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Abstract 

In this study, we propose a method to automate fruit harvesting with a fruit harvesting robot equipped with robotic 
arms. Given the future growth of the world population, food shortages are expected to accelerate. Since much of 
Japan’s agriculture is dependent on imports, it is expected to be greatly affected by this upcoming food shortage. In 
recent years, the number of agricultural workers in Japan has been decreasing and the population is aging. As a result, 
there is a need to automate and reduce labor in agricultural work using agricultural machinery. In particular, fruit culti-
vation requires a lot of manual labor due to the variety of orchard conditions and tree shapes, causing mechanization 
and automation to lag behind. In this study, a dual-armed fruit harvesting robot was designed and fabricated to reach 
most of the fruits on joint V-shaped trellis that was cultivated and adjusted for the robot. To harvest the fruit, the fruit 
harvesting robot uses sensors and computer vision to detect and estimate the position of the fruit and then inserts 
end-effectors into the lower part of the fruit. During this process, there is a possibility of collision within the robot 
itself or with other fruits depending on the position of the fruit to be harvested. In this study, inverse kinematics and 
a fast path planning method using random sampling is used to harvest fruits with robot arms. This method makes 
it possible to control the robot arms without interfering with the fruit or the other robot arm by considering them 
as obstacles. Through experiments, this study showed that these methods can be used to detect pears and apples 
outdoors and automatically harvest them using the robot arms.
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Introduction
In recent years, various food-related issues have arisen 
around the world. According to statistics from the United 
Nations, the world’s population reached 7.7 billion in 
mid-2019. The global population is expected to grow to 
around 8.5 billion in 2030, 9.7 billion in 2050, and 10.9 
billion in 2100 [1]. According to another statistic from 
the Food and Agriculture Organization of the United 
Nations, there are more than 800 million undernourished 
people in the world, and food shortages are expected to 
accelerate as the population grows [2]. Looking at Japan 
as an example, the calorie-based food self-sufficiency rate 

in 2020 is 37%, and Japan relies on imports for most of 
its food [3]. Therefore, the country will be greatly affected 
by the food shortages that are expected to occur in the 
future. The number of agricultural workers in Japan 
has decreased by 394,000 from 1,557,000 to 1,363,000 
over the five years from 2015 to 2020. Furthermore, the 
percentage of people aged 65 and over has increased from 
64.8 to 69.5%, indicating that the number of agricultural 
workers is decreasing and the aging of the population is 
becoming more serious [4].

Fruit cultivation requires more labor compared 
to other crops. This is because many tasks such as 
pollination, fruit picking, fruit set management, and 
harvesting are done manually. In addition, the fact that 
orchards are located on a wide variety of terrain, from flat 
to sloping, and that each orchard and species of tree has a 
different shape, is one of the reasons why mechanization/
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automation has been very slow. In order to solve this 
problem, it is essential to use agricultural machinery and 
robots that can handle fruit management and harvesting. 
In particular, pear and apple cultivation require more 
labor time than other fruits, and account for a large 
portion of fruit cultivation in Japan. Therefore, this study 
aims to automatically harvest fruits (pears and apples) in 
an orchard using a harvest robot.

There are two major challenges in the automatic 
harvesting of fruits by robots: detection and localization 
of fruits using sensors and harvesting of the detected 
fruits by the robot. To detect fruits outdoors, we use an 
object detection method based on deep learning for RGB 
images to detect the location of fruits in the image. By 
using deep learning, we aim to stably detect fruits in the 
shadow of leaves or other fruits, or in an environment 
with changing light intensity. In addition, since it is 
difficult to identify the exact location of the fruit using 
only RGB images, we combine depth images to identify 
the fruits more accurately.

When harvesting fruits with robot arms, the robotic 
arm may collide with the robot itself or other fruits 
depending on the position of the fruit to be harvested. 
In this study, inverse kinematics and a fast path planning 
method using random sampling is used to harvest 
fruits using robot arms. This method makes it possible 
to control the robot arms without interfering with the 
fruit or the robot arm by considering them as obstacles. 
The fruit is harvested by grasping the fruit with a fruit 
harvesting end-effector attached to the end of the robot 
arm and twisting the fruit.

