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Abstract 

The motion of the robot to realize assembly work includes the part where the reuse of the motion adjusted for the 
real objects is effective and the part where automatic generation in the simulator is suitable. In order to smoothly 
teach such assembly work, teaching software that enables to combine previously used motions and perform overall 
adjustment of the workflow and integrated environment representation in the simulator is expected. Some teaching 
tools focus on the function of making robot motion in detail, and it assumes that the adjustment of the whole work‑
flow including system layout using the real work environment. For this reason, the environmental expression is not 
sufficient for the above purpose. Although offline teaching tools and motion planning tools are rich in the representa‑
tion of the environment, there are not many studies on a systematic reuse mechanism of motions adjusted in a real 
environment, including environment representations. In this paper, we present software design to solve this problem 
and the implementation of it as a plugin for Choreonoid. By an experiment, we confirmed that we can describe a 
comparatively complicated assembly work with the proposed software.
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Introduction
How to build flexible robot systems that are easy to cope 
with changes in product design and production volume is 
an important issue in robot system integration. Basically, 
there are two approaches for such flexible robot systems.

1.	 Reduction of manual work by raising an intelligence 
level of robots.

2.	 Improvement of engineering work related to robot 
introduction including teaching.

The first approach aims to make computers recognize 
objects and environment, and generate motions of the 
robots that enables intended tasks [1, 2]. This results in 
the reduction of information given by humans explicitly 
when each system is built. This is an actively researched 

field, and many recognition and motion planning algo-
rithms have been proposed. In recent years, methods 
based on machine learning using data obtained from the 
real environment have also been explored [3, 4].

In the latter approach, it is assumed that humans pro-
gram the robot motion over relatively detailed parts. The 
focus of this approach is on software or system design to 
make teaching work efficient or easy for unskilled users. 
For example, Rethink Robotics released a new teach-
ing software that enables teaching by combining graphi-
cal control blocks. In many of the collaborative robots 
released in recent years, efforts are made to make teach-
ing work more efficient by integrating direct teaching to 
designate positions in a real environment with teaching 
tools [5–7].

If accomplishing a task goal automatically is possible 
by an intelligent robot, the work required for the robot 
introduction is greatly reduced. However fully auto-
matic approaches have many difficulties. For example, 
in order to generate motion of robot with contact, which 
is the core of assembly work, in simulation, it would be 
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necessary to model the details of objects such as rigid-
ity, material and surface condition in addition to highly 
accurate geometry. The models of the dynamic behavior 
of the robot and its lower control system are also needed. 
This is difficult for users who aim for a simple introduc-
tion of robots. Rather, it is easier in many cases to make 
this type of motions using the real environment. Like-
wise, as for non-rigid bodies such as cables, modeling 
methods and algorithms for dealing with them are not 
established. Information to be defined in advance tends 
to be large to perform a high degree of automation. This 
is a problem especially for users planning to introduce 
robots experimentally.

The method of making the robot learn through the tri-
als in the real environment has the possibility of reduc-
ing human intervention if it can be applied successfully. 
However, such trials are not necessarily possible in all 
tasks, robots and work environments. There is a problem 
that it takes a long time to make a sufficient number of 
trials. For these reasons, it is the case that a method of 
teaching the details of robot motions is still common.

Directly writing a sequence of detailed robot motions 
is efficient at least when one system construction is 
performed. However, when similar systems need to be 
implemented or reproduced, this approach tends to lose 
its efficiency. Similar systems are often required when a 
part of a product is updated or the assembly system for 
the product is improved. In the build-to-order produc-
tion, some part variation might be added. The pre-built 
system might be reproduced in other places with some 
layout changes in order to cope with the increase in pro-
duction amount.

This paper discusses what kind of support is possible 
for the systematic development of such similar systems 
from the aspect of software and presents a concrete 
design of the support software. As for the motions that 
are difficult to automatically generate and need some 
adjustment in the real environment, we consider accu-
mulating the motion data in a form easy to reuse. Mean-
while, we integrate the environment and parameters 
defined for each motion data so they can be adjusted 
using the whole environment. It is troublesome to teach 
motions such as the one that transports a lifted part to a 
next assembling position in a complicated environment 
with many objects, each time the layout of the system is 
changed. With the integrated environment model, this 
kind of motion is relatively easy to generate using kine-
matic motion planning.

This paper also presents the implementation of the 
above-mentioned concept as a plugin for Choreonoid 
[8], which is an integrated development environment for 
robot tools.

