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Abstract 

This paper presents an extended Kalman filter for pose estimation using noise covariance matrices based on sensor 
output. Compact and lightweight nine-axis motion sensors are used for motion analysis in widely various fields such 
as medical welfare and sports. A nine-axis motion sensor includes a three-axis gyroscope, a three-axis accelerometer, 
and a three-axis magnetometer. Information obtained from the three sensors is useful for estimating joint angles 
using the Kalman filter. The extended Kalman filter is used widely for state estimation because it can estimate the 
status with a small computational load. However, determining the process and observation noise covariance matrices 
in the extended Kalman filter is complicated. The noise covariance matrices in the extended Kalman filter were found 
for this study based on the sensor output. Postural change appears in the gyroscope output because the rotational 
motion of the joints produces human movement. Therefore, the process noise covariance matrix was determined 
based on the gyroscope output. An observation noise covariance matrix was determined based on the accelerometer 
and magnetometer output because the two sensors’ outputs were used as observation values. During a laboratory 
experiment, the lower limb joint angles of three participants were measured using an optical 3D motion analysis 
system and nine-axis motion sensors while participants were walking. The lower limb joint angles estimated using the 
extended Kalman filter with noise covariance matrices based on sensor output were generally consistent with results 
obtained from the optical 3D motion analysis system. Furthermore, the lower limb joint angles were measured using 
nine-axis motion sensors while participants were running in place for about 100 s. The experiment results demon-
strated the effectiveness of the proposed method for human pose estimation.
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Introduction
Compact and lightweight nine-axis motion sensors have 
been developed through advances in micro-electrome-
chanical systems technology; they have come to be used 
for motion analysis in widely various fields [1–8]. The 
nine-axis motion sensors are applicable both indoors 
and outdoors because of their portability. Several experi-
ments have been conducted to measure the motion of a 
skier gliding down a slope and jumping off a hill using 

motion sensors [9, 10]. The nine-axis motion sensors 
include a three-axis gyroscope, a three-axis accelerom-
eter, and a three-axis magnetometer. Using information 
obtained from the motion sensors, several sensor fusion 
algorithms have been proposed for pose estimation: as 
one example, a sensor fusion algorithm that can correct 
gyroscope drift using information obtained from the 
other two sensors has been used for human pose esti-
mation during daily activities and exercise [11–13]. Fur-
thermore, a sensor fusion algorithm able to correct the 
magnetometer output using information obtained from a 
gyroscope has been used for pose estimation in a variable 
magnetic field [14, 15]. The Kalman filter [16–20] and the 
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complementary filter [21–25] are some pose estimation 
methods using sensor fusion.

The Kalman filter estimates the system state with a 
small computational load. Nevertheless, determining the 
process and observation noise covariance matrices in the 
Kalman filter is complicated. For a case in which the pro-
cess and observation noise covariance matrices are time-
invariant, the estimation accuracy might decrease if the 
sensor output noise increases. Moreover, the noise of the 
sensor output might vary because of long-term measure-
ments. For that reason, adjusting the noise covariance 
matrices based on sensor output is important.

To estimate the lower limb joint angles for this study, a 
method was devised to determine the process and obser-
vation noise covariance matrices in the extended Kalman 
filter based on sensor output. The postural change 
appears in the gyroscope output because the rotational 
motion of the joints produces human movement. There-
fore, the process noise covariance matrix was set based 
on the gyroscope output. When the accelerometer out-
put increased, the observation noise covariance matrix 
was set to increase. The observation noise covariance 
matrix was also set to increase when the magnetometer 
output drastically changed. During a laboratory experi-
ment, the lower limb joint angles of three participants 
were measured using an optical 3D motion analysis sys-
tem and nine-axis motion sensors while the participants 
were walking. Several studies have demonstrated that 
an optical 3D motion analysis system measured human 
movement with high accuracy. Therefore, the system is 
used for verifying the pose estimation accuracy in widely 
diverse fields [26–29]. We verified the accuracy of the 
proposed method by comparing its results to those of 
an optical 3D motion analysis system. Furthermore, the 
lower limb joint angles were measured using nine-axis 
motion sensors while the participants were running in 
place. Finally, the effectiveness of the proposed method 
was verified using experiment results.