Harvesting robot
Outline of harvesting robot
Figure 1 shows the harvesting robot used in this study. 
This harvest robot consists of four RGB-D cameras for 
detecting and locating fruits, two robot arms with end-
effectors for harvesting, and a computer for controlling 
them. In this study, we used UR3 and UR5 robot arms 
manufactured by Universal Robots. The harvest robot 
is equipped with two robot arms to increase work effi-
ciency. The upper robot arm (UR5) harvests the fruit on 
the upper side of the tree, while the lower robot arm 
(UR3) harvests the fruit on the lower side. It is also 
designed to approach many of the target fruits, con-
sidering the robot arm’s operating range and fruit tree 
standards. In this study, we used Intel’s Real sense D435 
as the RGB-D camera. As Fig.  1 shows, four RGB-D 
cameras were set up on the robot: two to look up at 
the fruit tree from directly below, one to look diago-
nally upward, and one to look directly to the side. By 
installing cameras in such a way as to view the fruit tree 

from many directions, we tried to reduce the number 
of fruits in the blind spots hidden behind leaves and 
branches as much as possible. As shown in Fig.  2, the 
end-effector grasps the fruit when it is close enough 
and automatically harvests the fruit by twisting it with 
the rotation of the end-effector. Fruits such as apples 
and pears are supported by only one peduncle. There-
fore, even if the arrival point of the end-effector is 
slightly offcenter from the fruit, the rotation of the end-
effector and the spring force of the fingertips will cause 
the fruit to align with the center of the end-effector. 
The end effector does not have a sensor to detect the 
completion of fruit harvesting. However, we have con-
firmed through experiments that most of the fruit can 
be harvested by rotating the fruit four times; therefore, 
this value is used in this study.

RGB-D Camera

Robot arm

End effector

End effector
Fig. 1  Components of harvesting robot

Fig. 2  Harvesting with an end-effector
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Target tree and fruit characteristics
In this study, pears (Hosui) and apples (Fuji) are to be 
harvested. A variety of cultivation methods are used in 
fruit cultivation, and the degree of branch protrusion and 
the position of fruits differ depending on each cultivation 
method. The purpose of this study is to automate har-
vesting with a fruit harvesting robot for joint V-shaped 
trellis, which is a type of lined dense planting cultiva-
tion [5]. By making the position where the fruit grows 
flat, lined dense planting cultivation makes it possible for 
workers or robots to work with high efficiency. We have 
been working on a harvesting robot which has a single 
6-DOF arm for Joint V-shaped trellis [6]. Figure 3 shows 
an example of the joint V-shaped trellis.

Related works
Various studies have focused on developing harvesting 
robots. These studies can be classified into two 
categories.

The first category mainly focuses on detection and 
localization of fruits using sensors. Lin et  al. proposed 
a vision sensing algorithm that can detect guava fruits 
on trees and obtain useful 3D pose information with an 
RGB-D sensor [7]. They applied Euclidean clustering 
to identify individual fruits from the fruit point cloud 
corresponding to segmented fruits on the image and 
estimated the position of the fruit relative to its mother 
branch. Yu et  al. proposed a localization algorithm 
to detect the picking point on strawberry stems with 
Rotational You Only Look Once (R-YOLO), which 
predicts the rotation of the bounding box of the fruit 
target [8]. Their harvesting robot measures the distance to 
the target fruit with a pair of laser beam sensors attached 
to the tip of the fingers of the robot instead of detecting 
the depth of the target fruit. Yoshida et  al. proposed a 

method for detecting cutting points on tomato peduncles 
using an RGB-D camera mounted on a harvesting 
robot [9, 10]. In their approach, several types of region 
growings were used to construct a directed acyclic graph. 
Subsequently, they detected appropriate cutting points 
on the peduncles using the Mahalanobis distance, which 
is defined based on statistical information.

The second category focuses primarily on robotic 
systems that perform all tasks from recognition to 
harvesting. Irie et  al. proposed an asparagus harvesting 
robot that measured whether the asparagus was tall 
enough to harvest using a 3D sensor [11, 12]. They also 
proposed a robotic arm mechanism and an end effector 
to grasp and cut asparagus. Hayashi et  al. proposed a 
strawberry-harvesting robot consisting of a cylindrical 
manipulator, end effector, machine vision unit, storage 
unit, and traveling unit [13]. The end-effector of their 
robot was composed of a gripper for simultaneously 
grasping and cutting the peduncle of the fruit, a suction 
device for holding the fruit to avoid damage. Lili et  al. 
proposed a tomato harvesting robot consisting of a four-
wheel independent steering system, 5-DOF harvesting 
system, laser navigation system, and binocular stereo 
vision system [14]. The harvesting robot was designed 
for harvesting tomatoes in a greenhouse. Yaguchi et  al. 
proposed a tomato fruit recognition method for the 
harvesting robot [15]. First, color-based point cloud 
extraction was applied to a 3D point cloud from a stereo 
camera. Second, distance-based clustering was applied to 
separate the candidate point cloud into tomato clusters. 
Thereafter, the harvesting robot inserts its end-effector 
into the fruit position, which is decided with sphere 
fitting using RANSAC [16]. Silwal et  al. presented the 
design and field testing of a robotic system to harvest 
apples [17]. Their robotic system integrated a global 
camera set-up, 7-DOF manipulator, and three-fingered 
grasping end-effector to execute fruit picking with open-
loop control. Based on the results of field studies, they 
showed that horticultural practices play a critical role in 
the performance of robotic fruit harvesting systems. Arad 
et al. proposed a robot for harvesting sweet pepper fruits 
in greenhouses [18, 19]. They proposed a Flash-No-Flash 
controlled illumination acquisition protocol to stabilize 
the effects of illumination for color-based detection 
algorithms. Their sweet pepper harvesting robot applies 
a visual servo that maintains the detected center of the 
fruit in a predetermined position in the camera image to 
lower the requirements for camera calibration and 3D 
coordinates.