In the following sections, we will focus on assembly 
task which is the work expected to be further automated 
by the robot.

Related work
The software proposed in this paper aims to give means 
for systematic reuse of the motion data by system inte-
grators and users.

Most teaching tools of commercial robots focus on 
directly describing robot motion. This is because this 
approach enables to fully utilize the functions of each 
robot when implementing tasks, has a flexibility to 
encode users’ know-how explicitly. Various kinds of 
teaching tools friendly to users have been proposed. 
Intera 5.0 [9], developed by Rethink Robotics, describes a 
program of a robot by graphically combining blocks simi-
lar to a syntax tree of a programming language. However, 
descriptions generated by these tools have less infor-
mation on work content and dependence between sub-
motions is not well structured. If the information such as 
the contents of work, robots, and tools used are not suffi-
cient, it is difficult to determine whether a certain motion 
pattern can be reused well for a target task. Therefore, in 
our software, 3D models of related objects are managed 
together with motion patterns of robots. In addition, 
it is possible to link data such as images, movies, docu-
ments as a means to supplement information which is 
difficult or time-consuming to represent in the 3D model 
environment.

In this paper, we use the word task as a unit of reuse and 
call the representation for it task model. How to design 
the task model is up to users for the reasons discussed 
below. In robotics, the term task is used as a concept 
closely related to work content. The word task focuses on 
the objectives of work. The functions of robots to achieve 
the tasks are called skills. Ogawa et al. say task expresses 
“what to do” and skill expresses “how to do” [10].

However, it is difficult to define these concepts gener-
ally for software expected to be used for various appli-
cations completely independent of target systems, 
application or abstraction level. Many authors defined 
skills suitable to their problems and applications. Huck-
aby [11] presented a framework to enable knowledge 
transfer between processes, systems and application 
domains. The skills they defined to describe assembling 
tasks included recognition, the use of tools. Szynkiewicz 
et al. [12] defined skills for bimanual manipulation. Task 
models for taking an elevator [13], the use of a tool [10] 
and picking [14] were also presented. In practical task 
programming, fairly low-level operations such as open-
ing/closing a gripper and joint-space motions of robots 
are sometimes included in skills.
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In our approach, task models are user-defined enti-
ties. We assume that skillful users with the experience 
of robot programming design the task models and other 
users use them. This idea of users and experts are men-
tioned in Ref. [15]. We have also worked on explicitly 
expressing the process of implementing tasks based on 
this idea [16]. We expect to support the skillful user to 
improve the design and accumulate know-how while 
gaining feedback from ordinary users instead of giving a 
complete task model set from the beginning.

Tasks and skills have hierarchy [13, 17]. Tasks are 
decomposed into sub-tasks. Thomas et al. defined these 
words in a bottom-up way in their framework called 
UML/P [15]. They called commands of the system 
devices elemental action (EA), a network of EA skill, and 
a network of skills task. They used a different term “pro-
cess”, referring to a larger unit composed of tasks.

Our approach is close to UML/P. A set of commands 
are implemented as controllers. Commands are inte-
grated into a task model and task models are integrated 
into another layer, which is a workflow. Task models are 
designed by skillful users to execute the commands. The 
granularity of the task is chosen by the skillful users. 
There is a difference that UML/P does not have 3D mod-
els or a mechanism to integrate them.

In real workplaces, it is often difficult to abstract away 
the differences of robots, behaviors of controllers, and 
other implementation methods. Users’ know-how is 
sometimes encoded in the way of utilizing a specific 
robot. We think that the accumulation of implementation 
level information is also important. So, the task model of 
our framework is not purely the work purpose. It allows 
implementation level descriptions.

Understanding of a motion data of a robot may be rela-
tively easy if a user created it by himself. However, it is 
difficult when the user looks back to it after a while or 
shares it with other users. 3D models help users to see 
what was assumed for the environment and what was 
expected to happen as a result of executing the motion. 
In reality, there are cases where some information is diffi-
cult or troublesome to represent with the 3D models. We 
manage various data together with the task model for this 
information.

Requirements for teaching software
The approach we take is to propose software that enables 
users to perform the reuse process of robot motion data 
in a systematic manner. Specifically, we aim to provide 
software for designing the data reuse unit and manag-
ing the designed data together with adjusted parameters, 
3D models and other data necessary for understanding 
the work content and combining these data to describe a 
longer work sequence.