Measurement method
Definition of roll‑pitch‑yaw
The 3D posture of the sensor is represented by the roll 
angle ( φ ) around the x-axis, the pitch angle ( θ ) around 
the y-axis, and the yaw angle ( ψ ) around the z-axis. The 
reference coordinate system is a right-handed system 
with a vertical z-axis. The counterclockwise rotation is 
defined as positive. The reference coordinate system and 
the definition of the joint angles are presented in Fig. 1.

Roll‑pitch‑yaw calculation
For this study, Euler angles (roll, pitch, and yaw) 
were calculated using nine-axis motion sensors. The 

nine-axis motion sensor (SS-WS1792; Sports Sensing 
Co., Ltd.) used for this study includes a three-axis gyro-
scope (± 1500  dps), a three-axis accelerometer (± 16 
G), and a three-axis magnetometer (± 10 Gauss). The 
38 × 53 × 11 mm sensor weighs 30 g.

The initial roll and pitch angles were calculated using the 
accelerometer output at rest [30, 31]. The relation between 
the acceleration sensor output and the gravitational accel-
eration in the reference coordinate system is expressed 
using Eq. (1) because the accelerometer measures only the.

gravitational acceleration while at rest:

where.

Therein, iA denotes the accelerometer output, oA repre-
sents the acceleration in the reference coordinate system, 
and g stands for gravitational acceleration. For the experi-
ment, sensors 1, 2, 3, and 4 were placed respectively on the 
waist, left thigh, left shank, and left foot. In addition, the 
rotational matrix from the sensor coordinate system to the 
reference system oRi is the following:

(1)iA = (ORi)
TOA, (i = 1, 2, 3, 4)

iA =





iAx
iAy
iAz



,
oA =





0

0

g



,

Fig. 1  Definition of the lower limb joint angles and the reference 
coordinate system
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Then, the accelerometer output iA is represented by 
substituting Eq. (2) into Eq. (1) as shown below:

The initial roll and pitch angles using Eq. (3) are:

where iAx, iAy, and iAz respectively denote the acceler-
ometer output for the x, y, and z axes. Therein, iφA and 
iθA respectively denote the initial roll and pitch.

To correct the yaw angle, calculations require the roll 
iφA, pitch iθA, and magnetometer output as:

where imx, imy, and imz respectively denote the mag-
netometer outputs for the x, y, and z axes. Therein, 
c,imx, c,imy, and c,imz respectively represent the cor-
rected magnetic field data for the x, y, and z axes. The 
positive directions of c,imx, c,imy, and c,imz coincide 
with those of each axis of the reference coordinate sys-
tem in Fig. 1. The x-axis pointed in the direction of the 
azimuth at 112.5 degrees (east-southeast). The y-axis 
pointed in the direction at the azimuth of 202.5 degrees 
(south-southwest) in the reference coordinates.

The following equation is used for calculating yaw:

where iψm denotes the azimuth on the x–y plane of 
the reference coordinates in Fig. 1.

(2)oRi =





cos iψ − sin iψ 0

sin iψ cos iψ 0

0 0 1









cos iθ 0 sin iθ

0 1 0

− sin iθ 0 cos iθ









1 0 0

0 cos iφ − sin iφ

0 sin iφ cos iφ





(3)





iAx
iAy
iAz



 =





− sin iθ · g

cos iθ sin iφ · g

cos iθ cos iφ · g





(4)iφA = atan2
iAy

iAz
(−π < iφA < π)

(5)
iθA = atan2

−iAx
√

iA2
y +

iA2
z

(−π < iθA < π)

(6)





c,imx
c,imy
c,imz



 =





cos iθA sin iφA sin iθA cos iφA sin iθA
0 cos iφA − sin iφA

− sin iθA sin iφA cos iθA cos iφA cos iθA



 ·





imx
imy
imz





(7)iψm = atan2
−c,imy

c,imx
(−π < iψm < π)

The differential Euler angles in the reference coordi-
nate system are the following:

