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Background
Diffusion of rumors (or information) can be represented as information propagation in 
a social network where its nodes are people and its edges are contacts among the peo-
ple. The scale of information propagation depends on where to start the propagation. 
In order to propagate as much as possible, starting nodes should be carefully selected. 
Selecting starting nodes for large-scale information propagation is important as one of 
the methods for viral marketing.

Abstract 

Background:  The process of rumor spreading among people can be represented 
as information diffusion in social network. The scale of rumor spread changes greatly 
depending on starting nodes. If we can select nodes that contribute to large-scale 
diffusion, the nodes are expected to be important for viral marketing. Given a network 
and the size of the starting nodes, the problem of selecting nodes for maximizing infor-
mation diffusion is called influence maximization problem.

Methods:  We propose three new approximation methods (Dynamic Degree Discount, 
Dynamic CI, and Dynamic RIS) for influence maximization problem in dynamic net-
works. These methods are the extensions of previous methods for static networks to 
dynamic networks.

Results:  When compared with the previous methods, MC Greedy and Osawa, our 
proposed methods were found better than the previous methods: Although the 
performance of MC greedy was better than the three methods, it was computationally 
expensive and intractable for large-scale networks. The computational time of our pro-
posed methods was more than 10 times faster than MC greedy, so they can be com-
puted in realistic time even for large-scale dynamic networks. When compared with 
Osawa, the performances of these three methods were almost the same as Osawa, but 
they were approximately 7.8 times faster than Osawa.

Conclusions:  Based on these facts, the proposed methods are suitable for influ-
ence maximization in dynamic networks. Finding the strategies of choosing a suitable 
method for a given dynamic network is practically important. It is a challenging open 
question and is left for our future work. The problem of adjusting the parameters for 
Dynamic CI and Dynamic RIS is also left for our future work.
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From given network, selecting such starting nodes for large-scale information prop-
agation was formalized as “influence maximization problem” by Kempe et  al. [1]. The 
original formalization is for static networks. However, nodes and edges can be newly 
added or deleted in many real social networks. Therefore, influence maximization prob-
lem in dynamic networks should be considered. Habiba et al. defined the problem for 
dynamic networks [2]. Since the problem was proved to be NP-Hard, computing the best 
solution in realistic time is computationally intractable. Therefore, many approximation 
methods based on Monte-Carlo simulation and heuristic methods have been proposed. 
Methods based on Monte-Carlo simulation are accurate but computationally expensive. 
On the other hand, heuristic methods are fast but they are less accurate.

In order to find better solutions for the information maximization problem, we pro-
pose three new methods for dynamic networks as the extension of the methods for 
static networks. Dynamic Degree Discount is a heuristic method based on node degree. 
Dynamic CI is a method based on a node’s degree and the degrees of reachable nodes 
from the node within specific time. Dynamic RIS uses many similar networks generated 
by random edge removal. We compare the proposed methods with previous methods. 
The number of propagated nodes based on our method is about 1.5 times of that of pre-
vious methods. And computational time of our method is about 7.8 times faster than 
previous methods.

The authors discuss the extended methods for influence maximization in dynamic net-
works [3]. In addition to the contents in [3], this paper includes detailed explanation of 
background knowledge, discussions of the effect of different values of parameters in the 
proposed methods, and detailed analysis of the advantages and disadvantages of the pro-
posed methods.

The structure of this paper is as follows. “Related work” section shows related work. 
“Proposed methods” section presents proposed methods (Dynamic Degree Discount, 
Dynamic CI and Dynamic RIS), “Experiments” section explains our experiments, and 
“Experimental results” section shows the experimental results. “Discussion” section 
shows discussions about the experimental results, and “Conclusion” section concludes 
the paper.

Related work
Model of information propagation

We use SI model as the model of information propagation on networks. In SI model, 
each node in networks is either in state S (susceptible) or in state I (infected). Nodes in 
state S do not know the information and those in state I know the information. At the 
beginning of information propagation (at time t = 1 ), a set of nodes in state I is fixed as 
the seed nodes. For all edges (t, u, v) at time t = 1, 2, . . . ,T  , the following operations are 
performed. If node u is in state I and node v in state S, information is propagated from 
u to v with probability � , which means the state of v is changed from S to I at time t + 1 . 
Probability � is the parameter of susceptibility, and it controls the percentage of informa-
tion propagation. At time t = T + 1 , information propagation is terminated.

Based on the above notations, we can formulate influence maximization problem as 
follows. We define σ(S) as the expected number of nodes of state I at time T + 1 when 
information propagation started at time 1 from seed nodes S of state I based on SI 
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model. (Please keep in mind that S in σ(S) is a set of seed nodes, and S in SI model is sus-
ceptible state.) Influence maximization problem in a dynamic network is to search for a 
set of seed nodes S of size k that maximizes σ(S) when a dynamic network G, duration of 
the network T, susceptibility of SI model �, and the size of seed nodes k are given.

