
Inagawa et al. Robomech J (2021) 8:17
https://doi.org/10.1186/s40648-021-00204-6

RESEARCH ARTICLE

Analysis of cooking recipes written
in Japanese and motion planning for cooking
robot
Masahiro Inagawa, Toshinobu Takei*  and Etsujiro Imanishi 

Abstract 

Many cooking robots have been developed in response to the increasing demand for such robots. However, most
existing robots must be programmed according to specific recipes to enable cooking using robotic arms, which
requires considerable time and expertise. Therefore, this paper proposes a method to allow a robot to cook by analyz-
ing recipes available on the internet, without any recipe-specific programming. The proposed method can be used
to plan robot motion based on the analysis of the cooking procedure for a recipe. We developed a cooking robot to
execute the proposed method and evaluated the effectiveness of this approach by analyzing 50 recipes. More than
25 recipes could be cooked using the proposed approach.

Keywords:  Recipe analysis, Cooking robot, Motion planning

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

Introduction
In recent years, the demand for cooking robots has
increased rapidly to address the workforce scarcity result-
ing from declining birthrates and an aging population as
well as to enhance operational efficiency. Cooking robots
have already been developed and commercialized in
various countries [1–5]. In general, such robots can cook
programmed recipes. However, the programming of reci-
pes in the context of robotic arms may be challenging for
users without considerable robotics or coding expertise.
The most widely used method to program robotic arms
is the teaching playback method, in which each angle of
the robot arms is taught to the robot by users through a
device known as a teaching pendant [6]. The implemen-
tation of this approach involves considerable experience
and technical skill because the robot habits must be visu-
ally confirmed and identified.

To address this problem, various teaching meth-
ods for robots have been developed, such as a method

that defines each angle of the robot arms in a simulator
through a graphical user interface (GUI) [7] and one that
transforms hand and arm motions to robot motions using
motion capture systems [8]. These methods are offline
teaching methods because teaching can be performed
even in the absence of the actual robot. In such meth-
ods, the robot motion is implemented through human
motion in accordance with the recipe. However, users
may require considerable time to learn how to operate
the software, and the teaching devices may be expensive.
As an alternative approach, researchers have attempted
to realize automatic teaching by reusing manually gen-
erated primitive robot motions (sequence data of robot
motion for each cooking operation) [9]. However, this
alternative approach could not be generalized for all
tasks and could not fully automate the teaching process.
To perform motion planning for a cooking robot, Bollini
et al. developed an approach to interpret recipes written
in human languages [10]. The robot completed a cooking
task by executing primitive cooking motions following
recipe steps. However, the researchers only considered
recipes that were easy to understand and involved simple
sentences.

Open Access

*Correspondence: takei@hirosaki-u.ac.jp
Faculty of Science and Technology, Hirosaki University, Hirosaki, Aomori,
Japan

http://orcid.org/0000-0002-3270-1034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-021-00204-6&domain=pdf

Page 2 of 13Inagawa et al. Robomech J (2021) 8:17

An approach to plan robot motion by considering reci-
pes must be able to correctly understand the cooking
procedure for a recipe. Herein, the cooking procedure
reflects specific information, such as cooking operations
including mixing and pouring, movement degree, tools
required, and ingredients. However, to analyze the cook-
ing procedure accurately, the following problems must be
addressed. A cooking procedure may involve unneces-
sary information, especially in the case of recipes shared
on the Internet. In general, the background for a recipe
is not relevant in the cooking procedure. Furthermore, in
the Japanese language, subjects and objects may be omit-
ted and replaced. Thus, different authors may express the
same cooking procedure in different ways.

To address these issues, the cooking procedure must be
determined accurately based on uniform expressions. In
this regard, we believe that the motion of robots can be
planned by suitably extracting and organizing the cook-
ing operations pertaining to different recipes. To this
end, we propose a method to analyze recipes written in
Japanese to achieve the automated teaching of station-
ary-type cooking robots [11, 12]. This method can enable
motion planning for cooking robots in accordance with
the robot system and cooking environment by generating
the cooking procedure upon analyzing general recipes.
A recipe analysis algorithm was developed, and the pro-
posed approach was applied to an actual cooking robot
system [11, 12]. We evaluated the proposed algorithm by
testing it on several recipes randomly selected from dif-
ferent websites.

Research approach
The key objective of this study was to develop an algo-
rithm that analyzes Japanese recipes and performs auto-
mated motion planning for a cooking robot.

The target object was a cooking robot system with a
multi-axis industrial manipulator, which is often used
commercially. The robot was expected to be surrounded
by cookware, heating equipment, and a cooking table,
on which the robot could place ingredients and perform
cooking tasks.

The target recipes were selected from among those
uploaded to recipe-sharing websites on the Internet. The
format of the recipes was first normalized because the
recipe information was presented differently on different
websites.

Cooking procedures often involve unique expressions,
Internet slang, personal opinions and feelings of the
authors, and omitted verbs and cookware information.
As this information may lead to improper robot motion
planning, it was necessary to extract only the necessary
information and eliminate information irrelevant to the
cooking process.

