
Hanai et al. Robomech J (2018) 5:21
https://doi.org/10.1186/s40648-018-0120-z

RESEARCH ARTICLE

Design of robot programming software
for the systematic reuse of teaching data
including environment model
Ryo Hanai1*  , Kensuke Harada2, Isao Hara1 and Noriaki Ando1

Abstract 

The motion of the robot to realize assembly work includes the part where the reuse of the motion adjusted for the
real objects is effective and the part where automatic generation in the simulator is suitable. In order to smoothly
teach such assembly work, teaching software that enables to combine previously used motions and perform overall
adjustment of the workflow and integrated environment representation in the simulator is expected. Some teaching
tools focus on the function of making robot motion in detail, and it assumes that the adjustment of the whole work‑
flow including system layout using the real work environment. For this reason, the environmental expression is not
sufficient for the above purpose. Although offline teaching tools and motion planning tools are rich in the representa‑
tion of the environment, there are not many studies on a systematic reuse mechanism of motions adjusted in a real
environment, including environment representations. In this paper, we present software design to solve this problem
and the implementation of it as a plugin for Choreonoid. By an experiment, we confirmed that we can describe a
comparatively complicated assembly work with the proposed software.

Keywords:  Teaching, System integration, Manipulation, Task model, Reuse

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Introduction
How to build flexible robot systems that are easy to cope
with changes in product design and production volume is
an important issue in robot system integration. Basically,
there are two approaches for such flexible robot systems.

1.	 Reduction of manual work by raising an intelligence
level of robots.

2.	 Improvement of engineering work related to robot
introduction including teaching.

The first approach aims to make computers recognize
objects and environment, and generate motions of the
robots that enables intended tasks [1, 2]. This results in
the reduction of information given by humans explicitly
when each system is built. This is an actively researched

field, and many recognition and motion planning algo-
rithms have been proposed. In recent years, methods
based on machine learning using data obtained from the
real environment have also been explored [3, 4].

In the latter approach, it is assumed that humans pro-
gram the robot motion over relatively detailed parts. The
focus of this approach is on software or system design to
make teaching work efficient or easy for unskilled users.
For example, Rethink Robotics released a new teach-
ing software that enables teaching by combining graphi-
cal control blocks. In many of the collaborative robots
released in recent years, efforts are made to make teach-
ing work more efficient by integrating direct teaching to
designate positions in a real environment with teaching
tools [5–7].

If accomplishing a task goal automatically is possible
by an intelligent robot, the work required for the robot
introduction is greatly reduced. However fully auto-
matic approaches have many difficulties. For example,
in order to generate motion of robot with contact, which
is the core of assembly work, in simulation, it would be

Open Access

*Correspondence: ryo.hanai@aist.go.jp
1 Robot Innovation Research Center, National Institute of Advanced
Industrial Science and Technology, 1‑1‑1, Umezono, Tsukuba, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4216-4866
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-018-0120-z&domain=pdf

Page 2 of 16Hanai et al. Robomech J (2018) 5:21

necessary to model the details of objects such as rigid-
ity, material and surface condition in addition to highly
accurate geometry. The models of the dynamic behavior
of the robot and its lower control system are also needed.
This is difficult for users who aim for a simple introduc-
tion of robots. Rather, it is easier in many cases to make
this type of motions using the real environment. Like-
wise, as for non-rigid bodies such as cables, modeling
methods and algorithms for dealing with them are not
established. Information to be defined in advance tends
to be large to perform a high degree of automation. This
is a problem especially for users planning to introduce
robots experimentally.

The method of making the robot learn through the tri-
als in the real environment has the possibility of reduc-
ing human intervention if it can be applied successfully.
However, such trials are not necessarily possible in all
tasks, robots and work environments. There is a problem
that it takes a long time to make a sufficient number of
trials. For these reasons, it is the case that a method of
teaching the details of robot motions is still common.

Directly writing a sequence of detailed robot motions
is efficient at least when one system construction is
performed. However, when similar systems need to be
implemented or reproduced, this approach tends to lose
its efficiency. Similar systems are often required when a
part of a product is updated or the assembly system for
the product is improved. In the build-to-order produc-
tion, some part variation might be added. The pre-built
system might be reproduced in other places with some
layout changes in order to cope with the increase in pro-
duction amount.

This paper discusses what kind of support is possible
for the systematic development of such similar systems
from the aspect of software and presents a concrete
design of the support software. As for the motions that
are difficult to automatically generate and need some
adjustment in the real environment, we consider accu-
mulating the motion data in a form easy to reuse. Mean-
while, we integrate the environment and parameters
defined for each motion data so they can be adjusted
using the whole environment. It is troublesome to teach
motions such as the one that transports a lifted part to a
next assembling position in a complicated environment
with many objects, each time the layout of the system is
changed. With the integrated environment model, this
kind of motion is relatively easy to generate using kine-
matic motion planning.

This paper also presents the implementation of the
above-mentioned concept as a plugin for Choreonoid
[8], which is an integrated development environment for
robot tools.

In the following sections, we will focus on assembly
task which is the work expected to be further automated
by the robot.

Related work
The software proposed in this paper aims to give means
for systematic reuse of the motion data by system inte-
grators and users.