Therein, iφ̇ , iθ̇ , and iψ̇ respectively represent the dif-
ferential roll, pitch, and yaw angles, iωy and iωz respec-
tively stand for the gyroscope output for the x, y, and z 
axes. Then the roll, pitch, and yaw angles are calculated 
by substituting Eq. (8) into Eq. (9):

Extended Kalman filter
State‑space model
The roll, pitch, and yaw angles of each sensor placed on 
the lower limb are estimated by the sensor fusion using 

the extended Kalman filter. The nonlinear state equation 
was developed using Eq.  (9). The nonlinear observation 
equation was developed using Eq.  (7) and the accelera-
tion sensor output. The nonlinear state and observation 
equations are shown respectively in Eqs. 10 and 11:

where,

(8)





iψ̇
iθ̇
iφ̇



 =





0 sin iφ sec iθ cos iφ sec iθ

0 cos iφ − sin iφ

1 sin iφ tan iθ cos iφ tan iθ









iωx
iωy
iωz





(9)





iψ
iθ
iφ





t+1

= ∫





iψ̇
iθ̇
iφ̇



dt +





iψ
iθ
iφ





t

(10)ixt+1 =
iF
(

ixt ,
iωt

)

+ iwt ,

(11)iyt =
iH

(

ixt

)

+ ivt ,

ixt =





iψ
iθ
iφ





t

iF(xt ,ωt) =







iψt + sin
iφt sec

iθt
iωy,t · Ts + cos

iφt sec
iθt

iωz,t · Ts

iθt + cos
iφt

iωy,t · Ts − sin
iφt

iωz,t · Ts

iφt +
iωx,t · Ts + sin

iφt tan
iθt

iωy,t · Ts + cos
iφt tan

iθt
iωz,t · Ts






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In those equations, t  , iθt , and iψt respectively denote 
Euler angles of the sensor placed on each lower limb 
segment, as estimated using the extended Kalman filter. 
Ts stands for the sampling time. In addition, iωx,t , iωv,t , 
and iωz,t respectively denote the gyroscope outputs for 
the x, y, and z axes. Also, iASx , iASy , and iASz respectively 
express the accelerometer output for the x, y, and z axes. 
Therein, iwtand ivt denote white noise.

Yaw angle iψm , which was calculated using the mag-
netometer output, and the accelerometer output were 
used as the observation values in Eq.  (11). Equation  (1) 
represents the relation between the accelerometer out-
put and gravitational acceleration. Consequently, the 
right side of Eq.  (1) was used in iH

(

ixt
)

 of the observa-
tion equation. Although the proportion of the centrifugal 
acceleration and the tangential acceleration in the accel-
erometer output would have increased during exercise, 
these acceleration components were processed as obser-
vation noise. In addition, iψm = iψt is a simple equation 
representing the relation between the magnetometer out-
put and the yaw angle of the state values. Therefore, the 
yaw angle iψt of the state value was used in iH

(

ixt
)

 of the 
observation equation.

The partial derivatives of iF
(

ixt ,
iωt

)

 and iH
(

ixt
)

 are 
shown below:

Then, the prediction step [Eqs. (14) and (15)] and the 
filtering step [Eqs. (18), (19), (20)] are calculated using 
the nonlinear discrete-time system represented by Eqs. 
(10) and (11)] . Here, Eq.  (16) and Eq.  (17) are used for 
calculating the likelihood of the state-space model:

iyt =









iψm
iASx
iASy
iASz









t

,
iH(xt) =









iψt

�

0Ri

�T

t





0

0

g













(12)if
(

ixt ,
iωt

)

=
∂ iF

(

ixt ,
iωt

)

∂ ixt
,

(13)ih
(

ixt

)

=
∂ iH

(

ixt
)

∂ ixt
,

(14)ix−t+1
= iF

(

ixt ,
iωt

)

(15)iP−
t+1

= ift
iPt

if Tt + iQt ,

(16)iVt+1 =
iyt+1 −

iH
(

ix−t+1

)

,

(17)iBt+1 =
iht+1

iP−
t+1

ihTt+1 +
iRt ,

In those equations, iP represents the error covariance 
matrix, iV  denotes the prediction error matrix, iB stands 
for the prediction error variance matrix, and iK  denotes 
the Kalman gain. Therein, iQ and iR respectively denote 
the covariance matrices of process noise iwt in the non-
linear state equation and observation noise ivt in the non-
linear observation equation.