In Japanese grammar, the subject-predicate relation is
determined by particles, and the context remains clear
even when sentences are interchanged. Therefore, it was
necessary to standardize the positional relations of the
information, as the manner of expression differs among
authors. To this end, when extracting the necessary infor-
mation from the cooking procedure, the words were clas-
sified into certain categories and organized through an
encoding process. It was assumed that if a sufficiently
large database of such categorized words could be gen-
erated, the proposed word-classification system would be
reasonably effective.

Once the cooking procedures were organized cor-
rectly based on the aforementioned processes, the robot
motion was planned to execute primitive cooking opera-
tions for the procedures.

To plan the motion of an actual robot, we built a simu-
lation environment that corresponded to an actual cook-
ing environment and was of a similar scale as the actual
environment. Furthermore, regardless of the type of
motion, the cooking operation depends on parameters
such as the cookware and ingredients; therefore, it was
necessary for the motions to be generated identically,
even if the cookware arrangement differed among reci-
pes. We attempted to generate the motion by defining
primitive motions that record the relative coordinates
of the cookware and ingredients and then sequentially
referring to those coordinates.

Recipe analysis algorithm
The process flow of the proposed algorithm is divided
into two stages. The first stage involves the recipe anal-
ysis, which is illustrated in the upper part of Fig. 1. In
this stage, the information necessary to plan the robot
motion is extracted from the recipe and sorted to gen-
erate the cooking procedure. The second stage involves
the motion-planning process, which is illustrated in
the lower part of Fig. 1. In this stage, the robot motion,
including the avoidance of obstacles, is planned based on
the output data of the recipe analysis process.

The details of these processes are as follows:

1.	 Recipe analysis process

	 In this process, the cooking procedure is generated to
plan the robot motion from recipes written in Japa-
nese.

	 In this process, the cooking procedure is generated to
plan the robot motion from recipes written in Japa-
nese. The proposed recipe analysis method can be
used to analyze recipes written in Japanese that are
uploaded on the Internet. Some authors write recipes

Page 3 of 13Inagawa et al. Robomech J (2021) 8:17 	

in the style of diaries, in which descriptions of cook-
ing procedures are incomplete. Therefore, we define
prerequisites to evaluate whether the cooking robot
can cook using the available recipe content. Our
method analyzes recipes satisfying these prerequi-
sites, which are described in Section "Recipe analy-
sis".

	 It is necessary to address the omission of subjects
and objects and the complexity of the grammatical
structure during recipe analysis. Thus, the order of
robot motions is specified according to the order of
the cooking elements in the decomposed recipe, and
any abbreviations are defined. These processes are
realized using a generated database and sorting pro-
cesses.

2.	 Motion planning process
	 The robot motion is planned according to the cook-

ing procedure defined in the recipe analysis stage.
Using a simulator, the actual robot motion is planned
by creating paths that connect the end point of the
robot hand at the current moment to the end point
generated automatically from the cooking procedure,
as well as the subsequent motion pertaining to the
cooking procedure. The planned motion is output as
an execution code and converted into data that can
be executed on an actual robot.

Database for the algorithm
This section describes the three databases prepared for
use in the algorithm.

Motion code database
A motion code consists of symbol-based data corre-
sponding to cooking information, such as nouns, verbs,
degree of movement, and unique identifiers. The differ-
ent types of motion codes are listed in Table 1. For exam-
ple, for “E[0],” the letter “E” indicates large cookware,
such as a heater, and “0” indicates the unique identifier
in the motion code database (in this example, the E code
database). For the word-by-word classification of reci-
pes, Mori et al. [13] developed a corpus of tagged terms
describing the motion and state of a cooking process and
the ingredients. Although this classification method can
identify the state and motion of the ingredients, finer
classification is required to plan automated robot motion.
Therefore, in our approach, eight categories were defined

Fig. 1  Recipe analysis algorithm for a cooking robot. The algorithm
involves two processes,as indicated by the two flowcharts
surrounded by dotted lines

Table 1  Motion code classification

code Meaning

E Large cookware

U Small cookware

T Tools

A Seasonings

F Ingredients

V Operation

C Change

S Additional information

Page 4 of 13Inagawa et al. Robomech J (2021) 8:17

based on the classification labels: E, U, T, A, F, V, C, and
S. Each type of database contains cooking information.
With regard to the words related to seasonings (A) and
ingredients (F) included in these eight categories, nouns
in the recipe sentences are automatically extracted and
are classified into A or F, before being registered in the
database. Nouns belonging to the other six categories are
manually extracted and classified from the recipe sen-
tences and registered in the database. The number of
registered words is 8207, of which 2715, 5406, 5, 12, 14,
28, 3, and 24 are classified into A, F, C, E, S, T, U, and
V, respectively. For example, the E and T code databases
contained the shape data, reference points for use in the
motion libraries, and heating availability information,
whereas the F and A databases contained data pertaining
to the initial positions. Table 2 presents sample data of
the E code database.