Most teaching tools of commercial robots focus on
directly describing robot motion. This is because this
approach enables to fully utilize the functions of each
robot when implementing tasks, has a flexibility to
encode users’ know-how explicitly. Various kinds of
teaching tools friendly to users have been proposed.
Intera 5.0 [9], developed by Rethink Robotics, describes a
program of a robot by graphically combining blocks simi-
lar to a syntax tree of a programming language. However,
descriptions generated by these tools have less infor-
mation on work content and dependence between sub-
motions is not well structured. If the information such as
the contents of work, robots, and tools used are not suffi-
cient, it is difficult to determine whether a certain motion
pattern can be reused well for a target task. Therefore, in
our software, 3D models of related objects are managed
together with motion patterns of robots. In addition,
it is possible to link data such as images, movies, docu-
ments as a means to supplement information which is
difficult or time-consuming to represent in the 3D model
environment.

In this paper, we use the word task as a unit of reuse and
call the representation for it task model. How to design
the task model is up to users for the reasons discussed
below. In robotics, the term task is used as a concept
closely related to work content. The word task focuses on
the objectives of work. The functions of robots to achieve
the tasks are called skills. Ogawa et al. say task expresses
“what to do” and skill expresses “how to do” [10].

However, it is difficult to define these concepts gener-
ally for software expected to be used for various appli-
cations completely independent of target systems,
application or abstraction level. Many authors defined
skills suitable to their problems and applications. Huck-
aby [11] presented a framework to enable knowledge
transfer between processes, systems and application
domains. The skills they defined to describe assembling
tasks included recognition, the use of tools. Szynkiewicz
et al. [12] defined skills for bimanual manipulation. Task
models for taking an elevator [13], the use of a tool [10]
and picking [14] were also presented. In practical task
programming, fairly low-level operations such as open-
ing/closing a gripper and joint-space motions of robots
are sometimes included in skills.

Page 3 of 16Hanai et al. Robomech J (2018) 5:21

In our approach, task models are user-defined enti-
ties. We assume that skillful users with the experience
of robot programming design the task models and other
users use them. This idea of users and experts are men-
tioned in Ref. [15]. We have also worked on explicitly
expressing the process of implementing tasks based on
this idea [16]. We expect to support the skillful user to
improve the design and accumulate know-how while
gaining feedback from ordinary users instead of giving a
complete task model set from the beginning.

Tasks and skills have hierarchy [13, 17]. Tasks are
decomposed into sub-tasks. Thomas et al. defined these
words in a bottom-up way in their framework called
UML/P [15]. They called commands of the system
devices elemental action (EA), a network of EA skill, and
a network of skills task. They used a different term “pro-
cess”, referring to a larger unit composed of tasks.

Our approach is close to UML/P. A set of commands
are implemented as controllers. Commands are inte-
grated into a task model and task models are integrated
into another layer, which is a workflow. Task models are
designed by skillful users to execute the commands. The
granularity of the task is chosen by the skillful users.
There is a difference that UML/P does not have 3D mod-
els or a mechanism to integrate them.

In real workplaces, it is often difficult to abstract away
the differences of robots, behaviors of controllers, and
other implementation methods. Users’ know-how is
sometimes encoded in the way of utilizing a specific
robot. We think that the accumulation of implementation
level information is also important. So, the task model of
our framework is not purely the work purpose. It allows
implementation level descriptions.

Understanding of a motion data of a robot may be rela-
tively easy if a user created it by himself. However, it is
difficult when the user looks back to it after a while or
shares it with other users. 3D models help users to see
what was assumed for the environment and what was
expected to happen as a result of executing the motion.
In reality, there are cases where some information is diffi-
cult or troublesome to represent with the 3D models. We
manage various data together with the task model for this
information.

Requirements for teaching software
The approach we take is to propose software that enables
users to perform the reuse process of robot motion data
in a systematic manner. Specifically, we aim to provide
software for designing the data reuse unit and manag-
ing the designed data together with adjusted parameters,
3D models and other data necessary for understanding
the work content and combining these data to describe a
longer work sequence.

In the rest of this section, we will discuss the require-
ments for this software using assembling of a mechani-
cal unit composed of several parts as an example. Given
a set of parts and a goal image of an assembled unit,
we first consider the order of assembling these parts
and how they are assembled. Next, we consider what
kind of robot’s motion enables each assembly step. As
is mentioned in “Introduction” section, the approach
of generating this kind of motion automatically by giv-
ing necessary information does not pay in many cases.
Therefore, we consider using human-designed motions
that are previously adjusted for the same or similar
objects. The following requirement arises from this
discussion.

R1-1.	 Previously created motion patterns of robots are
accumulated, and a longer operation sequence can be
described by combining them.

What kind of motion is suitable for assembling some
parts mainly depends on the parts. The structure of the
robot and hand, assembling method, tools and jigs used
for the assembling also affect the choice of the motion
pattern. Therefore, we expect that motion patterns are
extracted efficiently using the information related to the
target assembly.

R1-2.	 Quick access to target data is possible from the
information related to the task.

R1-3.	 Information for users to understand what each
data is like can be attached.

After the order of assembling the parts and the motion
of assembling them are determined, the layout of the
working environment such as the supply positions of
the parts and the assembling position must be decided
in order to develop the system that performs the assem-
bling operation. Since these positions are usually differ-
ent from the recorded ones in the stored data, they need
to be adjustable at the time of data reuse. It is difficult
to apply motions designed to specific parts or hands to
other parts directly. However, in some cases, it is possible
to define a motion pattern applicable to a certain kind of
parts group by parameterizing the motion empirically. In
such cases, it is worth considering to design patterns with
high versatility so tasks can be implemented with a small
number of patterns.