Focusing on a harvesting robot that has dual arms, 
Ling et  al. proposed a dual-arm harvesting robot for 
harvesting tomato in a greenhouse [20]. Their robot had 2 
mirrored 3-DOF arms, a right arm for grasping and a left Fig. 3  Joint V-shaped trellis
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arm for detaching. Their proposed framework detected 
ripe tomatoes by an algorithm combining an AdaBoost 
classifier and color analysis using the RGB image. Then, 
the 3D position of a tomato object is obtained according 
to the relationship between 2D image pixel coordinate 
and 3D point cloud coordinate acquired from the stereo 
camera. Based on the 3D position, the vacuum cup-type 
end-effector of the robot grasped the target fruit and 
another end-effector cut the stem to harvest the fruit. 
Their dual-arm approach avoided movement of the 
tomato when cutting the stem.

Sepúlveda et  al. proposed a dual-arm aubergine 
harvesting robot [21]. The robot consisted of two 
robot arms configured like humans to optimize the 
dual workspace. They applied the image segmentation 
algorithm based on a support vector machine pixel 
classifier, a watershed transform and a point cloud 
registration for detecting and localizing aubergines. 
Depending on the workspace and the locations of the 
fruits, the planning algorithm determined the movement 
which involved either the simultaneous harvesting of two 
pieces of fruit or harvesting a single fruit with a single 
arm. In addition, the planning algorithm determined a 
collaborative behavior between the arms if an aubergine 
was occluded by leaves.

These robots have robot arms attached to each of 
their shoulders across their torso like humans, and the 
possibility of collisions at the joints along the way is 
extremely low. On the other hand, the robot used in this 
study has dual robot arms attached to the same side, 
which increases the possibility of collision between the 
arms, and this is a problem that needs to be addressed. 
This study proposes a method to automate fruit 
harvesting using a robot equipped with arms without 
collision with the target fruit or the robot. In addition, we 
propose a method for locating and integrating fruits in 
an outdoor environment. Thus, this study belongs to the 
second category of harvesting robots.

Automatic fruit harvesting method
Figure 4 shows a flowchart of the sequence of automatic 
harvesting by the harvesting robot. Automatic fruit har-
vesting by a robot consists of five steps: (1) fruit detec-
tion, (2) fruit localization, (3) integration of information 
from each camera, (4) inverse kinematics, and (5) path 
planning.

First, RGB-D cameras that can simultaneously obtain 
RGB and depth information are used to detect and locate 
the fruits in the images. Deep learning is performed on the 
RGB image acquired from RGB-D camera to detect the 
position of fruits in the image. Next, the 3D positions of the 

fruits are identified by combining the positions of the fruits 
in the RGB image and the depth image.

In order to reduce the number of fruits that cannot 
be seen by the cameras because of occlusion by leaves or 
other fruits, the robot is equipped with multiple cameras. 
The next step is to integrate the information obtained from 
these multiple cameras. The order of the integrated infor-
mation is random; therefore, it is replaced by an order suit-
able for harvesting. Here, the obtained fruit information 
includes the 3D position. However, in the case of an articu-
lated robot arm, the information required for commands is 
the angle of each joint. Therefore, each joint angle is calcu-
lated from the 3D position and posture of the end-effector 
using inverse kinematics. Next, the path is planned to reach 
the joint angles calculated by inverse kinematics, and the 
harvesting motion is performed.