Object database
The object database contains information pertaining to
the change of positions of cookware and their states (e.g.,
placed on fire or filled with water) during motion plan-
ning. This database is temporarily and automatically gen-
erated during the motion planning process and is used
to plan the robot motion. If a motion code indicates an
object, such as an ingredient (F) or cookware (E or T),
the related object data are added to the object database.
Information about the state of the object, such as the cur-
rent position, parent node of the robot hand, and previ-
ous movement, is updated as the planning progresses.
A sample object database is presented in Table 3. In the
considered example, the current position and angle of the
object, data of the object held by the robot, heating state,
previous motion data, and other relevant information are
registered as items, and the information is sequentially
updated as the cooking progresses.

Motion library
In the motion database, the dependency of motion code
V on the other codes, according to the ID of V, and the
primitive robot motions of the robot arm are registered,
as indicated in Table 4. The motion library is a group of
programs that convert the motion code V into specific
robot motions. Multiple specific and primitive motions
are manually registered in the motion library. In the
motion planning, the library selects a specific motion
associated with V from the motion group and its argu-
ment motion codes (e.g., A or F). Subsequently, the
library generates time-series positions of the hand in
three-dimensional coordinates and the joint angles to
provide control commands for actuators in the robot.

For example, the word V[6], that is, “mix,” is reg-
istered in the motion library as a mixing motion per-
formed clockwise in a container containing ingredients.
Here, V exhibits a dependency on E (container), T
(cooking tools), and A (seasonings), and the primi-
tive motion is clockwise mixing. This library is used to
determine the dependencies of a code or the necessary
information corresponding to the code V (see Table 4).
Furthermore, this library is used to generate the motion
of an actual robot. The primitive motion of the robot
corresponding to the code V is described based on the

Table 2  Motion code database for the E code

ID Object shape Current position Base position Heat permission Grabbing permission . . .

0 Pan.obj (0,0,0,0) (12,15,0,0) True True . . .

1 Cooker.obj (0,0,0,0) (-8,-28,0,0) True False . . .

. .

Table 3  Object Database

ID Motion code type Motion code ID Grabbed Current position Last operation . . .

0 E 4 No (0,5,0,0) Release . . .

1 T 12 Yes (−2,−8,4,16) Hold . . .

. .

Table 4  Motion library structure

The ID of the code V indicates the motion, the dependent code type indicates
the information required for the cooking operation, and the base motion
indicates the time-series data of the actual robot motion

ID of V Dependent code Target points of robot based on
position of an object

. . .

0 A, F, S (E | U,center,0),(E | U,center,+90).

1 EMPTY (Gripper, open) . . .

.

Page 5 of 13Inagawa et al. Robomech J (2021) 8:17 	

motion reference points of the relevant objects. There-
fore, the robot motion can be defined in the same
library, even if the type and location of the cookware
and ingredients change.

Recipe analysis
This section describes the algorithm used to determine
the cooking procedures in the recipe analysis process
based on the analysis of recipes written in Japanese.
This process entails the analysis of recipes and extrac-
tion of the corresponding cooking procedures using the
previously described motion code databases.

Prerequisite
The prerequisites for the recipe analysis are defined as
follows. Users evaluate whether the input recipes sat-
isfy these prerequisites.

•	 The input is a Japanese-language recipe in the speci-
fied recipe format (Fig.2).

•	 The input recipe consists of general sentences that
satisfy the following conditions:

1.	 Each sentence should contain at least one word
related to cooking (e.g., 野菜を炒める [fry veg-
etables]).

2.	 The recipe clearly indicates the specific cooking
procedures for the target dish and does not refer-
ence any other recipes.

3.	 The cooking procedures do not change depend-
ing on conditions such as the size and softness of
the ingredients.

4.	 4 No spelling or grammatical errors are present
in any sentence.

Conversion of recipes to recipe data
As the expression style for recipes may differ among
recipe-sharing websites (such as Cookpad or Allreci-
pes.com), we define a recipe data format, as shown in
Fig.2. The data in this format are termed the recipe data,
which are used as the target data for the analysis. Recipes
extracted from the Internet are converted to this recipe
data format.

Extraction of motion code
To obtain the necessary information from the recipe
data, words such as nouns and adjectives pertaining to
the cookware and ingredients and verbs related to cook-
ing are extracted and converted to the corresponding
motion codes in the order of occurrence.

To execute this process, we use MeCab [14], an open-
source morphological analysis engine, to divide the sen-
tences into words and parts of speech. If the original
form of a word exactly matches the motion code data-
bases, the word is encoded into the motion code; other-
wise, it is omitted.