Noise covariance matrices based on sensor output
The process and observation noise covariance matrices in 
the extended Kalman filter were determined based on the 
state-space model dynamics and the sensor noise. The 
postural change appears in the gyroscope output because 
the rotational motion of the joints produces human 
movement. Consequently, the process noise covariance 
matrix was determined based on the gyroscope output as 
presented below:

where,

In those expressions, iωx,t , iωy,t , and iωz,t respectively 
stand for the gyroscope output for x, y, and z axes. Also 
a and b are adjusting parameters. For this study, a and 
b were determined to maximize the log-likelihood ( iLL ) 
shown in Eq. (22):

In that equation, N stands for the number of time-
series data; j represents time-series. In addition, iBj 
expresses the prediction error variance; iVj signifies the 
prediction error.

The observation noise covariance matrices must be 
set at a high value when the sensor noise increases [32]. 
Therefore, the observation noise covariance matrix was 
determined based on the accelerometer and magnetom-
eter output because the two sensor outputs were used as 

(18)iKt+1 =
iP−

t+1
ihTt+1

(

iht+1
iP−

t+1
ihTt+1 +

iRt

)−1

,

(19)ixt+1 =
ix−t+1

+ iKt+1

(

iyt+1 −
iH

(

x−t+1

)

)

(20)iPt+1 =
(

I − iKt+1
iht+1

)

iP−
t+1

(21)iQt =





i�ω,t 0 0

0 i�ω,t 0

0 0 i�ω,t





i�ω,t = a
√

iω2
x,t +

iω2
y,t +

iω2
z,t + b

(22)iLL = −
N

2
ln(2π)−

1

2

N
∑

j=1

(

ln
(

iBj

)

+

iV 2
j

iBj

)
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observation values [33]. The observation noise covari-
ance matrix is presented below:

where,

In the matrix, c,imx,t , c,imy,t , and c,imz,t respectively 
denote corrected magnetic field data for the x, y, and z 
axes. In addition, m represents the average value of the 
magnetometer output over the entire measurement time. 
Furthermore, iAx,t, iAy,t, and iAz,t respectively express the 
accelerometer outputs for the x, y, and z axes. Therein, 
c, d, e, and f are adjusting parameters. In addition, c, d, 
e, and f were determined to maximize the log-likelihood 
(LL) shown in Eq.  (22). Several studies have proposed 
process and observation noise covariance matrices 
based on sensor output [31, 33]. In those earlier studies, 
noise covariance matrices were produced after calculat-
ing the deviation of each sensor using many equations. 
The adjusting parameters a to f in the noise covariance 
matrices are determined simply using only log-likelihood 
calculations presented in Eq.  (22). In addition, interac-
tion between the process noise covariance and obser-
vation noise covariance is considered in log-likelihood 
calculations.

The roll, pitch, and yaw angles in the sensor i coor-
dinate system obtained from the sensor fusion are 
converted into the rotational matrix of the reference 
coordinate system using Eq.  (2). The lower limb joint 
angles are calculated by substituting Eq. (2) into Eq. (24) 
as shown below:

(23)iRt =









i�m,t 0 0 0

0 i�a,t 0 0

0 0 i�a,t 0

0 0 0 i�a,t









i�m,t = c

(

√

c,im2
x,t +

c,im2
y,t +

c,im2
z,t −m

)

+ d

i�a,t = e

(

√

iA2
x,t +

iA2
y,t + (iAz,t − g)2

)

+ f

(24)i−1Ri =
(

0Ri−1

)T
·
(

0Ri

)

In that equation, i−1Ri denotes the rotational matrix 
from the sensor i coordinate system to the sensor i-1 sys-
tem. The hip joint angle is estimated using the output of 
the two sensors placed on the waist and thigh. The knee 
joint angle is estimated using the output of the two sen-
sors placed on the thigh and shank. The ankle joint angle 
is estimated using the output of the two sensors posi-
tioned on the shank and foot.