Fruit detection
First, the RGB images are acquired from the RGB-D cam-
eras mounted on the robot, the fruits in the images are 
detected. It is necessary to combine information such as 
color and texture in order to achieve sufficient accuracy. In 
this study, we apply Single Shot Multibox Detector (SSD), 
which is one of the object detection algorithms, to detect 
fruits in images [22]. SSD is a method for detecting objects 
in images using a single neural network, and was proposed 
by Liu et  al. Other methods for object detection include 
Faster R-CNN [23], You Only Look Once [24]. In this study, 
SSD is used because speed and accuracy are important. 
All the information about the detected bounding box D is 
obtained from the results of the detection of the fruit in the 
image by SSD.

The bounding box information D is shown in Eq.  (1). 
One bounding box information δ shown in Eq. (2) consists 
of the pixel coordinates (xmin, ymin) of the upper left cor-
ner of the box and the pixel coordinates (xmax, ymax) of the 
lower right corner of the box.

(1)D =
[

δ1 · · · δn
]

(2)δ =
[

xmin xmax ymin ymax

]T

RGB-D
camera

RGB Image

Depth Image

(1) Detect
Upper arm

Lower arm

(2) Localize (3)Integration

(4)Inverse
kinem

atics

(5)Path
planning

Fig. 4  Flowchart of automatic fruit harvesting
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Fruit localization
In the next step, the fruit is considered as a sphere, and the 
coordinates and radius of the sphere are estimated from the 
bounding box information δ obtained in the previous sec-
tion, RGB image, and depth image. Considering that the 
spherical shape of the fruit is projected onto the 2D image, 
the circular shape of the fruit is detected from the bound-
ing box detected by SSD. In this study, we use the Hough 
transform for circle detection to detect fruit circles from 
RGB images [25].

The relationship between the point (XcamX , YcamX , ZcamX ) 
in 3D space and the point (x,    y) in 2D image can be 
expressed by Eq.  (3), where fx, fy are the focal lengths 
of the camera, cx, cy are the image centers of the cam-
era, and d is the depth information at the point (x,    y) 
obtained from the depth image.

The coordinates (XcamX , YcamX , ZcamX ) of the sphere and 
the radius R of the sphere can be obtained by the least 
squares method using the equation of the sphere.

The next step involves performing a coordinate 
transformation of the fruit. The coordinates of the fruit 
obtained from Eq.  (3) are in the camera coordinate 
system. However, the position in the robot arm coordinate 
system is required in order to give commands to the robot 
arm. Therefore the rotation and translation matrices 
T  between each robot arm and the camera coordinate 
system, which were obtained in calibration beforehand, are 
used to perform coordinate transforms to the robot arm 
coordinates as shown in Eq. (4).

Finally, we use Eq.  (5) to find the reciprocal of the pixel 
distance from the center of the circle detected to the 
center of the image, where w is the width of the image 
and h is the height of the image. Fruits at the edge of the 
image may cause large deviations in sphere detection due 
to insufficient RGB and depth information. Therefore, 
the coordinates of each camera near the center of the 
image can be used preferentially by using this index when 
integrating the information of each camera.

(3)d





x
y
1



 =





fx 0 cx
0 fy cy
0 0 1
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



XcamX

YcamX

ZcamX





(4)
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
= T
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XcamX

YcamX

ZcamX

1







(5)s =
1

(w/2− cx)2 + (h/2− cy)2

Thus, the information L for all fruits can be obtained by 
using Eq. (4) and Eq. (5). Equation (6) shows the informa-
tion L for all fruits.

The information σ of one fruit consists of the position 
(Xarm, Yarm, Zarm) of the fruit in the robot arm coordi-
nate system, the radius R of the fruit, and the score s

Integration of fruit information
In this section, we integrate the fruit information LX 
obtained from each camera. We can find LAll that 
matches the actual number of fruits without duplication 
of identical fruits by using Algorithm 1 for all LX . First, 
algorithm 1 extracts the element σdetect of LX and the ele-
ment σtarget of LAll . Next, in the seventh line, if the dis-
tance between each element σ is less than 0.05 [m], they 
are considered to be the same object. We set the thresh-
old here to less than 0.05 [m] since the radius of the fruit 
is roughly 0.05 [m]. If the score of σdetect is greater than 
the score of σtarget in line 9, set σtarget of LAll to σdetect and 
end the iteration process. This operation makes it possi-
ble to prioritize the use of coordinates close to the center 
of the image for the same fruit. If only the condition in 
line 7 is satisfied, the iteration will be terminated without 
any processing. If all the elements in LAll do not satisfy 
the condition in line 7, add σdetect to LAll as a new harvest 
target. This process is repeated for all elements of LAll 
and LX of all cameras to obtain LAll of all the detected 
harvest targets.