Sorting and insertion of motion codes
As the order of words in Japanese differs depending on
the writer, a sorting process is used to standardize the
order. The motion codes are treated as array data and are
sorted and deleted in the last step in the recipe analysis
stage. The sorting rules are as follows:

1.	 If S is encountered in the text before A or F, remove
S.

2.	 If E is encountered, move E to the last cell of the array
of the sorted motion code.

3.	 If U is encountered, move U to the last cell of the
array of the sorted motion code.

4.	 If V that does not depend on any other code is
encountered, move V to the last cell of the output
array.

5.	 If V that depends on any other code is encountered,
move V to the last cell of the output array; subse-
quently, move the codes that V is dependent on to
the last cells of the output array.

6.	 If A, F, T, and S that do not correspond to V are
encountered, move the codes to the last cell of the
output array after complementing V’ using the
motion code database and motion library.

7.	 Otherwise, move the code to the last cell of the out-
put array.

An example of this process is illustrated in Fig. 3. First,
we remove the additional information (S) associated with
the seasonings (A) and ingredients (F) in the behavior Fig. 2  Recipe data format

Page 6 of 13Inagawa et al. Robomech J (2021) 8:17

code, which is not necessary for the motion generation.
Next, the cookware data (E and U) are moved to the last
cell of the array of the output motion code.

Two types of cooking operations (V) exist: operations
(V-independent) that can be executed independently of
the ingredient and cookware (T) and those (V depend-
ent) dependent on other motion codes. If a motion is
V-independent, it is moved to the last cell of the array
of the output motion code. In the case of V-dependent
motion, the code is moved to the last cell of the sorted
array. Subsequently, the motion codes dependent on V
are moved to the last cells of the sorted array. If a motion
code is available only for A, F, T, and S, motion planning
is not possible, because the motion code does not include
the cooking operations. Therefore, it is necessary to
complement these codes. V’ is the complement of V and
consists of operations missing in the cooking procedure
of the recipe;it is constructed by referring to the opera-
tions required for the execution of A, F, T, and S. This
complement is constructed by referring to each motion
code database, and it completes the motion. Fig. 3 dem-
onstrates the construction of the complement V’, which
indicates the cooking operation required to execute F,
from the motion code database. Finally, the remain-
ing operation codes are directly moved to the end of the
sorted operation code array.

This sorting process simplifies motion planning as it
groups the necessary information near the code V which
indicates the cooking motion.

Motion planning
This section describes the formulation of the operating
procedure using the output motion codes. The operat-
ing procedure involves two functions, as described in
Section "Planning robot motion": identifying the cooking
procedure and complementing the cooking operations
from the motion codes to plan the actual robot motion
through offline teaching methods. This process gener-
ates the operation code, as indicated in the final process
in Fig. 1.

Planning robot motion
The motion codes are used to define the operating proce-
dure by planning the motion of the cooking robot accord-
ing to the cooking procedure through the motion library.
This operating procedure is represented by pseudo-exe-
cution code, which involves the following two functions:

•	 SET Arg1(Ingredient or Cookware), which sets the
target points of the arm to Arg1

•	 EXECUTE Arg1(Cooking Operation), which exe-
cutes Arg1

Fig. 3  Example of the sorting process

Page 7 of 13Inagawa et al. Robomech J (2021) 8:17 	

The SET function sets the target points of the robot arm
to generate the motion trajectory of the arm, and the
EXECUTE function executes the cooking operation reg-
istered in the motion library.

Normally, a motion code is assigned to each argument.
In certain cases, proper nouns related to the robot hand,
such as the names of the ”heater” or ”gripper”, may be
assigned. The names and actual processing contents are
defined in the motion code database and motion library,
as described in Section "Database for the algorithm".

The pseudo-execution code represents the process flow
of motion codes shown in Fig. 4. By matching the motion
codes with each database for each type of motion code, a
pseudo-execution code can be created for the given code
based on information such as the location and state of the
object and the relevance of the other codes. Note that the
generated operating procedure includes only the order in
which the cooking motion is executed and not the actual
robot motion path. In the actual program, the operating
procedure is included in the motion generation process,
as described in the next section.

Simulator to train the robot motion
The actual motion of the robot can be generated via
offline teaching using a cooking robot simulator (Fig. 5)
developed using the Unity service [15].

In particular, the robot motion can be generated by
determining a path connecting the starting point and a
target point for the tip of the robot hand. Each point can
be derived based on the operating procedure. Various
methods have been proposed to identify the path con-
necting the starting and target points. In this study, the
rapid-exploration random tree strategy was employed

[16]. In this strategy, when the obtained paths involve
collision with obstacles, a motion is generated with pas-
sage points placed around the obstacle. After the motion
is generated, it is converted to an executable code, which
is the final output that can be executed by the robot. The
execution code is presented in Fig. 6.

Experiment
The main objective of the experiment is to confirm
whether the robot can cook a recipe written in general
Japanese by analyzing and planning the operation using
the proposed method. Since the robot used was repro-
ducible, sequence control was performed under the
assumption that the cooking motion could be reproduced
once it had been defined. To that end, the positions of the
cookware and ingredients were precisely fixed.

Experimental environment
The experimental environment had the following
characteristics.