Verification experiment
Participants and experiment conditions
Three healthy participants (A, B, and C) were examined 
during the experiment. Anthropometric data are shown 
in Table  1. After maintaining the upright posture for 
about 5 s, the first step that a participant took was with 
the left foot. They were instructed to walk using a natu-
ral stride in time with a metronome (70 bpm). Measure-
ment started simultaneously when a participant started 
to maintain the upright posture. The measurements 
finished when the participant placed the right foot flat 
on the floor during the sixth step. Following an expla-
nation of the purpose and requirements of the study, 
the participants gave their written informed consent to 
participate in the study. Study approval was obtained 
from the Research Ethics Board, Kogakuin University, 
and National Institute of Technology, Akita College.

During the experiment, kinematic data were collected 
using an optical 3D motion analysis system (Bonita 10; 

Table 1  Anthropometric data

Participant Height [m] Weight [kg] Age [years]

A 1.78 60 20

B 1.72 65 20

C 1.80 56 21 Fig. 2  Sensor positions and sensor coordinate system
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Vicon Motion Systems Ltd.), two force plates (9286; 
Kistler Japan Co. Ltd.), and four nine-axis motion sen-
sors in synchronization. The heel strike and toe off were 
ascertained from force plate data. The sensors were 
placed on the waist, left thigh, left shank, and left foot 
using double-sided tape and elastic straps. The sen-
sor positions are presented in Fig. 2. Definitions of the 
length of the thigh, shank, and foot were referred from 
reports of earlier research [34]. Positions of reflective 
markers for the optical 3D motion analysis system were 
found by reference to the Vicon Plug-in Gait model. 
The sampling frequencies of the nine-axis motion sen-
sors, the optical 3D motion analysis system, and the 
force plates were 100 Hz.

Results
Table  2 shows parameters a to f in the walking experi-
ment, which were found to maximize the log-likelihood 
in Eq.  (22). In the walking experiment, more or less 
equivalent parameters were obtained for all participants.

The joint angles of participant A are depicted in Fig. 3. 
Black solid curves represent results obtained from the 
optical 3D motion analysis system. Red solid curves rep-
resent results obtained from the extended Kalman filter 
using the noise covariance matrices based on sensor out-
put, hereinafter designated as NBS. Orange solid curves 
represent results obtained from NBS, which used gyro-
scope output for the process noise covariance matrix and 

which used a constant value for the observation noise 
covariance matrix, hereinafter designated as NBS (Only 
process noise). Green solid curves represent results 
obtained from NBS, which used the constant value for 
the process noise covariance matrix and which used 
accelerometer and magnetometer output for the obser-
vation noise covariance matrix, hereinafter designated as 
NBS (Only observation noise). Blue solid curves present 
results obtained from the extended Kalman filter using 
the constant noise covariance, hereinafter designated as 
CNC. In addition, Ωω (= 0.0005), Ωm (= 1500), and Ωa 
(= 1500) of CNC were determined to maximize the log 
likelihood (LL) shown in Eq.  (22). The horizontal axis 
shows the normalized time, where one gait cycle is 100%. 
One gait cycle in Fig. 3 extends from the beginning of the 
stance phase of the left leg (the third step) until the end of 
the swing phase. Table 3 shows root mean square errors 
(RMSE) between the estimated results and the results 
obtained from the 3D motion analysis system.

Joint angles obtained from the three NBSs and CNC 
are generally consistent with the results obtained using 
the optical 3D motion analysis system. Results show the 
same tendency for joint angle variation as that found in 
an earlier study [35].