(6)L =
[

σ1 · · · σn
]

(7)σ =
[

Xarm Yarm Zarm R s
]T
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Next, the proposed method rearranges LAll in the order 
in which they will be harvested to avoid robot collisions. 
The robot arm approaches from the direction where the 
X coordinate becomes negative due to the configuration 
of the robot. Therefore, we prioritize the harvesting 
of fruits in order from the negative X-coordinate, so 
that fruits not targeted for harvesting do not become 
obstacles during path planning. First, LAll is sorted in 
descending order based on the value of X in LAll . If the 
distance between the X coordinates of different fruits σi 
and σi+1 on the same branch is less than a threshold, the 
lower fruit will be harvested first. This means that the 
sorting is done in descending order based on the Z-axis 
direction only between σi and σi+1 . Let L obtained after 
these permutations be LAllSorted . In this study, quick 
sort, which is practical and fast, was used because fast 
processing leads to shorter harvesting time.

Inverse kinematics
In this step, each joint angle of the robot arm at an 
arbitrary position and posture is obtained using 
inverse kinematics [26] for each LAllSorted obtained in 
the previous section. In order to harvest fruit with an 
end-effector attached to the end of the robot arm, the 
end-effector needs to be moved in its position p and 
posture R ( P = (p,R) ) as specified. In the case of the 
articulated robot arm used in this study, the position 
and posture P of the end-effector are determined by 
the angle q of each joint. Therefore, it is necessary to 
establish the relationship between the joint coordinate 
system representing the joint angles of the robot arm 
and the end-effector coordinate system representing the 
position and posture of the end-effector. The problem of 
determining the angle q of each joint from the position 
and posture P of the end-effector is called an inverse 
kinematics problem, and its solution is expressed using a 
nonlinear function f −1 as follows.

The inverse kinematics problem is more difficult to solve 
than the forward kinematics problem because there 
may be several solutions q for a certain P , or there may 
be no solution q . The solution of the inverse kinematics 
problem can be roughly divided into the following two 
types. 

1	 It is found numerically using iterative algorithms.
2	 It is obtained geometrically or algebraically using the 

features of the mechanism.

In this study, we use the latter geometric solution method 
considering real time use.

(8)q = f −1(P)

The Denavit-Hartenberg notation is used to set up a 
coordinate system for each joint in order to obtain the 
robot’s end-effector position and posture.

As shown in Fig.  5, di is the distance between the 
links, θi is the angle between the links, ai is the length 
of the links, and αi is the torsion angle of the links. 
The homogeneous transformation matrix i−1T i from 
coordinate system �i−1 to coordinate system �i is 
expressed as in Eq. (9).

The computations are performed in turn until a solution 
is obtained for LAllsorted . When a solution is obtained, the 
information is used in the next step.

Inverse kinematics model for UR arms
Table 1 shows Denavit-Hartenberg parameters for robot 
arms (UR arms) used in this study.

Eq. (10) is a position of the end-effector, and Eq. (11) is 
a posture of the end-effector, where φ is the rotation of 
the end-effector around the Z-axis (roll), θ is the rotation 

(9)

i−1T i =







cos θi − sin θi cosαi sin θi sin αi ai cos θi
sin θi cos θi cosαi − cos θi sin αi ai sin θi
0 sin αi cosαi di
0 0 0 1







Joint i-1

α
i-1

α
i-1 α

i

d
i

α
i

θ
i

Joint i

Joint i+1

Link i-1

Link i

Fig. 5  Denavit-Hartenberg parameters

Table 1  Denavit-Hartenberg parameters for UR arms

link ai[m] αi[rad] di[m] θi[rad]

1 0 π
2

d1 θ1

2 a2 0 0 θ2

3 a3 0 0 θ3

4 0 π
2

d4 θ4

5 0 − π
2

d5 θ5

6 0 0 d6 θ6
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of the end-effector around the Y-axis (pitch), and ψ is the 
rotation of the end-effector around the X-axis (yaw).

The angles θi(i = 1, 2, . . . , 6) of each joint in Eq. (10) and 
Eq.  (11) of UR arms are as follows, where ai , di are the 
parameters for the Denavit-Hartenberg notation.