Problems related to influence maximization in dynamic networks

There are some problems related to influence maximization in dynamic networks. 
Instead of giving item (or information) to seed nodes for free, revenue maximization 
[4] is the problems of finding seed customers (nodes) and offering discounts to them in 
order to increase total revenue. Although the problem is important in the field of mar-
keting, it is more complicated than influence maximization problem since seed nodes 
are not treated as equal, and the amount of discount for each node may not be equal. 
The number of possible parameters increases greatly especially in the case of dynamic 
networks. Although revenue maximization is one of the important research directions, 
it is different from influence maximization problem.

Opinion formation [5–7] is another problem related to influence maximization prob-
lem. Each agent (node) has an opinion which might be a continuous or a discrete quan-
tity. The underlying network represents the society where the agents have interactions. 
Each agent has an opinion in the society that is influenced by the society. Analyzing the 
increase and decrease of each opinion is important for modeling the dynamics of opin-
ion formation and for opinion polarization [8].

It is often pointed out that the properties of dynamic networks are quite different from 
those in static networks. Braha and Bar-Yam [9, 10] pointed out the overlap of the cen-
trality in dynamic networks and that in the aggregated (static) network is very small. 
Hill and Braha [11] propose dynamic preferential attachment mechanism that reproduce 
dynamic centrality phenomena. Holme presents good surveys on dynamic networks [12, 
13].

Influence maximization methods for static networks

Jalili presents a survey on spreading dynamics of rumor and disease based on centrality 
[14]. There are roughly three approaches for influence maximization problem in static 
networks. The first is Monte-Carlo simulation methods, the second is heuristic-based 
methods, and the third is the methods to generate a large number of networks with ran-
dom edge removal and select seed nodes based on the generated networks.

Monte-Carlo simulation method is proposed by Kempe et al. [1]. σ(S) is estimated by 
repeating Monte-Carlo simulation in Kepme’s method. When S is given as a set of seed 
nodes, simulations of information propagation are repeated R times and the average 
number of infected nodes is defined as σ(S) . Next, the node v which maximizes the dif-
ference σ(S ∪ {v})− σ(S) is added to seed nodes greedily based on the estimated σ(S) . 
This operation is repeated until |S| = k.

Since σ(·) is a monotonic and submodular function, when we denote strict solution 
of seed nodes as S∗ , the seed nodes obtained by the above greedy algorithm Sgreedy 
are proved to satisfy σ(Sgreedy) ≥ (1− 1/e)σ (S∗) [1]. Because of this property, quali-
ties of the solutions by Kempe’s method are good. However, more and more repetition 
of Monte-Carlo simulation is needed in order to estimate σ(S) accurately. Since the 
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computational cost for finding seed nodes with this method is high, it is not possible to 
find seed nodes in realistic time for large-scale networks.

Heuristic methods are proposed in order to search for seed nodes at high speed. Chen 
et al. [15] proposes PMIA to find seed nodes focusing on the paths with high informa-
tion propagation ratio. Jiang et al. [16] proposed SAEDV which searches for seed nodes 
by annealing method to obtain σ(·) from adjacent nodes in seed nodes. Chen et al. [17] 
proposed Degree Discount based on node degree where the nodes adjacent to already 
selected node are given penalty. This is because when node v is selected as one of seed 
nodes and u is its neighbor, it is highly likely that v propagates information to u, so 
selecting nodes other than u as seed nodes is better for information diffusion.

Algorithm of Degree Discount is shown as follows. ti in the algorithm shows the pen-
alty of node i. ddi is the degree of node i after giving penalty. ddi is smaller when the 
value of ti is bigger. 

Morone et  al. [18] proposed a method for finding seed nodes considering the 
degrees of distant nodes. The method calculates the following CIl(v) for each node 
and selects seed nodes based on the values:

∂Ball(v, l) in the above formula represents nodes where the distance from node 
v is l. The example of CIl(v) is explained in Fig.  1. ∂Ball(v, 2) when l = 2 are two red 

CIl(v) = (kv − 1)
∑

u∈∂Ball(v,l)

(ku − 1).
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nodes with distance 2 from node v and the degrees of both nodes are 8. Therefore, 
CI2(v) = (2− 1)× {(8− 1)+ (8− 1)} = 14.

The degree of node v itself is low in the network in Fig. 1, but the node v is effec-
tive for information propagation because it is connected with some high degree nodes 
with distance two. This method thus selects seed nodes with wider propagation com-
pared with the cases when seed nodes are selected based on the degree of node v only.

These heuristic methods compute seed nodes faster than the methods based on 
Monte-Carlo simulation. However, it is experimentally confirmed that the scale of 
propagation of the methods depends on network structures and parameters.

Ohsaka et al. [19] proposed a method to generate many networks with random edge 
removal in order to solve this problem. Ohsaka’s method is based on “coin flip” men-
tioned in Kempe’s paper [1]. Distribution of nodes where information is propagated 
from seed nodes S in static network G is set as DG(S) . And distribution of nodes where 
information is propagated from seed nodes S on network where edges are removed at 
constant ratio from the network G is set as D′

G(S) . “Coin flip” means that DG(S) equals 
to D′

G(S) in this situation, and that σ(·) can be estimated by generating many networks 
with edges removed at constant ratio, not by repeating Monte-Carlo simulation. Ohsa-
ka’s method estimates σ(·) by acquiring Strongly Connected Component (SCC) in each 
network generated by RR numbers of networks with edges removed at constant ratio. 
SCC is a subgraph where each node in the subgraph can be reachable to and from any 
other nodes.