Some example parameterization would be the grasp
position of parts at the time of assembly, the designation
of the hand to be used when multiple hands are present,
the tightening torque at the time of screwing and other
control parameters. Based on this discussion, we add the
following requirements.

Page 4 of 16Hanai et al. Robomech J (2018) 5:21

R2-1.	 It is possible to change the layout of the work
environment when combining the data.

R2-2.	 Flexible parameterization of motion patterns is
possible.

We consider the use of 3D models as a representation
of the work environment. 3D models are widely used in
offline teaching tools or other robot applications, but
their objectives are varied. In our software, the 3D mod-
els are used for the following two purposes.

1.	 Visualization for users.
2.	 Environment for kinematic motion planning.

Generally, the number of parts and work procedures are
large in assembly work. It is usual to add minor improve-
ments to once deployed system by adjusting the motions
of robots or changing the grasp position of the objects.
Visualization of the objects in the whole environment
helps a lot to design the layout of the objects in the virtual
environment and adjust motion patterns. As described in
the previous section, assembly operations are performed
by reusing fixed patterns. If motion planning can be used
for the generation of motion connecting these assem-
bling motions, the teaching work will be reduced espe-
cially when the workspace layout is changed. This can be
implemented by introducing specific task models which
execute trajectories avoiding obstacles in the environ-
ment by using motion planning internally. To realize this,
the environment as the representation of obstacles for
the robot is needed.

It should be noted here that only items related to each
motion pattern are registered naturally. So, it is necessary
to create the representation of the whole environment
by integrating 3D models associated with each partial
motion pattern.

R3-1.	 Each motion pattern should be associated with
3D models as an environment representation.

R3-2.	 These environment models can be integrated
easily when combining the motion patterns.

Finally, teaching is performed by human users. The
design of the user interface is an important factor.

R4-1.	 GUI should present necessary and sufficient
information at each phase of teaching.

Design of the teaching software
This section describes the details of software design
to satisfy the requirements listed in “Requirements for
teaching software” section.

Task model and a unit of data reuse
Corresponding to R1-1, Fig. 1 shows the unit of data
accumulation and reuse. We call a semantically delim-
ited motion pattern task model . The task model is a user-
defined entity for the reasons below. First, since there is
no established way to delimit motions, there are different
ways of abstraction depending on the task designer. Sec-
ond, the domain of the target work is not closed, and it is
impossible to prescribe a set of task models used for the
task domain in advance and offer them together with the
teaching software. Our task model consists of:

1.	 A state-machine representing a motion pattern of the
robot.

2.	 A set of task parameters allowing the adjustment of
the above motion pattern.

We consider a sequence of motion such as “pick one part
and assemble it to another part” as a unit of reuse. This is
represented as a sequence of command execution offered
by robot controllers. Strictly speaking, the state-machine
is a mid-level task program rather than a simple motion
pattern. It describes command calls to lower-level con-
trollers depending on each state. The control flow of the
program may change according to the result of the pre-
vious command execution. It is assumed that commands
that can be executed by the low-level controller are
defined. Apart from the basic ones, it is difficult to share
the interface of the controller of the robot. So we do not
premise a specific controller interface. If the commands
referenced by a state-machine is implemented by the
controller, the task model is executable on that controller.
If not, the task model is not executable on that controller.

The task parameters correspond to R2-1 and R2-2.
They enable to change the layout of objects and adjust
motion patterns.

Fig. 1  Unit of data reuse

Page 5 of 16Hanai et al. Robomech J (2018) 5:21

When defining a state-machine, expressions using task
parameters are described as arguments of command
calls in each state. The goal positions of the hand or joint
angles are not always given directly by users. Appropri-
ate task parameters are chosen to model each task. These
expressions describe how to calculate the motions of the
robots from these selected parameters.

Figure 2 illustrates the relations among the above-
mentioned elements using an example. We assume a low-
level controller is given and the controller has commands
such as moveArm and closeGripper. hole position is a
task parameter. A trajectory of screwing are arguments
for moveArm command executions. Mapping functions
define the trajectory, which depends on the value of hole
position.

The unit of data reuse is the combination of a task
model, metadata which is information added by users,
and initial values of task parameters. The “3D models”
section, “Meta-data” section, the initial value “Default
values of task parameters” section will be explained in
detail.

3D models
In order to satisfy R3-1, we allow users to register 3D
models in each task model and associate them with some
task parameters. This mechanism enables to change the
associated task parameter by moving the 3D model in
the simulator interactively. As a result, the motion of the
robot changes indirectly.

This mechanism is not sufficient to support the move-
ment of items caused by the robots. When expressing the
environment in the 3D model, we expect that environ-
mental changes due to robot motion will be reproduced
in the simulator. Otherwise, it is difficult to check if the
combined motion sequence works well and the intended
assembly will be achieved. In order to express the envi-
ronmental changes caused by the robot, we add a mecha-
nism to describe the changes in connections between
hands and objects at the time of grasp and release
actions, and changes in the connection between objects
when they are assembled. These side effects can be added
to each command execution.

Meta‑data
We introduce an additional mechanism to anno-
tate task models with texts, images, movies and other
documents corresponding to the requirements R1-2
and R1-3. The meta-data is used to make task models
searchable. The system uses the meta-data as clues to
retrieve task models.

