeon Denis Poisson 1800 362.25 A. N. Kolmogorov 1925 326.89

A. N. Kolmogorov 1925 361.89 Simeon Denis Poisson 1800 320.97

Ferdinand Georg Frobenius 1870 354.50 Gaston Darboux 1866 311.96

Gaston Darboux 1866 346.64 Michel Chasles 1814 309.62

Michel Chasles 1814 337.36 H. A. Newton 1850 301.44

G. P. L. Dirichlet 1827 335.53 Ferdinand Georg Frobenius 1870 294.73

Ludwig Bieberbach 1910 334.29 C. Emile Picard 1877 287.67

Edmund Landau 1899 330.46 G. P. L. Dirichlet 1827 283.56

H. A. Newton 1850 323.17 Edmund Landau 1899 280.94
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Table 5 Top 25 individuals with  zero in-degrees ranked by  the  a∞-index (left) 
and adjusted a∞-index (right)

Name Year a∞‑index Name Year Adj. a∞‑index

Sharaf al-Din al-Tusi 149942 Sharaf al-Din al-Tusi 134493.04

Elissaeus Judaeus 149909 Elissaeus Judaeus 134464.20

Jan Standonck 1474 149852 Jan Standonck 1474 134420.70

Cristoforo Landino 149821 Cristoforo Landino 134398.29

G. G. M. Groote 149820 Moses Perez 134395.79

F. F. R. Radewyns 149820 G. G. M. Groote 134393.87

Moses Perez 149818 F. F. R. Radewyns 134393.87

Ulrich Zasius 1501 149817 Ulrich Zasius 1501 134392.37

G. Hermonymus 149807 G. Hermonymus 134385.84

Jean Tagault 149750 Francois Dubois 1516 134341.45

J. ben Jehiel Loans 149750 Jean Tagault 134341.45

Francois Dubois 1516 149750 J. ben Jehiel Loans 134340.62

Johannes Stoffler 1476 149719 Johannes Stoffler 1476 134316.79

Nicole Oresme 147113 Nicole Oresme 131926.62

Luca Pacioli 147109 Luca Pacioli 131923.12

Bonifazius Erasmi 1509 147108 Bonifazius Erasmi 1509 131923.12

L. von Dobschutz 1489 147108 L. von Dobschutz 1489 131922.62

Johann Hoffmann 147073 Johann Hoffmann 131897.42

Friedrich Leibniz 1622 146244 Friedrich Leibniz 1622 131125.67

Thomas Cranmer 1515 142171 Thomas Cranmer 1515 127225.92

Ludolph van Ceulen 137372 Ludolph van Ceulen 122765.09

Marin Mersenne 1611 127076 Marin Mersenne 1611 113204.87

Paolo da Venezia 125964 Paolo da Venezia 112062.20

Sigismondo Polcastro 125961 Sigismondo Polcastro 112059.20

Matthaeus Adrianus 125959 Matthaeus Adrianus 112058.70

Fig. 4 Yearly evolution of individual mathematicians’ a-indices: 10 out of top 13 individuals according to 
the current a-index value, as indicated in Table 1 (the plots for M.A. Krasnoselskii, A.N. Kolmogorov, and H.A. 
Behnke are not shown due to missing data on graduation years of some of their descendants), 1900–present
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illustrate the evolution of collective a-index values corresponding to top universities 
and countries (according to their current a-index values as shown in Table  2). For 
visual clarity, these plots are shown starting from 1950 rather than 1900.

For universities’ collective a-index values, there were several lead changes during 
1900–1950 (not pictured), with Princeton being top-ranked for most of the 1950s and 
1960s (briefly overtaken by the University of Chicago in mid-1950s), whereas in 1968 
Harvard took the top-ranked position, which it has held till now. It should be also 
noted that Stanford has made a big jump from number 10 to number 4 in the a-index 
ranking during the past half-century. As for countries’ a-indices evolution, the United 
States passed Germany as number one in the collective a-index ranking in 1956 and 
has held this top position since then.

Fig. 5 Yearly evolution of universities’ a-indices (universities with a-index higher than 25), 1950–present

Fig. 6 Yearly evolution of countries’ a-indices (top 11 countries according to the current a-index value), 
1950–present
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Note that the collective a-indices of most universities and countries that are depicted 
in Figs. 5 and 6 have not changed since 1990s. This may be explained by the fact that it 
becomes harder and harder to increase the a-index when it has already reached high 
values (similarly to what happens to the h-index in research citations). Another factor 
may be that not all Ph.D. graduates from the past 10–20 years have been added to the 
MathGenealogy dataset yet. However, as mentioned above, this “temporary” saturation 
behavior of collective a-indices is not the same as the one we observed for individual 
a-indices, since the production of Ph.D. graduates by a city or a country is not limited by 
the lengths of academic careers of individual advisors.