Borgs et  al. [20] and Tang et  al. [21] also propose methods similar to Ohsaka’s 
method. The difference from Ohsaka’s method is σ(·) , which is not estimated directly 
from generated networks. Reachable nodes from randomly selected node v are com-
puted, and then seed nodes are selected based on the nodes. More specifically, the 
algorithm is as follows. 

Fig. 1  Example for explaining CIl(v) . When l = 2 , CIl(v) = 14
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There are other approaches for influence maximization problem in different prob-
lem settings. Chen et al. [22] proposed a method to solve the problem with time limit. 
Feng et al. [23] solves the influence maximization problem in a situation where fresh-
ness of the information degrades as it spreads. Mihara et al. [24] proposed a method 
to influence maximization problem where the whole network structure is unknown.

Degrees in dynamic networks

Notations of edges and paths in dynamic networks are the same as the ones in ref. 
[25]. (t,  u,  v) represents an edge from node u to v at time t. A path from node v1 to 
vk of length k − 1 is represented as (t1, v1, v2), (t2, v2, v3), . . . , (tk−1, vk−1, vk) , where 
t1 < t2 < · · · < tk−1 and ∀i, j(i �= j), vi �= vj . Duration of time from the start to the end of a 
path tk−1 − t1 is the length of time of the path, and the smallest one is the minimum length 
of time.

Habita et al. [26] define degrees in dynamic network using symmetric difference of past 
connections and future connections. However, diffusion in dynamic networks is from past 
to future only, and it is not bidirectional. We therefore define degree DT (v) of node v in 
dynamic network as follows:

DT (v) =
∑

1<t≤T

|N (v, t − 1)\N (v, t)|

|N (v, t − 1) ∪ N (v, t)|
|N (v, t)|,
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where N(v, t) is a collection of nodes adjacent to node v at time t. Figures 2 and 3 illus-
trate the examples of degrees on dynamic networks. In Fig. 2, adjacent nodes of node 
A do not change during the period. The difference of adjacent nodes N (A, 1)\N(A, 2) 
and N (A, 2)\N(A, 3) is empty. Therefore, the degree of node A in Fig. 2 is calculated as 
follows.

On the other hand, in Fig. 3, nodes adjacent to node A change over time. So the degree 
of node A is bigger than that in Fig. 2.

In Figs. 2 and 3, the number of adjacent nodes of node A is the same every time, so the 
average degree of node A is the same in Figs. 2 and 3. On the other hand, if we employ 
DT (v) as the definition of node degree, D3(A) = 0 in Fig.  2, and D3(A) = 2 in Fig.  3. 
DT (v) captures the number of newly adjacent nodes, and this is important for influence 
maximization problem. We therefore employ DT (v) as the definition of node degree in 
dynamic networks.

D3(A) =
|N (A, 1)\N(A, 2)|

|N (A, 1) ∪N(A, 2)|
|N (A, 2)| +

|N (A, 2)\N(A, 3)|

|N (A, 2) ∪N(A, 3)|
|N (A, 3)|

=
0

2
× 2+

0

2
× 2 = 0

D3(A) =
|N (A, 1)\N(A, 2)|

|N (A, 1) ∪N(A, 2)|
|N (A, 2)| +

|N (A, 2)\N(A, 3)|

|N (A, 2) ∪N(A, 3)|
|N (A, 3)|

=
2

4
∗ 2+

2

4
∗ 2 = 2

Fig. 2  Example of low degree nodes in a dynamic network

Fig. 3  Example of high degree nodes in a dynamic network
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Influence maximization methods for dynamic networks

There are two approaches for influence maximization problem in dynamic networks: 
methods based on Monte-Carlo simulation and heuristic-based methods. The former 
method is proposed by Habiba and Berger-Wolf [2]. The method estimates the scale of 
propagation σ(·) by repeating Monte-Carlo simulation just the same as in static net-
works. Since σ(·) is monotonic and deteriorated modular also in dynamic networks, 
this method achieves large-scale propagation. However, the computational cost of this 
method is high as in static networks. Osawa and Murata [25] proposed a heuristic 
method for calculating σ(·) at high speed. His algorithm for computing σ(S) for seed 
nodes S is shown as follows. 

After σ(S) is computed, seed nodes are obtained by greedy algorithm as in the method 
by Monte-Carlo simulation. Osawa’s method finds seed nodes in realistic computational 
time. However, the quality of its solution depends on given networks because σ(·) is 
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calculated approximately, and it is worse compared with the solutions by Monte-Carlo 
simulation.

Proposed methods
We propose new methods for influence maximization problem in dynamic networks in 
this section. We propose three new methods (Dynamic Degree Discount, Dynamic CI, 
and Dynamic RIS) which are the extensions of static network methods to dynamic net-
work methods. We use the following notations: G: dynamic network, T: duration of the 
dynamic network, k: the size of seed nodes, � : susceptibility, θ : the number of generated 
networks, and S: seed nodes.