(10)p =
[

px py pz
]

=
[

X Y Z
]

(11)

R =





R11 R21 R31

R12 R22 R32

R13 R23 R33





=





cosφ − sin φ 0

sin φ cosφ 0

0 0 1









cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ









1 0 0

0 cosψ − sinψ

0 sinψ cosψ





(12)

θ1 = arctan

�

py − d6R23

px − d6R13

�

± arccos





d4
�

py − d6R23
2
+ px − d6R13

2



+
π

2

(13)θ5 =± arccos

(

√

px sin θ1 − py cos θ1 − d4

d6

)

(14)θ6 = arctan

(

R22 cos θ1 − R12 sin θ1

R11 sin θ1 − R21 cos θ1

)

(15)
x04x =− (R13 cos θ1 + R23 sin θ1) sin θ5

− ((R12 cos θ1 + R22 sin θ1) sin θ6

− (R11 cos θ1 + R21 sin θ1) cos θ6) cos θ5

(16)
x04y =(R21 cos θ6 − R32 sin θ6) cos θ5 − R33 sin θ5

(17)

p13x = d5((R11 cos θ1 + R21 sin θ1) sin θ6

+ (R12 cos θ1 + R22 sin θ1) cos θ6)

− d6(R13 cos θ1 + R23 sin θ1)

+ px cos θ1 + py sin θ1

(18)
p13y =pz − d1 − d6R33 + d5(R32 cos θ6 + R31 sin θ6)

(19)θ3 = arccos

(

p13x
2 + p13y

2 − a2
2 − a3

2

2a2a3

)

We adopt a combination of joint angles that allows each 
joint of the robot arm to move with a small amount of 
rotation and also allows the end-effector to assume a 
posture that grasps the fruit from directly below from 
several solutions of inverse kinematics.

Path planning
Our harvesting robot comprises dual robot arms attached 
on the same side of the its body, which increases the pos-
sibility of collision between the arms. This is a problem 
that needs to be addressed. In this section, to avoid dam-
aging the fruits and prevent the robot arm from colliding 
with the robot itself or another arm, a path is planned to 
move to the joint angle determined in the previous sec-
tion by avoiding obstacles such as the fruit and the robot 
itself. Figure  6 shows the robot’s perception of its own 
state and the location of the fruits, which is a prerequisite 
for path planning. In cases where two robotic arms might 
interfere with each other during harvesting, we prioritize 
the upper arm in harvesting. If tree branches are set as 
obstacles, planning a path for harvesting becomes dif-
ficult because of the effect of noise in the point cloud. 
Therefore, a countermeasure is developed, wherein even 
if the robot grabs a tree branch, after a certain period of 

(20)

θ2 = arctan

(

(a2 + a3 cos θ3)p13y ± (a3 sin θ3)p13x

(a2 + a3 cos θ3)p13y ∓ (a3 sin θ3)p13x

)

(21)

θ4 = arctan

(

x04y cos (θ2 + θ3)− x04x sin (θ2 + θ3)

x04x cos (θ2 + θ3)+ x04y sin (θ2 + θ3)

)

Fig. 6  Example of robot and fruits arrangement
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time, the robot judges that the target cannot be harvested 
and gives up.

Various methods of path planning have been proposed 
in the past. They can be broadly classified into two 
categories: methods based on given nodes in the target 
space, and methods based on a continuous space. 
In  situations where there are obstacles or other people 
in the operating area, or where the environment is 
dynamically changing, it is difficult to provide specified 
nodes. Therefore, when considering path planning 
for autonomous vehicles and articulated robots, the 
latter method is applied. These methods include the 
potential method, PRM(probabilistic road map) [27] and 
RRT(rapidly-exploring random tree) [28].

PRM and RRT use random sampling to speed up the 
computation. Specifically, RRT is applicable to search 
in high-dimensional spaces because it does not require 
pre-processing and has a high ability to avoid local 
solutions. Therefore, several modification methods have 
been proposed to extend RRT to be applicable to path 
planning under various conditions. Among them, T-RRT 
(Transition-based RRT), which introduces an evaluation 
function that can be designed according to the situation 
into the routing procedure, has high versatility [29]. 
Therefore, in this study, T-RRT is used for automatic 
harvesting by robotic arms.

Algorithm  2 and Fig.  7 show the process of T-RRT. 
The first step is to create the surrounding environment 
CS for path planning. The next step is to set the 
evaluation function c() of path planning and a start 
point qinit and a goal point qgoal . The fourth line 
initializes the search tree τ with the starting point qinit . 
The fifth line loops until the search tree τ reaches the 
goal point qgoal . The sixth line sets qrand , which does not 
contact with any obstacles in the search area. Collision 
detection here is performed based on a 3D model 
reflecting the actual robot joint angles and the detected 
fruit positions. The seventh line searches for the node 
qnear that is closest to qrand in the search tree τ . The 

eighth line judges whether it is possible to connect 
qnear to qnew in the search tree τ . If no connection can 
be made, the algorithm returns to the beginning of 
the loop. The 11th line evaluates qnew and qnear by the 
evaluation function and finds the shortest connection 
and makes a decision to add qnew to the search tree τ.