1.	 Target robot

	 A VP-6242 robot manufactured by DensoWave was
used. To handle several pieces of cookware, the robot
hand used two robot grippers from Makerobot as a

Fig. 4  Process flow to create the operating procedures

Fig. 5  Cooking robot simulator

Fig. 6  Types of execution code

Page 8 of 13Inagawa et al. Robomech J (2021) 8:17

single hand. The hold strength was determined with
respect to a threshold value by increasing or decreas-
ing the current value recorded by the sensor.

2.	 Cooking environment
	 We arranged small bowls with the necessary amount

of ingredients for the recipe and set the cookware
around the target robot. A similar cooking environ-
ment was replicated in the simulation.

3.	 Input data
	 As the recipe data, we used a pancake recipe that

included the cooking motions of adding ingredients,
mixing, scooping, pouring, and flipping. The recipe
data are presented in Fig. 7.

4.	 Database
	 Motion code databases and a motion library were

required for analyzing the input data and planning
the motion of the robot. The motion code databases
were created by categorizing and inputting words
such as those related to the ingredients and cook-
ware required for a human to prepare the recipe.
Seven primitive motions, namely grabbing, releas-
ing, moving, pouring, adding, mixing, and flipping,
were defined and input to the motion library. Each of
these primitive motions was created manually using
a robot simulator and then confirmed to be executed
accurately by the actual robot.

Result

1	 Recipe analysis

	 The results of recipe analysis using the proposed
approach are shown in Fig. 8. According to the pan-
cake cooking procedure, the words related to cook-
ing were extracted as accurate motion codes without
unnecessary information.

2	 Action generation

	 The robot motion was planned based on the motion
code in the simulator. The operating procedure is not
presented here, as it was generated during the plan-
ning process. The output executable code is shown in
Fig. 9. Overall, 169 executable codes were obtained.

3	 Actual execution
	 Fig. 10 shows a series of images depicting the robot

cooking pancakes during the experiment. The first
image shows the robot in starting position, prepared
to cook. The second and third images show the robot
picking up a small bowl with hot cake mix, pouring
it into a mixing bowl, and placing it on the cook-

Fig. 7  Pancakes recipe data

Fig. 8  Recipe analysis results

Fig. 9  Sample output executable code

Page 9 of 13Inagawa et al. Robomech J (2021) 8:17 	

ing workspace. The fourth and fifth images show
the robot picking up a small bowl containing water,
pouring it into a mixing bowl, and placing it on the
cooking workspace. The sixth image shows the robot

picking up a whisk. The seventh and eighth images
show the robot mixing the ingredients in the bowl
using the whisk. The ninth image shows the robot
pouring dough into a hot plate. The tenth and elev-
enth images shows the robot turning the pancake
over and moving it to the plate, respectively. Finally,
the twelfth image shows the robot cleaning up the
workspace.

Our recipe analysis method does not depend on the
robot system. Differences between hardware components
can be resolved using the motion library during motion
planning. An example of the application of our method to
different hardware has already been published in SII2021
[17]. The robot can execute seven motions based on the
motion library prepared for the experiment: grabbing,
releasing, moving, pouring, adding, mixing, and flip-
ping. From the results of this experiment, we confirmed
that the robot could execute grabbing, releasing, mov-
ing, pouring, adding, and mixing without any problems.
However, pouring and flipping could not be performed in
some cases, depending on the characteristics (softness)
of the ingredients.

Evaluation of the recipe analysis appropach
The aim of the aforementioned experiment was to ver-
ify whether the proposed approach could be applied to
plan robot motion based on a recipe written in Japanese.
Therefore, we used a relatively easy recipe consisting
only of words known to be registered in the motion code
database.

In this study, we validated only the recipe analysis pro-
cess shown in Fig. 1 to verify the applicability of the pro-
posed method. In the verification experiment, we did not
evaluate the specific motion plan of the actual robot.

Preparation
For the verification, it was necessary to increase the
amount of data in each database. In particular, the
motion code database is the most critical database in the
recipe analysis and indicates the number of data types
that can be recognized for an input recipe.

Ideally, the database should contain all the words
related to cooking that are currently available. How-
ever, adding all such words is not realistic; therefore, we
attempt to diversify the vocabulary for two motion code
types: A and F. These data were obtained by randomly
extracting approximately 1,000 recipes from a recipe-
sharing website called Cookpad [18], converting them
into recipe data, extracting the ingredient-related data
from the recipes, and manually mapping the data to the
motion code types A and F. The employed database con-
tained 8123 names of ingredients and seasonings. For
other databases, we entered the minimum required data.

Fig. 10  Actual robot preparing pancakes

Page 10 of 13Inagawa et al. Robomech J (2021) 8:17

For example, for the code type V, we entered a total of 24
verbs, including ”put,” ”mix,” and ”bake.”

The total number of data points in the motion code
databases was 8207. Furthermore, information such as
that related to the object shape and heating availability,
which was not particularly relevant to the recipe analysis
process, was omitted at the time of creating the databases
because the validation experiment involved steps only
until the motion code conversion.