Dynamic Degree Discount

Dynamic Degree Discount is the extension of Degree Discount by Chen et  al. [17] to 
dynamic networks. In Dynamic Degree Discount, definitions of degrees and adjacent nodes 
in the algorithm of Degree Discount are modified for dynamic networks. Algorithms 3.1 
shows the algorithm of Dynamic Degree Discount. Underlines show the parts modified 
from original Degree Discount. 
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Dynamic CI

Dynamic CI is an extension of Morone’s method [18] for dynamic networks. Morone’s 
method focuses on the degree of node v and the degrees of nodes with distance l from 
v. Dynamic CI defines an index D_CIl(v) in which degree and distance are extended to 
dynamic networks.

The differences between CIl(v) and D_CIl(v) are as follows: (1) the definition of degree 
is changed to that for dynamic networks and (2) ∂Ball(v, l) in CIl(v) is changed to 
DBall(v,  l). DBall(v,  l) represents nodes where their shortest duration of time (men-
tioned in “Model of information propagation” section) from node v is l. l is a param-
eter which takes the value within the range 1 ≤ l ≤ T  . In the algorithm of Dynamic CI, 
D_CIl(v) is computed for each node and top k nodes are selected as seed nodes.

Dynamic RIS

Dynamic RIS is an extension of Borgs’s method [20] and Tang’s method [21] for dynamic 
networks. 

The difference between Borgs’s and Tang’s algorithm and Dynamic RIS is where RR in 
their algorithm is set as RR(v, d) in our algorithm. RR(v, d) is a set of all nodes that are 
reachable to v within the shortest duration of time d in all durations of dynamic net-
works, which is defined as follows:

D_CIl(v) = DT(v)
∑

u∈DBall(v,l)

DT(u).
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RRt(v, d) is a set of nodes which are reachable to “node v at time t” within the shortest 
period of d.

The computational complexities of these methods are as follows.

Dynamic Degree Discount

According to the paper of Chen et al. [17], the computational complexity of Degree Dis-
count is O(k · logn+m) , where k is the number of seed nodes, n is the number of nodes, 
and m is the number of edges, respectively. Dynamic Degree Discount is an extension of 
Degree Discount. Static degree is replaced with dynamic one ( DT (i) ) and Static neigh-
bors is replaced with dynamic one ( NT (v) ). Computational complexity for dynamic 
degree and dynamic neighbors is T ·m

n  , where T is the total duration of time of given 
dynamic network. Therefore, the total computational complexity of Dynamic Degree 
Discount is O(k · logn+m+ T ·m

n ).

Dynamic CI

According to the paper of Morone and Makse [18], the computational complexity of 
CI is O(n · logn) , where n is the number of nodes. Dynamic CI is an extension of CI. 
Static degree is replaced with dynamic one ( DT (i) ), and its computational complexity is 
T ·m
n  , where T is the total duration of time of given dynamic network. Therefore, the total 

computational complexity of Dynamic CI is O(n · logn+ T ·m
n ).

Dynamic RIS

According to the paper of Tang et  al. [21], the computational complexity of RIS is 
O(k · l2(m+ n)log2n/ǫ3) which returns (1− 1

e − ǫ)-approximate solution with at least 
1− n−l probability, where l and ǫ are the constants. Computational complexity of 
Dynamic RIS heavily depends on the parameters θ and d, which are the number of gen-
erated networks and the duration of time for computing RR(v, d), respectively. Therefore, 
the total computational complexity of Dynamic RIS is O(θ · d · k · l2(m+ n)log2n/ǫ3).

Experiments
We perform experiments for comparing the proposed methods with previous ones in 
order to confirm their effectiveness. Dynamic networks used for the experiments are 
shown in Table 1. These networks are the same as the ones used in previous research. 
Average degree in Table  1 shows the average of all nodes in the network, which is 
1
|V |

∑
v∈V DT (v) . Hospital [27] is a network about contacts of patients and medical staffs 

at hospital with time. Primary School [28, 29] is a network about contacts of students 
and teachers at school. High School 2013 [30] is a network of contacts of students. The 
unit of the duration in these three datasets is 20 s. Each dataset is available at SocioPat-
terns (http://www.socio​patte​rns.org).

RR(v, d) =

T⋃

t=1

RRt(v, d).

http://www.sociopatterns.org
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Methods used in the experiments are previous two methods (Monte-Carlo simulation 
(MC Greedy) and Osawa) for dynamic network explained in “Influence maximization 
methods for dynamic networks” section and our proposed methods (Dynamic Degree 
Discount, Dynamic CI, and Dynamic RIS) in “Proposed methods” section. Given a net-
work as input, each method computes seed nodes S. The simulation of influence maxi-
mization based on SI model is repeated R times with the obtained seed nodes and set 
the average of the number of nodes in state I as σ(S) . The values of σ(S) are compared in 
order to evaluate the methods.

Experiments are performed for the following purposes:

(1)	 Comparison of σ(S) when the size of seed nodes k changes.
(2)	 Comparison of computational time when the size of seed nodes k changes.