From the search result, a user selects a motion pat-
tern that can be used for his target assembling work. At
this time, if the user does not understand what kind of
motions they are, the user can not evaluate their avail-
ability. Our tool provides two confirmation means. One
is the execution of the motion in the simulator. The
other is the meta-data. The meta-data plays a dual role
of clues for the user to understand the contents of tasks
and the key of the search.

Another view of this mechanism is the unified man-
agement of related data for the tasks. Users associate
what they think is important for each task model. Con-
cretely, this is used by users to present know-how on
task implementation and to consider the re-usability of
task models. The texts typically include but not limited
to generic terms or model numbers of items related
to the task, verbs expressing actions used for the task,
phrases describing the task objectives. Extensive word
sense is employed for texts because we assume the
users who have not sufficiently formalizing what words
are appropriate to annotate their tasks. If it is possible
to give a set of appropriate words, it may be provided as
a dictionary.

The images typically include photographs of objects
such as parts, fixtures, tools or devices, key poses of
robots while performing the task, and geometric rela-
tions between objects when they are assembled. This idea
is borrowed from information management tools such as
Evernote [18]. The concept of the annotation is Capture
what’s on your mind on tasks. Know-how for task imple-
mentation includes various things. Some are well rep-
resented by data suitable for tool interpretation such as
CAD models. However, some are useful to assist human
understanding but do not have a well-accepted way of
representation. So the framework does not prescribe
strictly what kind of data should be associated.

Default values of task parameters
Task models are recorded together with default values of
their task parameters. There are two reasons for this.

The first reason is to make task models executable as a
partial motion pattern. After searching for a task, users
expect to check its contents in the simulator view. The
task model only describes the relationship between vari-
ous parameters and the motion pattern of the robot. In Fig. 2  State machine for a task model

Page 6 of 16Hanai et al. Robomech J (2018) 5:21

order to execute it, each task parameter needs to be ini-
tialized with some appropriate value.

The second reason is that parameter values adjusted in
the real environment is worth reusing as mentioned in
the introduction. They include values adjusted to archive
the task efficiently and robustly. Some of the examples
are control parameters such as stiffness, thresholds for
mode switching, parameters to control trajectories such
as movement speed or waiting time in some state.

Workflow
We call a longer motion sequence obtained by combin-
ing tasks workflow (R1-1). Figure 3 shows an example of
the workflow. The workflow is also expressed as a state
machine diagram like a task. Nodes of the workflow are
tasks instead of command executions. The syntax ele-
ments are sequential execution, conditional branch, the
merge of the control flow, initial node, final node, and
task node. The conditional branch switches control flow
depending on the result of the previous task execution.
It is possible to describe an expression using flow param-
eters explained in “Flow parameters” section for a more
complicated condition. The task node has a triangular
port for connecting control flow. On the other hand, a
node representing a flow parameter described later has
only a round port. A node representing a 3D model node
has a square port together with an image icon.

Flow parameters
If there is data that fits exactly to a target assembly task,
it can be used as it is in a new workflow. However, there
are many cases where some adjustments are needed
such as the change of the position of an object, the
replacement of some part. This is realized by changing
task parameters and 3D models (R3-1, R3-2).

Next, we need to think about what kind of operations
are suitable to make this adjustment. There is a prob-
lem with the method of directly rewriting the value of
the parameter each task model has. Consider the situa-
tion where a robot places a screw in a hole and tightens
it with a screwdriver. If this is represented by two task
models, the screw that appears in two task models is the
same entity. If the result position of the first task execu-
tion is not the same as the initial position of the sec-
ond task, the whole workflow is not consistent. It takes
time for users to adjust all the values of the respective
task parameters to make the workflow consistent when
the number of tasks and parts in the workflow is large,
and fine adjustment of the layout is repeated. Therefore,
we introduce a flow parameter which is a parameter
that can be referred to throughout the entire workflow.
Task parameters which are expected to keep the same
value over several tasks are associated with the flow
parameter. A user can graphically make a new associa-
tion by connecting a port of a task node representing a

Fig. 3  An example of workflow

Page 7 of 16Hanai et al. Robomech J (2018) 5:21

task parameter and a flow parameter node as shown in
Fig. 3.

A round port of a task node represents a task param-
eter of it. When this port is connected to a flow parame-
ter node, the value of the task parameter is synchronized
with the value of the connected flow parameter. That is,
when a certain task changes the value of a flow parame-
ter, the value of the task parameter of another task linked
to that flow parameter also changes. The read/write tim-
ings are determined by the definition of the tasks.

Sharing and replacement of 3D models in a workflow
If multiple tasks and flows have the copies of 3D mod-
els, the delay of model loading unacceptably increases.
The size of the database also becomes remarkably large.
To avoid this, 3D models are registered in advance and
each task and flow have references to them. This 3D
model data registered in advance is called model masters.
Replacement of a 3D model in a workflow is performed
using this model master. Consider a case where a user
wants to replace a 350 ml plastic bottle used in an exist-
ing task with a 500 ml plastic bottle. In this case, the user
add a 3D model node and make it refer to a master of the
tall bottle.

In Fig. 3, the node with the image of a plastic bottle
is the 3D model node. The 3D model node has a square
port that can be connected to a square port of a task. In
addition to robot motion, the task performs attach and
detach operations on 3D models as described in “3D
models” section. The square port is used to change the
target of these operations.

Frames can be defined in addition to the origin on 3D
models. For example, you can define screw hole posi-
tions with the names of hole1 to hole4 for a part with 4
screw holes. Flow parameters can be associated with task
parameters. In the same way, these frames defined on
3D models can also be associated with task parameters.
These frames are a kind of flow parameters and repre-
sented as round ports on 3D model nodes.