Algorithm  3 shows a function of transition test of 
T-RRT. The first step is to filter by the maximum cost 
cmax . The next step is to compare the cost cj of the new 
node with the cost ci of the parent node and the result 
is True if the cost of the new node is lower. If the cost 
of the new node is higher, the algorithm makes a True 
or False decision using the probability p. The number of 
costly nodes added decreases by gradually decreasing 
the probability p.

x
init

x
near x

new

� x
rand

Fig. 7  Transition-based RRT​
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Experiments
Fruit detection
In this study, we used images of pears and apples. We 
collected images of fruit trees viewed from multiple 
directions as viewed by the harvesting robot. We 
primarily used the lower images because they have more 
occlusion and are more affected by sunlight. Moreover, 
we added images taken at other times of the day to 
the training set in order to consider various sunlight 
conditions. Next, we evaluate how well the SSD learning 
model can perform detection on untrained images. The 
evaluation method is based on the correct response data 
by visual inspection, and the test is based on how well the 
system can detect 50 untrained images in front-lit and 
back-lit conditions. Table  2 shows learning parameters 
and results of detection. As a result, it was possible to 
detect more than 95% of fruits in both targets.

Figures 8 and 9 show some of the resulting images. We 
were able to detect some fruits that were occluded by 
other fruits and leaves, but we could not detect fruits that 
were almost hidden. This problem can be solved by sup-
plementing the fruit with images from cameras installed 
in multiple directions. In this study, we only detected the 
position of the fruit and did not evaluate damage to the 
surface of the fruit, such as whether the fruit was ripped 
or not.

Comparison of path planning methods
In order to compare the various path planning meth-
ods, we simulated the harvesting operation. The simula-
tions were performed for the same fruit from the same 
position for the simulated fruit. Table 3 shows the char-
acteristics of each path planning method and the time 

required for the harvesting operation. In some cases, the 
optimization of the route search did not converge. There-
fore, when more than 10 seconds had elapsed since the 
start of the route search, the calculation was terminated, 
and the operation was performed on the route planned 
up to that point. PathPlan shows the time taken for the 
path plan. Harvest shows the time taken for harvesting. 
Sum shows the total time for all of them. On the other 
hand, inverse kinematics calculations were very fast at 
less than 1 millisecond compared to path planning time 
and harvesting time.

This result shows that T-RRT can perform very fast 
path planning compared to RRT*, PRM, and PRM*. On 
the other hand, RRT is faster than T-RRT because the 
optimization method is not introduced in the algorithm 
itself. However, as shown in the result of Target 3, it was 
observed that the harvesting operation took a long time 
due to the inclusion of unnecessary movements. Based 

Table 2  Learning parameters and results of detection

Target Pear (Housui)  Apple (Fuji) 

Environment front-lit back-lit front-lit back-lit

Architecture TensorFlow

Net Mobile Net

Fine Tuning ssd mobilenet v2 coco

Base learning rate 0.0001

batch size 32

Learning times 56197 60000

Detected 383 414 405 431

Not Detected 15 15 12 14

False Detected 17 12 7 9

Precision 95.8% 95.5% 97.1% 96.9%

Recall 95.2% 97.8% 98.3% 98.0%

F-measure 0.955 0.968 0.977 0.974

Fig. 8  Result of pear detection

Fig. 9  Result of apple detection
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on these results, T-RRT, which can perform stable and 
fast path planning and harvesting operations, is used in 
this study.

Experiments for autonomous harvesting
Experimental environment
Automated harvesting experiments were conducted at 
three locations. Figure 10a shows pear field at Kanagawa 
Agricultural Technology Center. Figure 10b shows apple 
field at Miyagi Prefectural Institute of Agriculture and 
Horticulture.