Parameters in the experiments are set as follows. The number of repetition of the 
simulations for information propagation is set as R = 50 . The number of repetition of 
Monte-Carlo simulation in MC Greedy is set as 1000. These two parameters are com-
mon in all experiments. The size of seed nodes k is set from 0 to 20%. Susceptibility � is 
set as � = 0.01 . It is difficult to perform experiments for all the values as parameter l in 
Dynamic CI which takes the value of 1 ≤ l ≤ T  . We use the values l = 1, 5, 10, 20 in the 
experiments. As the parameters θ and d in Dynamic RIS, θ is set as θ = 1000 and as for 
d, values d = 0, 5, 10, 20 are used since it is difficult to perform experiments for all the 
value as in l of Dynamic CI.

CELF [31] is used to speedup the experiments when greedy algorithms are used in MC 
Greedy and Osawa. CELF is an algorithm used when the greedy algorithm is applied to 
the problem with inferior modularity, and the solution is the same as in normal greedy 
algorithm. According to the experiments by Lescovec [31], computational time is 700 
times faster than normal greedy algorithm when CELF is used.

Experimental results
Comparison of σ(S) when the size of seed nodes k changes

The results of information propagation for each size of seed nodes k with fixed suscepti-
ble � = 0.01 of SI model are shown in Fig. 4. The x axis of the Figure shows the percent-
age of seed nodes, and the y axis shows the number of infected nodes. Values of the x 
axis is k

|V |
× 100 , the percentage of seed nodes to all nodes in the network. Values of the 

y axis is σ(S)
|V |

× 100 , the percentage of σ(S) to all nodes in the network. The best values of 
l in Dynamic CI and d in Dynamic RIS are used in our experiments. As shown in Fig. 4, 
MC Greedy achieves the highest diffusion in all datasets. Diffusion of the proposed 

Table 1  Dataset for the experiments

Nodes Edges Duration Ave. deg.

Hospital 75 32,424 9,453 69.3

Primary School 242 125,773 3,100 142.7

High school 2013 327 188,508 7,375 63.0
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Fig. 4  Comparison of σ(S) when the size of seed nodes k changes. a Hospital. b Primary School. c High 
School 2013

Fig. 5  Comparison of σ(S) when susceptibility � changes. a Hospital. b Primary School. c High School 2013
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methods, Dynamic Degree Discount, Dynamic CI, and Dynamic RIS are inferior to MC 
Greedy, but they are still better than Osawa. The scale of diffusion of Dynamic RIS in 
High School 2013 achieves 1.5 times as in Osawa.

There is not much difference in the scale of diffusion among each of the three pro-
posed methods. Dynamic RIS achieves the highest in High School 2013, for example, but 
the difference among proposed methods is small compared with the difference between 
proposed methods and previous methods (MC Greedy and Osawa).

Comparison of σ(S) when susceptibility � changes

Figure 5 shows diffusion when the size of seed nodes is fixed as 20% of all nodes in the 
networks and susceptibility is changed as � = 0.001, 0.01, 0.05 . The x axis shows the 
value of � , and the y axis shows the percentage of diffusion. Parameters l and d are the 
same as the ones used in the previous experiments. As shown in Fig.  5, MC Greedy 
achieves the highest diffusion regardless of the value of � . The difference among three 
proposed methods is small.

As the result of comparison with proposed methods and Osawa, our proposed 
methods achieve higher scale of diffusion than Osawa in Hospital and High School 
2013 when � = 0.05 . Osawa achieves higher diffusion than Dynamic RIS only in Pri-
mary School. When � = 0.001 , the difference between proposed methods and Osawa 
is very small compared with the cases of other � values.

Fig. 6  Comparison of computational time when the size of seed nodes k changes. a Hospital. b Primary 
School. c High School 2013
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Comparison of computational time when the size of seed nodes k changes

Figure 6 shows the computational time when � is set as � = 0.01 and the sizes of seed 
nodes are changed. A PC of Intel Core i7(3.4 GHz) CPU and 8 GB memory is used 
for the experiments. X axis shows the percentage of seed nodes, and y axis shows the 
computational time (log-scale).

Figure 6 shows that for all datasets, methods other than MC Greedy can compute 
seed nodes in realistic time. MC Greedy needs several hours to compute seed nodes. 
This shows that MC Greedy is intractable in realistic time for large-scale networks.

Regarding the comparison among three proposed algorithm, computational time 
of Dynamic Degree Discount and Dynamic CI is almost the same in all datasets. 
Dynamic RIS is about the same computational time as the other two proposed meth-
ods in Hospital, and is faster in Primary School and High School 2013. Regarding the 

Fig. 7  Diffusion and computational time for different l in Dynamic CI. a Diffusion of Hospital. b Diffusion of 
Primary School. c Diffusion of High School 2013. d Computational time of Hospital. e Computational time of 
Primary School. f Computational time of High School 2013
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comparison with proposed methods and Osawa, Dynamic RIS is approximately 7.8 
times faster than Osawa except very small network (Hospital).

Parameters of Dynamic CI and Dynamic RIS

Diffusions of proposed methods with different parameters are shown in this section. We 
change parameters l of Dynamic CI, and θ and d in Dynamic RIS.