Output to parameters
The values of task parameters and flow parameters some-
times need to be updated while executing a task. A typi-
cal use case is recognition of an object. The recognized
position and posture is usually used in subsequent tasks.
This pattern can be implemented by outputting the rec-
ognition result to an appropriate flow parameter in the
task of recognition and associating the flow parameter
with a task parameter of another task that uses the value.
In Fig. 3, the position of the plastic bottle is updated
using a recognized value.

User interface
We will describe the design corresponding to R4-1. In the
case of mass production, the roles of end users and sys-
tem integrators are comparatively separated. The system
integrators design systems taking a long time. However,
in order to utilize flexible robot systems, it is necessary
for the end user to be more involved in engineering work.

We classify users of the software into two groups: User
and Expert and offer perspectives suitable for their typi-
cal use cases. Expert has a comparatively high level of
knowledge on robots, programming and system inte-
gration, which is required to design task models. On the
other hand, User has limited knowledge of them. Expert
typically indicates engineers ranging from robot makers,
system integrators to skillful people of end-user compa-
nies (Fig. 4). Expert designs basic patterns of data reuse.
User customizes the patterns for specific objects or sys-
tem layouts and combines them to describe workflows.
User also manages meta-data.

Perspective for User
Figure 5 shows the perspective for User. The window
consists of 4 views, In the search view, User enters key-
words such as “gear” or “screwing”. Then User selects
from the search results. Various information related to
the selected task model is shown in each view. Meta-data
related to the task model is shown in the meta-data view.
In the scene view, the robot and 3D models related to the
task model is presented. User also checks the motion in
the scene view.

Next, User combines the search results to describe a
workflow. By the operation of dragging from the search
view into workflow view, the selected task is added to the
workflow. The connection among added tasks and flow
parameters are edited in the workflow view.

Visibility of parameters
In addition to the control flow of the program, display-
ing various parameters and their relationships in one
figure is suitable to understand the overall structure of
a workflow. However, excessive information has a risk
of making the figure difficult to understand, when the
number of parameters and task nodes is large. The user
interface needs some ingenuity to control the amount of

Fig. 4  Classification of users

Page 8 of 16Hanai et al. Robomech J (2018) 5:21

information presented in the workflow view. In order to
alleviate this problem, we introduce a function to switch
the visibility of parameters.

Basically, the design of workflows consists of two
phases. Control parameters used for an assembly opera-
tion between specific parts are not often changed, once
the adjustment is made. When the layout of the objects
and the robot is changed, setting these control param-
eters invisible makes the other adjustment such as the
design of the working environment easy.

To enable this, task parameters can be set to invisible
in the workflow view. In addition, in order to improve the
operability, the GUI has functions of enlargement/reduc-
tion, the shift of display area, switching of edit mode. By
setting the edit mode off, it is possible to prevent mis-
takenly changing parameters or structure of workflow
during the operations such as search and execution of
motions.

Perspective for Expert
Figure 6 shows the perspective for Expert. Expert mainly
designs task models. For this purpose, views for defining
the information necessary for the task model is prepared.
The state machine view is used to design the structure of

state machines. The command list defined by the low-
level controller is shown. A command node is added by
dragging them into the state machine view. The param-
eter view is used to define task parameters and changing
values of them. When a command node is selected in the
state machine view, information of the node is displayed
in a separate dialog. Expressions to calculate command
arguments from task parameters are edited in the dialog.
The task model can also be defined in a text file. Cur-
rently, YAML format is supported. Some people prefer
to import the task model after exporting and editing it in
YAML format once at a time.

Implementation
The system architecture is shown in Fig. 7. The frame-
work was implemented as a plugin for Choreonoid [8],
which is an integrated development environment for
robot tools with a powerful plugin-based extension
mechanism. The plugin implementing the framework is
shown as Teaching core plugin in the figure. All the data
including the motion patterns designed by Expert and
associated meta-data are managed by a relational data-
base. SQLite [19] is used as a database management sys-
tem. The stored data can be exported to YAML files and

Fig. 5  Perspective for User

Page 9 of 16Hanai et al. Robomech J (2018) 5:21

Fig. 6  Perspective for Expert

Fig. 7  System architecture of the framework

Page 10 of 16Hanai et al. Robomech J (2018) 5:21

imported after editing with a text editor. YAML files are
also useful for the cooperation with other tools. One pos-
sible cooperation is to import a task model generated by
a tool to analyze human demonstrations.

Controllers used in the task models are implemented as
separate plugins. This is shown as Controller plugin in the
figure. Controller plugin needs to implement a common
interface so that the commands defined by it are called
by Teaching core plugin. The controllers can be imple-
mented by directly mapping standard API of robots or by
using different abstractions. Teaching core plugin obtains
the list of the commands when the Controller plugin is
loaded, calls the commands based on the command spec-
ification, and branches based on the result of the com-
mand execution.

Experiment
In this section, we show how a robot motion sequence is
created using an example of YCB airplane [20] assembly.
The robot used in this example is UR3 made by Universal
Robots with a dual-arm configuration. This task consists
of four parts: a partially assembled airplane body, a main
wing, and two screws. The goal of this task is to assemble
these four parts into one. Figure 8 shows these parts and
how they are assembled.

The assembly procedure is as follows. First, the main
wing is assembled on the airplane body. The wing needs
to be holded down with moderate force to be fitted in the
body. Then the wing is fixed with a screw. Finally, another
screw is inserted at the rear of the airplane body.