Input recipe data
In the experiment, 50 recipes were randomly extracted
from a search for side dishes in Cookpad [18] and con-
verted to the recipe data format.

The recipe data that satisfied the following conditions
were excluded from the input because they did not satisfy
the prerequisites for the recipe analysis method:

•	 Sentences not including verbs and nouns or cooking
information (an example is shown in Fig. 11)

	 Example: 美味しくなるように念じる

	 Meaning: Pray for good taste
•	 Conditional statements
	 Example: もし味が薄ければ、塩を入れる
	 Meaning: If the taste is bland, add salt
•	 Sentences not pertaining to the specific cooking pro-

cedure
	 Example: エビフライを作る
	 Meaning: Make fried shrimp.
•	 Spelling or grammatical errors

	 Example:
	 Meaning: put → pu (Spelling error for ‘put’)

After exclusion, recipe data for 33 recipes remained and
were used in the experiment.

Evaluation method
The proposed recipe analysis algorithm was used to con-
vert the recipe data into motion codes. The order of coin-
cidence of the output motion codes and expected codes
was examined. The correct data were provided by an
individual who was familiar with the recipes.

Result
In the experiment, 19 recipes were successfully con-
verted, with a success rate of approximately 57.6%. A
sample recipe that could be transformed into motion
codes is shown in Fig. 12. The causes of failure in motion
code conversion and their relative share are shown in
Fig. 13. The inability to address unique and ambiguous
expressions was the most frequent cause (40%), followed
by a lack of content in the motion code database (33%),
redundant content processing (13%), and word segmen-
tation failures in the recipe data (13%).

Discussion
Although the recipes used in the experiments con-
tained insufficient sentences, the robot motion plan-
ning could be satisfactorily realized using the proposed
method. Examples of the insufficient sentences are
“ボウルに入れる, Put in a bowl” and “小麦粉を入れる
, Put the flour in,” in which the objects (flour and bowl,
respectively) are omitted. “ボウルに小麦粉を入れる
, Put the flour in a bowl” is the correct sentence corre-
sponding to those insufficient sentences.

In addition, using the motion code and motion library,
paths leading to individual motions can be generated.

Fig. 11  Example of sentences not including verbs and nouns or
cooking information

Fig. 12  Example of a successful motion code conversion

Page 11 of 13Inagawa et al. Robomech J (2021) 8:17 	

Because the proposed approach can define robot motions
that can be executed by an actual robot, it was considered
that the approach can be effectively applied to cooking
robots.

However, this method involves several databases for
the recipe analysis and robot motion planning; therefore,
the scope of application is dependent on the databases.
For example, the motion code database can extract the
words necessary for cooking and classify them; how-
ever, words that are not included in the database cannot
be evaluated. In addition, the motion library can gener-
ate motions independent of the position and type of the
tools; however, the library must be able to consider all
possible conditions, and malfunctions may occur in the
case of improper inputs. Therefore, to generalize the
method, it is necessary to develop a reasoning algorithm
for unknown keywords and to create a motion library
that is correctly defined for each primitive motion, in
addition to expanding the classification database for each
motion code type.

It is necessary to consider the amount of data required
for the motion code database and the motion library. For
the motion code database, we predict that the amount of
data will depend on the cuisine to be analyzed, as differ-
ent cuisine uses different ingredients, cooking utensils,
and cooking motions. We believe that these parameters
will need to be considered in the future.

To execute the simulation on an actual robot, consid-
erable information processing is required in advance,

such as the adjustment of cookware and other aspects,
to make the actual layout consistent with that in the
simulation. In the experiments, the robot could not
handle the pancake batter effectively in certain cases.
In particular, when we used the motion library to gen-
erate the motion, it was assumed that the ingredients
and cookware always behave in a certain manner. The
ingredients were likely improperly handled because of a
slight shift in the position of the cookware in the actual
situation.

It is difficult to maintain the same environment,
including food (or ingredient) properties such as posi-
tion and shape, whenever a recipe is cooked. Therefore,
for fully automating a cooking robot, the robot system
must be more sophisticated, with the ability to recog-
nize the actual environment using external sensors,
control motions based on sensor feedback, and so on.
We intend to focus on this aspect in future work.

In our future studies, we will also consider the evalu-
ation of various specific cooking robot motions. In the
present study, we found that the proposed method
could correctly analyze about 58% of the 33 recipes
considered. We could successfully solve certain prob-
lems in recipes written in Japanese, such as redundant
expressions, omission of objects, and word-order dis-
crepancies among writers, by using the proposed recipe
analysis method.

However, there were some recipes to which the
proposed method could not be applied. The failure
observed in the verification experiment was caused by
the following factors.

1.	 Inability to address unique and ambiguous expres-
sions

	 Depending on the manner of expression used in the
recipe, the effectiveness of word extraction may vary.
In Example 1, the adverb may have multiple mean-
ings, such as heating time, degree of heating, or
degree of movement. Moreover, when casual expres-
sions represent motion, the meaning cannot be cap-
tured accurately. Furthermore, the method cannot
address statements that cite other recipes or involve
difficult phrasing, as indicated in Example 2.