Diffusion and computational time of different l in Dynamic CI

Diffusion and computational time when l in Dynamic CI changes to 1,  5,  10,  20 are 
shown in Fig. 7. Left line graphs show the size of diffusion when l is changed in each 
network. Right bar graphs show computational time. Left line graphs show that diffusion 
depends on the value of l. Therefore, it is important to find appropriate l in Dynamic 

Fig. 8  Diffusion and computational time of different θ in Dynamic RIS. a Diffusion of Hospital. b Diffusion of 
Primary School. c Diffusion of High School 2013. d Computational time of Hospital. e Computational time of 
Primary School. f Computational time of High School 2013
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CI. Since there is no simple correlation between the scale of diffusion and the value of 
l (such as diffusion becomes larger as l becomes large), diffusions for various values of l 
should be investigated and compared. Right bar graphs show that there are no big differ-
ences of execution time when the value of l changes.

Diffusion and computational time of different θ in Dynamic RIS

θ in Dynamic RIS is a parameter for the number of generated graphs in RR(v, d). Dif-
fusion and computational time when parameter θ is changed to 500, 1000, 1500, 2000 
are shown in Fig. 8. Left line graphs show that diffusion does not change much when 
θ changes. However, the scale of diffusion is slightly small when θ = 500 in Hospital 
and High School 2013. This means that bigger θ is desirable from the viewpoint of 
diffusion. On the contrary, right bar graphs show that higher value of θ results in the 
increase of computational time. From the viewpoint of computational time, smaller θ 

Fig. 9  Diffusion and computational time of different d in Dynamic RIS. a Diffusion of Hospital. b Diffusion of 
Primary School. c Diffusion of High School 2013. d Computational time of Hospital. e Computational time of 
Primary School. f Computational time of High School 2013
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is better. Regarding the value of θ , there is a trade-off between the scale of diffusion 
and the computational time. It is important to find smaller θ for shorter computa-
tional time, but too small θ results in small-scale diffusion.

Diffusion and computational time of different d in Dynamic RIS

d in Dynamic RIS is a parameter for the number of time steps for looking back. Fig-
ure 9 shows diffusion and executing time when parameter d changes to 0, 5, 10, 20. Left 
line graphs show that there is almost no difference in diffusion when d changes, while 
right bar graphs show that computational time increases as the value of d becomes big-
ger. The scale of diffusion does not change even if the value of d becomes bigger in our 
experiments.

Discussion
Analysis focused on expansion of each node

In the experiments when susceptibility changes in “Advantages and disadvantages of 
each of the proposed methods” section, the difference between the proposed methods 
and Osawa was small when � = 0.001 compared with the experiments with other val-
ues of � . When � = 0.05 , Osawa outperforms proposed methods only in Primary School. 
This section discusses these two points.

Figure  10 shows the distribution of diffusion σ({v}) of each node v when Monte-
Carlo simulation is used. X axis shows the percentage of diffusion from node v to the 
whole network ( σ({v}) ), and Y axis shows the frequency of the nodes with each of the 
percentage in X axis. When � = 0.001 , almost all nodes are less than 5% of diffusion in 

Fig. 10  Distribution of diffusion σ({v}) of each node v. a Hospital. b Primary School. c High School 2013
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all networks. This means that there is no big difference of the diffusion from different 
seed nodes. This is the reason why the difference between proposed methods and Osawa 
is small in the experiment in “Advantages and disadvantages of each of the proposed 
methods” section. On the contrary, there are many nodes with more than 60% of diffu-
sion in Primary School when � = 0.05 compared with other two networks. In this case, 
large-scale diffusion is easy to be achieved even if the most appropriate seed nodes are 
not selected. This is the reason why Osawa outperforms proposed method in Primary 
School in “Advantages and disadvantages of each of the proposed methods” section.

Advantages and disadvantages of each of the proposed methods

Advantages and disadvantages of each of the proposed methods are discussed in this 
section. An advantage of Dynamic Degree Discount is that it contains no parameter, so 
there is no need to adjust parameter. Its disadvantage is that it is only for SI model, so the 
method cannot be used for other models. This is because Dynamic Degree Discount is 
an extension of Chen’s Degree Discount which is for SI model. There are other informa-
tion propagation models such as LT model and Triggering models proposed by Kempe 
et al. Dynamic Degree Discount cannot be applied to such models.

An advantage of Dynamic CI is that it can be applied to many information propaga-
tion models in contrast to Dynamic Degree Discount because Dynamic CI uses only 
degree information when it calculates seed nodes. Its disadvantage is that the abil-
ity of diffusion depends on the value of parameter l as mentioned in “Diffusion and 
computational time of different l in Dynamic CI” section. It is necessary to search for 
appropriate values of l for Dynamic CI. The parameter l takes the value within the 
range 1 < l < T  , so the search takes time in general.

An advantage of Dynamic RIS is that its computational time is short. As shown in 
the experimental results, its computational time is shorter than other methods in all 
networks except Hospital. As the method can be applied to large networks due to 
its short computational time, this is a big advantage. Disadvantage of Dynamic RIS 
is that it needs to adjust parameters θ and d. As mentioned in the previous section, 
computational time becomes bigger as the parameter θ becomes bigger, and the scale 
of diffusion becomes smaller for too small θ . Therefore, it is necessary to set appropri-
ate value for θ . However, parameter sensitivity of θ and d is not so much compared 
with the sensitivity of l in Dynamic CI.