The ankle joint angle obtained from NBS (Only pro-
cess noise) is generally consistent with results obtained 
using the optical 3D motion analysis system at the dorsi-
flexion peak after toe-off. The ankle joint angle obtained 

Table 2   Adjusting parameters of NBS in the walking experiment

(a) Ankle joint

Participant Adjusting parameters

a b c d e f

A 0.00001 0 0.1 0 1 0

B 0.00001 0 0.1 0 1 0

C 0.00001 0 0.1 0 1 0

(b) Knee joint

Participant Adjusting parameters

a b c d e f

A 0.00001 0 0.1 0 1 0

B 0.00001 0 0.1 0 1 0

C 0.00001 0 0.1 0 10 0

(c) Hip joint

Participant Adjusting parameters

a b c d e f

A 0.00001 0 0.1 0 1 0

B 0.00001 0 0.1 0 1 0

C 0.00001 0 0.1 0 10 0
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from NBS (Only observation noise) is much smaller than 
the result obtained from the optical 3D motion analysis 

system. The results indicate that the process noise covari-
ance matrix based on the gyroscope output contributed 
to increased accuracy of the dorsiflexion peak during the 
swing phase.

In the early stance phase and the end of the swing 
phase, the ankle joint angle obtained from NBS (Only 
process noise) is much smaller than the result obtained 
from the optical 3D motion analysis system, whereas 
the ankle joint angle obtained from NBS (Only obser-
vation noise) is generally consistent with the result 
obtained using the optical 3D motion analysis system. 
The results indicate that the observation noise covari-
ance matrix based on the accelerometer and mag-
netometer output contributed to increased accuracy 
at the early stance phase and at the end of the swing 
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Fig. 3  Left lower limb joint angles during walking obtained using optical 3D motion analysis system, the extended Kalman filter using NBS, NBS 
(Only observation noise), NBS (Only process noise), and the extended Kalman filter using CNC (participant A). a The ankle joint angle. b The knee 
joint angle. c The hip joint angle.

Table 3  Root mean square errors for  results obtained 
from two extended Kalman filters and 3D motion analysis 
system results (participant A)

Noise covariance matrix RMSE [deg]

Ankle joint Knee joint Hip joint

NBS 3.17 2.41 3.18

NBS (Only process noise) 4.80 3.24 3.41

NBS (Only observation noise) 4.71 2.57 3.22

CNC 4.88 2.54 3.24
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phase. Therefore, the process noise covariance matrix 
based on the gyroscope output and the observed noise 
covariance matrix based on the accelerometer and 
magnetometer output might have contributed to the 
increased accuracy at different phases.

For knee and hip joint angles, all results show the 
same tendency. However, NBS (red line) has the small-
est RMSE in all results of all three joints. The results 
show that using both processes of noise covariance 
matrix based on the gyroscope output and the observed 
noise covariance matrix based on the accelerometer 
and magnetometer output might have contributed to 
increased accuracy. The two noise covariance matrices 
seem to have influenced one another.

Running experiment
Participants and experiment conditions
The nine-axis motion sensors measured lower limb joint 
angles of the same participants while they were running 
in place to verify the effectiveness of NBS when continu-
ously capturing data of fast-moving participants. The 
nine-axis motion sensors were placed in the same posi-
tions as those used for the verification experiment. The 
measurement time was about 100  s. During the experi-
ment, kinematic data were collected using an optical 3D 
motion analysis system with four nine-axis motion sen-
sors in synchronization. Participants were instructed to 
run in place in time with a metronome (150 bpm) after 

maintaining the upright posture for about 5 s. The sam-
pling frequencies of the nine-axis motion sensors and the 
optical 3D motion analysis system were 100 Hz.

Results
Table 4 shows parameters a to f for the running.

experiment, which were determined to maximize the 
log-likelihood in Eq. (22). From the running experiment, 
different parameters were obtained among the joints. 
In addition, parameters a, c, and e for running meas-
urements tended to be larger than those in the walking 
measurement. The results indicate that the noise covari-
ance matrices for the running experiment might have had 
larger values because the process and observation noise 
can increase if the motion velocity increases.

The estimated joint angles of participant A are pre-
sented in Figs.  4, 5, and 6. In each of Figs.  4, 5, and 
6, panels (a) present results obtained over the entire 
measurement time. Panels (b) present results obtained 
between 33  s and 35.5  s from the start of measure-
ments. In each of Figs. 4, 5, and 6, panels (b) are used for 
a detailed examination of the results. Black solid curves 
present results obtained from the optical 3D motion 
analysis system. Red solid curves present results obtained 
from NBS. Blue solid curves present results obtained 
from CNC.

The estimated ankle joint angle using NBS.