	 (Example 1)「ガンガン煮る」

	 (Meaning 1) boil (well / roughly / for a long time)

	 (Example 2)「今回は冷凍のものを使ったが生の
ものでも良い」

Fig. 13  Causes of failure in the motion code conversion and their
relative share

Page 12 of 13Inagawa et al. Robomech J (2021) 8:17

	 (Meaning 2) I used frozen ones this time, but raw
ones are also acceptable

2.	 Insufficient content in the motion code database
	 When the recipe data involve cookware or ingredi-

ents that are not registered in the database, the reor-
dering process cannot be performed suitably, because
the sorting of the words fails. In Japanese, words can
be written in three different scripts—hiragana, kata-
kana, and kanji. Even if the words convey the same
meaning, they cannot be coded if the equivalent
notation is not registered.

3.	 Redundant content in recipe data
	 As shown in Example 3, if the recipe contains com-

ments that are not directly related to the recipe con-
tent, the motion coding fails because statements
unrelated to the recipe cannot be processed.

	 (Example 3)「食べる時にすりゴマかけても美味
しい」

	 (Meaning 3) It’s good with sesame when you eat
4.	 Failure of word segmentation
	 In the actual process, the default setting of MeCab

[14] is employed. Therefore, if the word separator is
inaccurate, the coding may fail.

	 (Example 4)

	 (Meaning 4) meatballs → meat, balls
Considering these aspects, to improve the generalization
performance of this method, it is necessary to diversify
the data in the motion code database and to implement
modifications to address unique and ambiguous expres-
sions. This limitation was expected, to a certain extent,
before the experiment. To apply the approach to reci-
pes on the Internet, which may involve more colloquial
expressions and expressions requiring more types of
databases, it is necessary to address the coding of casual
phrases, especially because writers often employ con-
tractions and verb paraphrasing. In this regard, it is also
necessary to revise the sorting process by, for example,
enhancing the adverbial phrases that can be used and
adding judgment-based processing to modify phrases
with clauses.

In certain failure cases, redundant recipe content could
not be removed. Such redundancies are often found in
recipes posted by ordinary Internet users, who separate
words with arrows or write comments in between the
steps of a cooking procedure. The proposed algorithm
was developed to eliminate emotional expressions and
impressions. Because the proportion of this cause of fail-
ure was lower than that of the other causes, the algorithm
is considered to have succeeded in removing redundancy
to a certain extent. However, when the redundant part
contains words related to cooking, the information is rec-
ognized as information to be processed, which may lead

to errors. In this scenario, it is necessary to determine
whether the expression is redundant at the sentence level
instead of at the word level.

The proposed algorithm employs MeCab [14], which is
a library for morphological analysis; however, in certain
cases, failure occurred in the word segmentation stage
owing to the use of the default settings. Therefore, it is
necessary to add more cooking- and ingredient-related
terms to the MeCab [14] database.

The applicability of the proposed method is limited
owing to the considered assumptions. Thus, 34% of the 50
recipes randomly selected could not be coded. To allevi-
ate this restriction, it is necessary to perform a language-
proofing process before the recipe analysis is conducted.
It is considered that the method can be generalized fur-
ther by correcting language errors with reference to other
recipes when specific parts of a recipe are not present.

It must be noted that a multi-axis industrial manipu-
lator, which is used in many commercial machines, was
adopted as the cooking robot system in this study. How-
ever, the proposed method is independent of the recipe
analysis and motion generation processes. Therefore, by
changing the motion generation process, the system can
be used for various types of cooking robots. In future
work, the proposed analysis method will be used to eval-
uate a different cooking robot system.

Conclusion
In this study, we developed a method to plan the motion
of a stationary cooking robot based on the results of ana-
lyzing recipes written in Japanese.

Considering a simple pancake recipe, we performed
experiments on an actual machine and confirmed that
the correct motion procedure for the recipe could be
defined to generate the robot motion.

To investigate the general performance and applicabil-
ity of the proposed method, we coded general recipes
extracted from the Internet and verified that more than
half of the recipes could be converted correctly without
any modification.

Using a motion code database, the algorithm could
analyze approximately 60% of 33 recipes. Nearly 70%
of the failures were due to a lack of unique expressions
and proper nouns in the database. The results indicate
that randomly extracting the names of ingredients and
seasonings did not improve the performance notice-
ably. Although the number of verbs was less than the
number of ingredient and seasoning names, the verbs
did not appear to lead to failure and likely enhanced the
performance.

To enrich the database, it must be made more effective
through the prioritization of duplicate verbs in the input
and relevant comparisons with multiple recipes. In terms

Page 13 of 13Inagawa et al. Robomech J (2021) 8:17 	

of proper nouns, it is inefficient to increase the number
of randomly generated nouns. Therefore, it may be neces-
sary to design a more sophisticated database mechanism,
such as one that enables keyword classification for simi-
lar expressions.