Assemble the main wing
Assembling the main wing to the airplane body is not
simple pick-and-place but the robot needs to push the
wing into the body. If such a task is found in the data-
base, it can be used as it is. Here we adopt an approach

of putting the main wing once on the body and perform-
ing the task of holding down with appropriate force from
above, since the main wing can be placed on the body
in a statically stable manner. Since the airplane body
moves easily, it needs to be fixed in some way. The use of
another jig is possible, but we fix it with the other hand of
the robot since the robot has two hands. The work pro-
cedure on our software to make this workflow is summa-
rized as follows.

1.	 Create a new workflow and add initial and final
states.

2.	 Search “pick-and-place” and add it to the workflow.
3.	 Replace the 3D models connected to the pick-and-

place with the main wing and the airplane body
respectively (Fig. 9). This is performed by finding the
desired 3D model from the model masters. Then,
create a link between the wing frame of the airplane
body model node and the place base frame of the
pick-and-place task, since the placing motion needs
to be executed with respect to the wing frame.

4.	 Next, search “press” and add the result to the work-
flow. After that, change the associated objects in the
same way.

5.	 The pressing force or the control parameter is
changed if necessary. When the same assembly data
exists, the value of the parameter may be used with-
out change. If there is no such data, an appropri-
ate value is set beforehand and some adjustment is
carried out later in the real environment. If there is
data dealing with similar parts, the recorded data is
expected to give a good initial value at the time of
adjustment even if it is not optimal.

6.	 Continue to add motions to hold and release the air-
plane body with the other hand before and after pick-
and-place and press operations. Adjust the holding

Fig. 8  A part of YCB airplane assembling

Page 11 of 16Hanai et al. Robomech J (2018) 5:21

position, gripper opening/closing width for the hold-
ing. Implementation of the main wing assembly has
been completed (Fig. 10).

Since the force value for the pressing is not shared with
other tasks, it is not bound to a flow parameter. Likewise,
the grasping and hold positions, which are the relative
position from the origin of the wind, are not necessarily
bound to flow parameters. In the following figures, the
selection of the hands has been completed, and the flow
parameter for hand selection and the related links are set
invisible.

Adding recognition
We assume that the supply position of the main wing is
roughly given, but it is not exactly determined. This is a
common problem setting for assembly tasks. To deal with
this situation, we add a recognition task. The procedure is
shown below.

1.	 Search for recognition task for the wing and add it to
the workflow. Keywords such as “airplane” and “rec-
ognition” are expected to hit.

2.	 Recognition is also defined in the same framework
as motion patterns. Recognition outputs to a speci-

Fig. 9  Add pick-and-place and replace 3d models

Fig. 10  Assemble main wing

Page 12 of 16Hanai et al. Robomech J (2018) 5:21

fied task variable. By adding a flow parameter to the
workflow and binding it to the task variable, the posi-
tion and orientation of the recognized object are out-
put to the flow parameter. Bind the flow parameter
to a task parameter of the pick-and-place task. As a
result, the pick-and-place motion is executed based
on the recognized position (Fig. 11).

Screw1
The procedure for assembling the first screw (screw 1) is
as follows.

1.	 First, we add the task of pick-and-place to the work-
flow and replace the picked object with the screw of
the YCB airplane by selecting it from the model mas-
ters. Screw 1 is inserted into a hole of the main wing,
which is already added to the workflow. This not a
separate object of the same type. Thus, place base
frame of the pick-and-place is connected to the hole1
frame of the existing model. Since the grasp pose of
screw1 is defined with respect to the origin of the
screw, pick base frame of the task is connected to the
origin of the screw1.

2.	 Next, motion to tighten the screw placed in the hole
with the driver is added. This is a task of picking and
transporting the driver and applying force and torque
to the screw with the driver. This task consists of 5
steps: pick and transport the driver, screwing, trans-
port back, place the driver to the original position.

3.	 If the screw tightening torque is different from the
registered value, add a flow parameter and connect
them with the corresponding task parameter and set
some new value.

4.	 Grasping the driver placed in a free posture requires
additional recognition or re-grasping of the driver.
This makes the work more complicated than neces-
sary. Therefore, we introduce a tool station for easy
grasping of the driver. The 3D model of the tool sta-
tion is added from the model masters and the hole
position of it is connected to the last place task.

5.	 The screw1 is also supplied using another slot of the
tool station so that it can be easily picked. After add-
ing the sequence for screw1, we get the workflow in
Fig. 12.

Screw2
Most of the procedure to add the second screw (screw 2)
is the same as screw 1. The difference is that the screws
associated with the pick and screwing tasks are screw
2 instead of screw 1. Screw 1 and screw 2 are the same
type of screws. They are generated from the same model
master. However since they are different entities, they
are not shared by pick tasks. Since the way of grasp-
ing screws and the tightening torque are expected to be
the same, the parameters representing them are shared.
This prevents from forgetting to change some of the task
parameters.

Figure 13 shows the integrated 3D model environ-
ment for this workflow. In the integrated 3D model

Fig. 11  Add recognition

Page 13 of 16Hanai et al. Robomech J (2018) 5:21

environment, you can change the position where the
assembly is performed or the supply location of the tool
while confirming the positional relationship of all the
related objects. The transfer part of pick-and-place can
be designed to perform motion planning internally when
designing the task model so as to generate collision-free
motion in the integrated 3D model environment.