Table 4  Adjusting parameters of NBS in the running experiment

(a) Ankle joint

Participant Adjusting parameters

a b c d e f

A 0.1 0 10 0 1000 0

B 0.1 0 10 0 1000 0

C 0.1 0 10 0 1000 0

(b) Knee joint

Participant Adjusting parameters

a b c d e f

A 0.00001 0 0.1 0 1 0

B 0.00001 0 100 0 100 0

C 0.00001 0 100 0 1000 0

(c) Hip joint

Participant Adjusting parameters

a b c d e f

A 0.1 0 10 0 1000 0

B 0.001 0 10 0 1000 0

C 0.001 0 10 0 1000 0
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in Fig.  4(a) changes periodically between −  25° and 
25° over the entire measurement time, which is gener-
ally consistent with results obtained using the optical 3D 

motion analysis system. The estimated ankle joint angle 
using CNC in Fig.  4(a) changes periodically between 
− 70° and 0° over the entire measurement time. Although 
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Fig. 4  Results obtained for ankle joint angles (Subject A). a The results over the entire measurement time. b The results between 33 and 35.5 s.
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Fig. 5  Results obtained for knee joint angles (Subject A). a The results over the entire measurement time. b The results between 33 and 35.5 s.
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Fig. 6  Results of hip joint angles (Subject A). a The results over the entire measurement time. b The results between 33 and 35.5 s.
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the waveform of the result obtained using CNC in 
Fig. 4(b) is similar to the result obtained using NBS, the 
result obtained using CNC is much smaller than that 
obtained using NBS. Additionally, the waveform of the 
result obtained using CNC has a larger dorsiflexion peak 
than that obtained using NBS at about 33.7, 34.4, and 
35.2 s.

The estimated knee joint angle obtained using NBS in 
Fig. 5(a) changes periodically between 20° and 110° over 
the entire measurement time, which are generally con-
sistent with the results obtained using the optical 3D 
motion analysis system. Whereas the estimated knee 
joint angle using CNC in Fig.  5(b) changes periodically 
between − 60° and 0° over the entire measurement time. 
Although the waveform of the result obtained using CNC 
in Fig.  5(b) is similar to the result obtained using NBS, 
the result obtained using CNC is much smaller than that 
obtained using NBS. Additionally, the waveform of the 
result obtained using CNC has a smaller flexion peak 
than that obtained using NBS at about 33.6, 34.35, and 
35.2 s.

The hip joint angle estimated using NBS in Fig.  6(a) 
changes periodically between 10° and 35° over the entire 
measurement time, which are generally consistent with 
results obtained using the optical 3D motion analysis 
system. The estimated knee joint angle using CNC in 
Fig.  6(a) changes periodically between −  35° and −  15° 
over the entire measurement time. Although the wave-
form of the result obtained using CNC in Fig. 6(b) is sim-
ilar to the result obtained using NBS, the result obtained 
using CNC is much smaller than that obtained using 
NBS. All results obtained for the other two participants 
showed similar tendencies. The results demonstrated the 
effectiveness of the extended Kalman filter using NBS.

Conclusions
For this study, a method for ascertaining the process and 
observation noise covariance matrices in the extended 
Kalman filter based on sensor output was constructed to 
estimate the lower limb joint angles. The lower limb joint 
angles of the three healthy participants during walking 
and running were estimated using the method. Results 
yielded the following conclusions.

1.	 The joint angles obtained from the extended Kalman 
filter using the process and observation noise covari-
ance matrices based on sensor output were generally 
consistent with results obtained using the optical 3D 
motion analysis system in the verification experi-
ment.

2.	 In the running motion analysis, the results obtained 
using noise covariance matrices based on sensor out-
put indicated that the estimated joint angles changed 

periodically within an appropriate range. The 
results obtained using the constant noise matrices 
covariance indicated that the estimated joint angles 
changed abnormally.

Noise covariance matrices based on sensor output can 
be effective for accurate pose estimation because noise 
covariance matrices can be time-variable when continu-
ously capturing human motion with long-term measure-
ments. The proposed method is expected to be useful for 
estimating motion in sports and healthcare applications.
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