In future studies, we intend to reevaluate the obtained
experimental data and improve the algorithm and
broaden its applicability. Furthermore, it is necessary to
improve the recipe analysis algorithm and add a text-
proofreading process to improve the generalization
performance.

Acknowledgements
Not applicable.

Authors’ contributions
The first author conducted the study under the supervision of the second
author. The first and second authors wrote the manuscript. All authors read
and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors consent for the publication of the manuscript in Robomech
Journal.

Competing interests
The authors declare no competing financial interests.

Received: 12 October 2020 Accepted: 31 May 2021

References
	1.	 Spyce. https://​www.​spyce.​com/. Accessed 20 Aug 2020
	2.	 Jing Dong X Future Restaurant. https://​prtim​es.​jp/​main/​html/​rd/p/​00000​

0049.​00003​4149.​html. Accessed 12 Sept 2020.
	3.	 Moley. http://​www.​moley.​com. Accessed 15 May 2020

	4.	 OctChef. https://​conne​cted-​robot​ics.​com. Accessed 4 May 2020
	5.	 Bot Chef. https://​techa​ble.​jp/​archi​ves/​94801. Accessed 15 Jan 2020
	6.	 Yoshihiro Kusuda, Takashi Yagi. A Practical Guide to Introducing Industrial

Robots in Illustration. Nikkan Kogyo Shimbun, Japan. 1999. [Translated
from Japanese]

	7.	 Yuta S, Daisuke S, AI W, Masahiko I, Takeo I. Cooky: Development of a
Cooking Order Interface and Cooking Robot. The 17th Workshop on
Interactive Systems and Software (WISS2009), pp 75-80. 2009

	8.	 Yuuta F, Yukinobu H. Experiment of motion control of KHR-2HV by using
a motion capture system 2. Proceedings of the Japan Joint Automatic
Control Conference 2010, Volume 53, The 53rd Japan joint automatic
control conference, session ID 126, Pages 24, Released February 03, 2011

	9.	 Takamune S, Tatsuhiko S, Keiichi S. Research of Off-line Teaching Support
System for Automatic Programming of Welding Robot (OS-1, S-14, 15, 16,
19 Work Robot). Proceedings of the Kansai Section Conference, Session
ID 209. 2008

	10.	 Bollini M, Tellex S, Thompson T, Roy N, Rus D (2013) Interpreting and
executing recipes with a cooking robot. Experimental robotics. Exp
Robotics Springer Tracts Adv Robotics 88:481–495

	11.	 Masahiro I, Toshinobu T, Etsujiro I. Interpreting and Motion Generation
for a Cooking Robot. ROBOMECH2019 The Robotics and Mechatronics
Conference 2019, 1P2-C11. 2019

	12.	 Masahiro I, Toshinobu T, Etsujiro I. Japanese Recipe Interpretation for
Motion Process Generation of Cooking Robot. 2020 IEEE/SICE Interna-
tional Symposium on System Integration, Paper We2E.5. 2020

	13.	 Shinsuke M, Yoko Y, Tetsuro S, Hirokuni M. Definition of flow graphs for
recipe texts. Report of Information Processing Society of Japan, Report
of the Society for Natural Language Processing 2013-NL-214(13), 1-7, 7
November 2013

	14.	 MeCab: Yet Another Part-of-Speech and Morphological Analyzer. http://​
taku9​10.​github.​io/​mecab/. Accessed 20 Jan 2020

	15.	 Unity. https://​unity.​com/. Accessed 20 Jan 2020
	16.	 S.M.LaValle. Rapidly-exploring random trees: A new tool for path plan-

ning. Computer Science Dept. Oct. vol.98. no.11. 1998
	17.	 Masahiro I, Toshinobu T, Etsujiro I. Development of a Tower-type Cooking

Robot. Proceedings of the 2021 IEEE/SICE International Symposium on
System Integration Iwaki, Fukushima, Japan, January 11-14, 2021

	18.	 Cookpad. https://​cookp​ad.​com. Accessed 21 Mar 2020

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.spyce.com/
https://prtimes.jp/main/html/rd/p/000000049.000034149.html
https://prtimes.jp/main/html/rd/p/000000049.000034149.html
http://www.moley.com
https://connected-robotics.com
https://techable.jp/archives/94801
http://taku910.github.io/mecab/
http://taku910.github.io/mecab/
https://unity.com/
https://cookpad.com

	Analysis of cooking recipes written in Japanese and motion planning for cooking robot
	Abstract
	Introduction
	Research approach
	Recipe analysis algorithm
	Database for the algorithm
	Motion code database
	Object database
	Motion library

	Recipe analysis
	Prerequisite
	Conversion of recipes to recipe data
	Extraction of motion code
	Sorting and insertion of motion codes

	Motion planning
	Planning robot motion
	Simulator to train the robot motion

	Experiment
	Experimental environment
	Result

	Evaluation of the recipe analysis appropach
	Preparation
	Input recipe data
	Evaluation method
	Result

	Discussion
	Conclusion
	Acknowledgements
	References