Results and Discussion
Figures 11, 12,  13 show the results of the automatic pear 
harvesting experiment. In this experiment, only the lower 
arm was used, and only one camera was used for harvest-
ing. Figure 12 shows that the location identification also 
coincided with the fruit point cloud and the estimated 
red spheres. Figure  13a–c show that the automatic har-
vesting could be done without colliding with the target 
fruit or the robot. On the other hand, in the fruit detec-
tion, the overlapping fruits could not be detected as 

Table 3  Comparison of path planning methods

Target RRT [28] T-RRT [29] RRT* [30] PRM [27] PRM* [30]

1 PathPlan[sec] 0.097 0.236 10.115 10.083 10.111

Harvest[sec] 9.793 9.744 9.785 9.907 9.739

Sum [sec] 9.89 9.98 19.9 19.99 19.85

2 PathPlan[sec] 0.497 0.497 10.114 10.109 10.132

Harvest[sec] 9.843 11.833 11.996 11.951 11.898

Sum[sec] 10.34 12.33 22.11 22.06 22.03

3 PathPlan[sec] 0.432 0.268 10.078 10.179 10.104

Harvest[sec] 13.088 11.962 11.842 13.041 11.986

Sum[sec] 13.52 12.23 21.92 23.22 22.09

4 PathPlan[sec] 0.269 0.24 10.137 10.106 10.083

Harvest[sec] 8.511 8.86 8.313 8.344 8.047

Sum[sec] 8.78 9.10 18.45 18.45 18.13

Fig. 10  Experimental fields

Fig. 11  Result of pear detection

Fig. 12  Result of pear localization
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shown in Fig. 11. This shows that a single camera is not 
sufficient for a fruit harvesting robot and that it is neces-
sary to integrate multiple cameras.

Figures  14, 15, 16 show the results of the automatic 
apple harvesting experiment. In this experiment, we 
used all the arms and cameras shown in Fig. 1. Figure 15 

shows that the fruit point cloud and the estimated red 
spheres are consistent for the fruit localization. Fig-
ure  16a–c show that the automatic harvesting could be 
done without colliding with the target fruit or the robot. 
Figure 14 shows that the detection that could not be done 
by one camera can be done by another camera, indicat-
ing that they are sufficiently complementary. In addi-
tion, although the illumination conditions varied among 
the cameras, each camera was able to detect the image 
sufficiently.

We showed that the proposed method can be used 
to automatically harvest pears and apples with a robot 

Fig. 13  Pear harvesting motion

Fig. 14  Result of apple detection

Fig. 15  Result of apple localization
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arm in about 20 seconds per harvest. As shown in these 
experiments, fruits that were more than a certain dis-
tance from branches and occluded by other fruits were 
able to be harvested with sufficient success. On the other 
hand, the success rate was very low for harvesting fruits 
that were very close to branches. This can be caused 
by the robot arm or hand getting caught on a branch 

or colliding with it. If the entire fruit tree is included in 
the collision detection, the leaves also become obstacles 
and the workspace of the robot arm becomes very nar-
row. In order to use only branches for collision detection, 
it is necessary to detect only branches, but this is diffi-
cult because there are so many occlusions with leaves. In 
order to be able to perform automatic harvesting even in 
such a very close environment to the branches, the har-
vesting method, behavior, and detection methods need to 
be improved significantly.

Conclusion
In this study, we proposed a method for locating fruits 
in an outdoor environment and a method for automated 
harvesting of fruits using robot arms.

By using SSD, we have shown that fruit detection can 
be performed with an accuracy of more than 95% out-
doors, even in back-lit conditions. The fruit detection 
system developed in this study can even detect different 
varieties of pears and apples by re-learning the target 
fruit. However, as shown in the automatic pear harvest-
ing experiment using a single camera, the accuracy of 
detecting a fruit hidden by leaves or other fruits was 
reduced. Therefore, in this study, the number of occluded 
fruits was reduced as much as possible by installing cam-
eras in multiple directions.

In order to avoid damaging the fruits and to prevent the 
robot arm from colliding with the robot itself or another 
arm, we showed that path planning to the harvesting tar-
get can be performed relatively quickly, in less than 0.5 
seconds using inverse kinematics and T-RRT. In addition, 
when integrating images taken from multiple directions, 
the proposed method is set up to harvest them in a safe 
order to avoid collisions.

Through our experiments, it was shown that the 
fruits can be harvested in about 20 seconds each time. 
This means that a single fruit can be harvested in a 
maximum of 10 seconds by moving two robot arms 
simultaneously, which is equivalent to harvesting by a 
human. Similar to the results for detection, it is likely 
that harvesting of different varieties of pears and apples 
is possible.

Appendix 1: List of notations
See Table 4.

Fig. 16  Apple harvesting motion
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Abbreviations
RGB-D:: Red, Green, Blue and Depth; DOF:: Degree of Freedom; R-CNN:: 
Region-based Convolutional Neural Network; R-YOLO:: Rotational You Only 
Look Once; RANSAC:: Random sample consensus; SSD:: Single Shot MultiBox 
Detector; RRT:: Rapidly-exploring random tree; T-RRT:: Transition-based rapidly-
exploring random tree; PRM:: Probabilistic road map.
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