Conclusion
We propose three new methods for influence maximization problem in dynamic net-
works which are the extensions of the methods for static networks. As the result of 
experiments for comparing with previous methods, MC Greedy and Osawa, our three 
proposed methods are better than previous methods in the following sense. Although 
the performance of MC greedy is better than these three methods, it is computation-
ally expensive and intractable for large-scale networks. The computational time of our 
proposed methods is more than 10 times faster than MC greedy, so they can be com-
puted in realistic time even for large-scale dynamic networks. When compared with 
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Osawa, the performances of these three methods are almost the same as Osawa, but 
they are approximately 7.8 times faster than Osawa. Based on these facts, the pro-
posed methods are suitable for influence maximization in dynamic networks.

The comparison of Dynamic Degree Discount, Dynamic CI, and Dynamic RIS is as 
follows. The choice of the methods should be done based on the following pros and 
cons.

Dynamic Degree Discount

•	 It requires no parameter.
•	 It is applicable to SI model only.

Dynamic CI

•	 It is applicable to other information propagation models.
•	 The performance heavily depends on parameter l.

Dynamic RIS

•	 It is relatively fast among these three methods.
•	 It requires two parameters to be adjusted ( θ and d).

Finding the strategies of choosing suitable method for given dynamic network is practi-
cally important. It is a challenging open question and is left for our future work.

The problem of adjusting the parameters for Dynamic CI and Dynamic RIS is also left 
for our future work.

Authors’ contributions
The authors propose three new methods for influence maximization problem in dynamic networks. Both authors read 
and approved the final manuscript.

Acknowledgements
The authors would like to thank the funding partners for supporting our work.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data are available at SocioPatterns (http://www.socio​patte​rns.org).

Funding
This work was supported by JSPS Grant-in-Aid for Scientific Research(B) (Grant Number 17H01785) and JST CREST (Grant 
Number JPMJCR1687).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 February 2018   Accepted: 15 September 2018

References
	1.	 Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Proceedings of the 

Ninth ACM SIGKDD international conference on knowledge discovery and data mining-KDD ’03. p. 137–46. 2003. 
https​://doi.org/10.1145/95675​0.95676​9.

	2.	 Habiba and Berger-Wolf TY. Maximizing the extent of spread in a dynamic network. DIMACS Technical Report. 2007.

http://www.sociopatterns.org
https://doi.org/10.1145/956750.956769


Page 21 of 21Murata and Koga ﻿Comput Soc Netw             (2018) 5:8 

	3.	 Murata T, Koga H. Methods for influence maximization in dynamic networks. In: Proceedings of the 6th international 
conference on complex networks and their applications (Complex Networks 2017), studies in computational intel-
ligence. Berlin: Springer; 2017. p. 955–66.

	4.	 Babaei M, Mirzasoleiman B, Jalili M, Safari MA. Revenue maximization in social networks through discounting. Soc 
Netw Anal Mining. 2013;3(4):1249–62.

	5.	 Jalili M. Social power and opinion formation in complex network. Phys A. 2013;392(4):959–66.
	6.	 Jalili M. Effects of leaders and social power on opinion formation in complex networks. Simulation. 

2012;89(5):578–88.
	7.	 Afshar M, Asadpour M. Opinion formation by informed agents. J Artif Soc Soc Simul. 2010;13(4):1–5.
	8.	 Garimella K, Morales GDF, Mathioudakis M, Gionis A. Polarization on social media. Web Conf 2018 Tutorial. 

2018;1(1):1–191.
	9.	 Braha D, Bar-Yam Y. From centrality to temporary fame: dynamic centrality in complex networks. Complexity. 

2006;12(2):59–63.
	10.	 Braha D, Bar-Yam Y. Time-dependent complex networks: Dynamic centrality, dynamic motifs, and cycles of social 

interactions. In: Adaptive networks: theory, models and applications. 2009. p. 39–50.
	11.	 Hill SA, Braha D. Dynamic model of time-dependent complex networks. Phys Rev E. 2010;82(046105):1–7.
	12.	 Holme P. Modern temporal network theory: a colloquium. Eur Phys J B. 2015;88(234):1–30.
	13.	 Holme P, Saramäki J. Temporal networks. Phys Rep. 2012;519(3):97–125. https​://doi.org/10.1016/j.physr​

ep.2012.03.001.1108.1780.
	14.	 Jalili M, Perc M. Information dascades in complex networks. J Compl Netw. 2017;5(5):665–93.
	15.	 Chen W, Wang C, Wang Y. Scalable influence maximization for prevalent viral marketing in large-scale social net-

works. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining-
KDD ’10. 2010. p. 1029–38. https​://doi.org/10.1145/18358​04.18359​34.

	16.	 Jiang Q, Song G, Cong G, Wang Y, Si W, Xie K. Simulated annealing based influence maximization in social networks. 
In: Proceedings of the twenty-fifth AAAI conference on artificial intelligence. 2011. p. 127–132.

	17.	 Chen W, Wang Y, Yang S. Efficient influence maximization in social networks. In: Proceedings of the 15th ACM 
SIGKDD international conference on knowledge discovery and data mining-KDD ’09. 2009. p. 199–207. https​://doi.
org/10.1145/15570​19.15570​47.1204.4491. http://porta​l.acm.org/citat​ion.cfm?doid=15570​19.15570​47.