Figure 14 shows a use case of the meta-data. The text
describes the content of work, notes when using each

motion pattern, adjustable parameters and so on. The
driver is attached a handle for stable grasp by a paral-
lel gripper and slippage prevention during screwing. By
3D-printing the STL file and fitting the printed handle as
shown in the picture, it is possible to prepare the same
tool as the original data. This accelerates the reproduc-
tion of the similar environment. The operation of screw
tightening includes an exploratory motion to fit the
driver tip robustly in the screw thread. To understand
such minute motion, real movie is often effective than
3D models. Actually, there is information that can not be
reproduced by the simulator, such as the movement of
the screw caused by the contact of the tool with the screw
at the time of exploration, which is useful information for
understanding what kind of environment interaction was
supposed to occur when the original data was prepared.

Discussion
As you can see from Fig. 12, the workflow tends to be
complicated. In this figure, the choice of robot hands
used for individual tasks is not displayed, but the figure is
already complex. Making the diagrams easy to see is one
of the important future works. The complexity of control
flow and data flow is a common problem in visual lan-
guages. We would like to discuss possible approaches
with reference to modeling software for SysML [21].

Fig. 12  Add screwing

Fig. 13  Integrated 3D models for the workflow

Page 14 of 16Hanai et al. Robomech J (2018) 5:21

Firstly, since tasks are compatible with hierarchy
(“Related work” section), by defining a partial sequence of
tasks as a separate state machine, the entire sequence is
expressed with a higher degree of abstraction. Figure 15
represents the overall workflow after hierarchization.
Figure 16 shows the sub state machine corresponding
to “assemble screw 1”. In the case where a large num-
ber of local nodes are connected to one parameter, this
approach is effective to localize the links in the sub state

machine. An example is the parameterization of the hand
used for a sequence of tasks.

Figure 15 shows only control flow and does not display
data flow. A typical use case of data flow is to see which
tasks share a model or parameter and which parameters
and models are used by a task. Therefore, we separate the
view of data flow from the view of control flow and fur-
ther suppress the complexity on the data flow by using
a view restricted to the data flow connected to selected

Fig. 14  An example of meta-data usage

Fig. 15  The whole workflow

Page 15 of 16Hanai et al. Robomech J (2018) 5:21

Fig. 16  Sub state machine for assembling a screw

Fig. 17  Dataflow view for a selected task

Page 16 of 16Hanai et al. Robomech J (2018) 5:21

flow parameter nodes, 3D model nodes, or task nodes.
Figure 17 is a view showing the data flow connected to
“assemble screw 1” task in Fig. 15.

Conclusion
This paper presented the design of new teaching soft-
ware based on the reuse of previous teaching data. In this
teaching software, a combination of parameters adjust-
able by users, motion pattern, 3D models as an environ-
ment expression and meta-data used for search keys and
content understanding by users is the unit of data reuse.
A mechanism for systematically building longer motion
sequences by combining these data was also explained.
This mechanism enables not only to simply arrange
motions in line but also to replace 3D models, adjust con-
trol parameters over task models and manage the sharing
relationship of the parameters and the 3D models when
the data are reused in a workflow.

By using this software, it is possible to reuse motion
patterns adjusted in the real environment, while adjust-
ing the overall layout of the working environment with
integrated parameters and 3D models. Effective support
by kinematic motion planning can be expected with the
integrated 3D models in the simulator. After that, the
implementation as a Choreonoid plug-in are mentioned.

We also presented how each function of the software
can be utilized, taking a part of YCB airplane assembling
as an example, and showed that a comparatively complex,
practical assembly workflow can be implemented using
the proposed software. As is discussed in “Discussion”
section, introducing mechanisms to suppress the com-
plexity of diagrams is one of important future works.

Authors’ contributions
RH designed and implemented the software tool. KH, IH and NA discussed
the specification of the software. All authors read and approved the final
manuscript.

Author details
1 Robot Innovation Research Center, National Institute of Advanced Industrial
Science and Technology, 1‑1‑1, Umezono, Tsukuba, Japan. 2 Graduate School
of Engineering Science, Osaka University, 1‑3 Machikaneyama, Toyonaka,
Japan.

Acknowledgements
This paper is based on results obtained from a project commissioned by the
New Energy and Industrial Technology Development Organization (NEDO).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 2 April 2018 Accepted: 30 August 2018

References
	1.	 Wan W, Harada K (2016) Integrated assembly and motion planning using

regrasp graphs. Robot Biomim 3(1):18. https​://doi.org/10.1186/s4063​
8-016-0050-2

	2.	 Ramirez-Alpizar IG, Harada K, Yoshida E (2014) Motion planning for
dual-arm assembly of ring-shaped elastic objects. In: 2014 IEEE-RAS
international conference on humanoid robots. pp 594–600. https​://doi.
org/10.1109/HUMAN​OIDS.2014.70414​23

	3.	 Pinto L, Gupta A (2016) Supersizing self-supervision: learning to grasp
from 50k tries and 700 robot hours. In: 2016 IEEE international confer‑
ence on robotics and automation (ICRA). pp 3406–3413. https​://doi.
org/10.1109/ICRA.2016.74875​17

	4.	 Levine S, Wagener N, Abbeel P (2015) Learning contact-rich manipulation
skills with guided policy search. In: 2015 IEEE international conference
on robotics and automation (ICRA). pp 156–163. https​://doi.org/10.1109/
ICRA.2015.71389​94