Further, we consider the evolution of a1 and a2 indices (along with their adjusted ver-
sions) of the top advisors listed in Tables  3 and 4. The respective plots are shown in 
Figs. 7, 8, 9, and 10. Note that the evolution of a∞-index is not depicted here, since the 
plots corresponding to all top advisors according to this index exhibit a highly similar 
pattern and thus would look indistinguishable in a figure.

Interestingly, from Figs. 7 and 8 one can observe that both the a1 and the adjusted a1 
index values for all of the top advisors were very close to each other up to around 1970, 
which is a very recent date compared to the dates of their respective careers. However, 
in the past 3–4 decades, these indices have increased substantially and started to spread 
over a broader range of values, approximately between 6000 and 10,000. The ranking of 
advisors according to both the a1 and the adjusted a1 index has been stable over the past 
decades, with S.D. Poisson holding the top spot.

As for the evolution of a2 and adjusted a2 indices, there has been much more diversity 
and changes in the ranking of top advisors over the past decades (compared to a1-index). 
As noted above, the a2-index gives lower weights to distant descendants of an individ-
ual, which results in a lower order of magnitude of this index compared to the a1-index. 
Nevertheless, despite a narrower range of values for this index, there have been several 
changes in the ranks of top advisors according to this index in the twentieth century 
(although many of these mathematicians worked in the nineteenth century). Notably, D. 
Hilbert has assumed the top spot in the a2-index-based ranking only in the 1990s despite 

Fig. 7 Yearly evolution of a1-index, displayed for 10 mathematicians having the highest index values in 2017
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the fact that he received his own Ph.D. degree more than 100 years prior. Thus, the a2
-index can be viewed as a meaningful metric of an individual’s advising impact that lasts 
well beyond the end of one’s career and still can increase considerably in subsequent 
decades or even centuries.

As a concluding remark of this section, we should note that all of the aforementioned 
results should be viewed in the light of the fact that MathGenealogy dataset is not nec-
essarily complete for the considered time interval, and some Ph.D. graduates (as well as 
some Ph.D. graduation year information, as mentioned above) may not have been added 
to the database yet. This may lead to discrepancies in the results presented here with 
those that may be obtained in future studies when more entries are added to the data-
base. Nevertheless, the considered dataset is still rather large and comprehensive, and 
the presented results reveal interesting temporal patterns of the proposed individual and 
collective advising indices.

Fig. 8 Yearly evolution of adjusted a1-index, displayed for 10 mathematicians having the highest index values 
in 2017

Fig. 9 Yearly evolution of a2-index, displayed for 10 mathematicians having the highest index values in 2017



Page 17 of 18Semenov et al. Comput Soc Netw             (2020) 7:1 

Concluding remarks
We proposed a family of network-based advising impact metrics (a-indices) that are 
easy to calculate and interpret, as well as provided a flexible framework for quantify-
ing advising impacts of individuals from different “eras” and stages of their academic 
careers, as well as collective advising impacts of countries and universities. Although 
we illustrated our approaches on MathGenealogy dataset only, these approaches are 
certainly applicable to other scientific domains where comprehensive advisor–stu-
dent datasets may become available.

Due to the fact that we focus on the advising impact beyond the number of imme-
diate students of an individual, this approach is not intended for measuring advising 
impacts of early-career scientists (simply calculating an out-degree for “young” advi-
sors would still be a viable option). However, one may argue that a true impact of an 
academic advisor is evident towards later stages of career when one’s students achieve 
their own advising success. Therefore, we believe that these indices can be used in 
practical settings, for instance, by universities in order to quantify and promote indi-
vidual and collective advising successes of their faculty members. This study shows 
the applicability of network-based techniques for these purposes. As one of the pos-
sible directions of future research, it could be of interest to look at “groups of influen-
tial advisors”, for instance, using optimization-based techniques that identify “central” 
groups of nodes in a network [12].

It should also be noted that this study is not intended to build direct comparisons 
or preferences between different metrics of advising impact, including those pro-
posed here or those proposed in other related studies. Instead, we believe that long-
term individual or collective advising impact should be considered in the context 
of an “ensemble” of various quantitative metrics, including the proposed a-indices. 
Similarly to debates regarding citation indices (e.g., whether the h-index or some 
other quantitative metrics of citations are the most appropriate to measure citation 
impact), there is no definitive answer to the question about the “best” metric for 

Fig. 10 Yearly evolution of adjusted a2-index, displayed for 10 mathematicians having the highest index 
values in 2017
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advising impact. We hope that this study will stimulate further research in this inter-
esting research direction.
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