	18.	 Morone F, Makse HA. Influence maximization in complex networks through optimal percolation. Nature. 
2015;524(7563):65–8. https​://doi.org/10.1038/natur​e1460​4.

	19.	 Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K-i. Fast and accurate influence maximization on large networks with 
Pruned Monte-Carlo simulations. In: Proceedings of the twenty-eighth AAAI conference on artificial intelligence. 
2014. p. 138–44.

	20.	 Borgs C, Brautbar M, Chayes J, Lucier B. Maximizing social influence in nearly optimal time. In: Proceedings of the 
twenty-fifth annual ACM-SIAM symposium on discrete algorithms. 2014. p. 946–57.

	21.	 Tang Y, Xiao X, Shi Y. Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceed-
ings of the 2014 ACM SIGMOD international conference on management of data. 2014. p. 75–86.

	22.	 Chen W, Lu W, Zhang N. Time-critical influence maximization in social networks with time-delayed diffusion process. 
In: Proceedings of the twenty-sixth AAAI conference on artificial intelligence. 2012. p. 592–8. http://www.aaai.org/
ocs/index​.php/AAAI/AAAI1​2/paper​/viewF​ile/5024/5243 http://arxiv​.org/abs/1204.3074.

	23.	 Feng S, Chen X, Cong G, Yifeng Z, Yeow, Meng C, Yanping X. Influence maximization with novelty decay in social 
networks. In: Proceedings of the twenty-eighth AAAI conference on artificial intelligence. 2014. p. 37–43.

	24.	 Mihara S, Tsugawa S, Ohsaki H. Influence maximization problem for unknown social networks. In: Proceedings of the 
2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015-ASONAM ’15. 
2015. p. 1539–46. https​://doi.org/10.1145/28087​97.28088​85.

	25.	 Osawa S, Murata T. Selecting seed nodes for influence maximization in dynamic networks. In: Proceedings of the 6th 
workshop on complex networks (CompleNet 2015), studies in computational intelligence. Berlin: Springer; 2015. p. 
91–8.

	26.	 Habiba, Yu Y, Berger-Wolf TY, Saia J. Finding spread blockers in dynamic networks. In: Advances in social network 
mining and analysis. 2010. vol. 5498, p. 55–76.

	27.	 Vanhems P, Barrat A, Cattuto C, Pinton J-F, Khanafer N, Régis C, Kim B-A, Comte B, Voirin N. Estimating potential infec-
tion transmission routes in hospital wards using wearable proximity sensors. PloS ONE. 2013;8(9):73970.

	28.	 Stehle J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton JF, Quaggiotto M, Van den Broeck W, Regis C, Lina B, Vanhems P. 
High-resolution measurements of face-to-face contact patterns in a primary school. PloS ONE. 2011;6(8):23176.

	29.	 Gemmetto V, Barrat A, Cattuto C. Mitigation of infectious disease at school: targeted class closure vs school closure. 
BMC Infect Dis. 2014;14(1):1.

	30.	 Mastrandrea R, Fournet J, Barrat A. Contact patterns in a high school: a comparison between data collected using 
wearable sensors, contact diaries and friendship surveys. PloS ONE. 2015;10(9):0136497.

	31.	 Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N. Cost-effective outbreak detection in networks. 
Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining-KDD ’07. 
2007. 420–9. https​://doi.org/10.1145/12811​92.12812​39.

https://doi.org/10.1016/j.physrep.2012.03.001.1108.1780
https://doi.org/10.1016/j.physrep.2012.03.001.1108.1780
https://doi.org/10.1145/1835804.1835934
https://doi.org/10.1145/1557019.1557047.1204.4491
https://doi.org/10.1145/1557019.1557047.1204.4491
http://portal.acm.org/citation.cfm?doid=1557019.1557047
https://doi.org/10.1038/nature14604
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewFile/5024/5243
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewFile/5024/5243
http://arxiv.org/abs/1204.3074
https://doi.org/10.1145/2808797.2808885
https://doi.org/10.1145/1281192.1281239

	Extended methods for influence maximization in dynamic networks
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Related work
	Model of information propagation
	Problems related to influence maximization in dynamic networks
	Influence maximization methods for static networks
	Degrees in dynamic networks
	Influence maximization methods for dynamic networks

	Proposed methods
	Dynamic Degree Discount
	Dynamic CI
	Dynamic RIS
	Dynamic Degree Discount
	Dynamic CI
	Dynamic RIS


	Experiments
	Experimental results
	Comparison of  when the size of seed nodes k changes
	Comparison of  when susceptibility  changes
	Comparison of computational time when the size of seed nodes k changes
	Parameters of Dynamic CI and Dynamic RIS
	Diffusion and computational time of different l in Dynamic CI
	Diffusion and computational time of different  in Dynamic RIS
	Diffusion and computational time of different d in Dynamic RIS


	Discussion
	Analysis focused on expansion of each node
	Advantages and disadvantages of each of the proposed methods

	Conclusion
	Authors’ contributions
	References