	5.	 KUKA LBR Iiwa. https​://www.kuka.com/en-de/produ​cts/robot​-syste​ms/.
Accessed 31 Mar 2018

	6.	 Rethink Robotics Sawyer. http://www.rethi​nkrob​otics​.com/sawye​r/.
Accessed 31 Mar 2018

	7.	 Universal Robots UR5. https​://www.unive​rsal-robot​s.com/produ​cts/ur5-
robot​/. Accessed 31 Mar 2018

	8.	 Nakaoka S (2012) Choreonoid: extensible virtual robot environment built
on an integrated gui framework. In: IEEE/SICE international sympo‑
sium on system integration (SII). pp 79–85. https​://doi.org/10.1109/
SII.2012.64273​50

	9.	 Intera 5.0. http://www.rethi​nkrob​otics​.com/inter​a/. Accessed 31 Mar 2018
	10.	 Ogawa M, Honda K, Sato Y, Kudoh S, Oishi T, Ikeuchi K (2015) Motion

generation of the humanoid robot for teleoperation by task model. In:
2015 24th IEEE international symposium on robot and human interactive
communication (RO-MAN). pp 71–76. https​://doi.org/10.1109/ROMAN​
.2015.73336​19

	11.	 Huckaby JO (2014) Knowledge transfer in robot manipulation tasks. Ph.D.
thesis, Georgia Institute of Technology

	12.	 Szynkiewicz W (2012) Skill-based bimanual manipulation planning. J
Telecommun Inf Technol 2012(4):54–62

	13.	 Miura J, Iwase K, Shirai Y (2005) Interactive teaching of a mobile robot.
In: Proceedings of the IEEE international conference on robotics and
automation. pp 3378–3383. https​://doi.org/10.1109/ROBOT​.2005.15706​
32

	14.	 Wakita Y, Nagata K, Ogasawara T (2007) Picking instruction with task
model for a robot in a daily life environment. In: The 16th IEEE interna‑
tional symposium on robot and human interactive communication
RO-MAN. pp 576–581. https​://doi.org/10.1109/ROMAN​.2007.44151​51

	15.	 Thomas U, Hirzinger G, Rumpe B, Schulze C, Wortmann A (2013) A new
skill based robot programming language using UML/P Statecharts. In:
2013 IEEE international conference on robotics and automation (ICRA).
pp 461–466

	16.	 Hanai R, Suzuki H, Nakabo Y, Harada K (2016) Modeling development
process of skill-based system for human-like manipulation robot. Adv
Robot 30(10):676–690. https​://doi.org/10.1080/01691​864.2016.11565​75

	17.	 Nagai T, Aramaki S, Nagasawa I (2007) Representation and programming
for a robotic assembly task using an assembly structure. In: 7th IEEE
international conference on computer and information technology (CIT
2007). pp 909–914

	18.	 Evernote. https​://evern​ote.com/. Accessed 28 Feb 2017
	19.	 Allen G, Owens M (2010) The definitive guide to SQLite, 2nd edn. Apress,

Berkely
	20.	 Calli B, Singh A, Walsman A, Srinivasa S, Abbeel P, Dollar AM (2015) The

ycb object and model set: towards common benchmarks for manipula‑
tion research. In: 2015 international conference on advanced robotics
(ICAR). pp 510–517. https​://doi.org/10.1109/ICAR.2015.72515​04

	21.	 Friedenthal S, Moore A, Steiner R (2011) Practical guide to SysML. The
systems modeling language, 2nd edn. The MK/OMG Press, Needham

https://doi.org/10.1186/s40638-016-0050-2
https://doi.org/10.1186/s40638-016-0050-2
https://doi.org/10.1109/HUMANOIDS.2014.7041423
https://doi.org/10.1109/HUMANOIDS.2014.7041423
https://doi.org/10.1109/ICRA.2016.7487517
https://doi.org/10.1109/ICRA.2016.7487517
https://doi.org/10.1109/ICRA.2015.7138994
https://doi.org/10.1109/ICRA.2015.7138994
https://www.kuka.com/en-de/products/robot-systems/
http://www.rethinkrobotics.com/sawyer/
https://www.universal-robots.com/products/ur5-robot/
https://www.universal-robots.com/products/ur5-robot/
https://doi.org/10.1109/SII.2012.6427350
https://doi.org/10.1109/SII.2012.6427350
http://www.rethinkrobotics.com/intera/
https://doi.org/10.1109/ROMAN.2015.7333619
https://doi.org/10.1109/ROMAN.2015.7333619
https://doi.org/10.1109/ROBOT.2005.1570632
https://doi.org/10.1109/ROBOT.2005.1570632
https://doi.org/10.1109/ROMAN.2007.4415151
https://doi.org/10.1080/01691864.2016.1156575
https://evernote.com/
https://doi.org/10.1109/ICAR.2015.7251504

	Design of robot programming software for the systematic reuse of teaching data including environment model
	Abstract
	Introduction
	Related work
	Requirements for teaching software
	Design of the teaching software
	Task model and a unit of data reuse
	3D models
	Meta-data
	Default values of task parameters

	Workflow
	Flow parameters
	Sharing and replacement of 3D models in a workflow
	Output to parameters

	User interface
	Perspective for User
	Visibility of parameters
	Perspective for Expert

	Implementation
	Experiment
	Assemble the main wing
	Adding recognition
	Screw1
	Screw2

	Discussion
	Conclusion
	Authors’ contributions
	References