In the rest of this section, we will discuss the require-
ments for this software using assembling of a mechani-
cal unit composed of several parts as an example. Given 
a set of parts and a goal image of an assembled unit, 
we first consider the order of assembling these parts 
and how they are assembled. Next, we consider what 
kind of robot’s motion enables each assembly step. As 
is mentioned in “Introduction” section, the approach 
of generating this kind of motion automatically by giv-
ing necessary information does not pay in many cases. 
Therefore, we consider using human-designed motions 
that are previously adjusted for the same or similar 
objects. The following requirement arises from this 
discussion.

R1-1.	 Previously created motion patterns of robots are 
accumulated, and a longer operation sequence can be 
described by combining them.

What kind of motion is suitable for assembling some 
parts mainly depends on the parts. The structure of the 
robot and hand, assembling method, tools and jigs used 
for the assembling also affect the choice of the motion 
pattern. Therefore, we expect that motion patterns are 
extracted efficiently using the information related to the 
target assembly.

R1-2.	 Quick access to target data is possible from the 
information related to the task.

R1-3.	 Information for users to understand what each 
data is like can be attached.

After the order of assembling the parts and the motion 
of assembling them are determined, the layout of the 
working environment such as the supply positions of 
the parts and the assembling position must be decided 
in order to develop the system that performs the assem-
bling operation. Since these positions are usually differ-
ent from the recorded ones in the stored data, they need 
to be adjustable at the time of data reuse. It is difficult 
to apply motions designed to specific parts or hands to 
other parts directly. However, in some cases, it is possible 
to define a motion pattern applicable to a certain kind of 
parts group by parameterizing the motion empirically. In 
such cases, it is worth considering to design patterns with 
high versatility so tasks can be implemented with a small 
number of patterns.

Some example parameterization would be the grasp 
position of parts at the time of assembly, the designation 
of the hand to be used when multiple hands are present, 
the tightening torque at the time of screwing and other 
control parameters. Based on this discussion, we add the 
following requirements.
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R2-1.	 It is possible to change the layout of the work 
environment when combining the data.

R2-2.	 Flexible parameterization of motion patterns is 
possible.

We consider the use of 3D models as a representation 
of the work environment. 3D models are widely used in 
offline teaching tools or other robot applications, but 
their objectives are varied. In our software, the 3D mod-
els are used for the following two purposes.

1.	 Visualization for users.
2.	 Environment for kinematic motion planning.

Generally, the number of parts and work procedures are 
large in assembly work. It is usual to add minor improve-
ments to once deployed system by adjusting the motions 
of robots or changing the grasp position of the objects. 
Visualization of the objects in the whole environment 
helps a lot to design the layout of the objects in the virtual 
environment and adjust motion patterns. As described in 
the previous section, assembly operations are performed 
by reusing fixed patterns. If motion planning can be used 
for the generation of motion connecting these assem-
bling motions, the teaching work will be reduced espe-
cially when the workspace layout is changed. This can be 
implemented by introducing specific task models which 
execute trajectories avoiding obstacles in the environ-
ment by using motion planning internally. To realize this, 
the environment as the representation of obstacles for 
the robot is needed.

It should be noted here that only items related to each 
motion pattern are registered naturally. So, it is necessary 
to create the representation of the whole environment 
by integrating 3D models associated with each partial 
motion pattern.

R3-1.	 Each motion pattern should be associated with 
3D models as an environment representation.

R3-2.	 These environment models can be integrated 
easily when combining the motion patterns.

Finally, teaching is performed by human users. The 
design of the user interface is an important factor.

R4-1.	 GUI should present necessary and sufficient 
information at each phase of teaching.

Design of the teaching software
This section describes the details of software design 
to satisfy the requirements listed in “Requirements for 
teaching software” section.

Task model and a unit of data reuse
Corresponding to R1-1, Fig.  1 shows the unit of data 
accumulation and reuse. We call a semantically delim-
ited motion pattern task model . The task model is a user-
defined entity for the reasons below. First, since there is 
no established way to delimit motions, there are different 
ways of abstraction depending on the task designer. Sec-
ond, the domain of the target work is not closed, and it is 
impossible to prescribe a set of task models used for the 
task domain in advance and offer them together with the 
teaching software. Our task model consists of:

1.	 A state-machine representing a motion pattern of the 
robot.

2.	 A set of task parameters allowing the adjustment of 
the above motion pattern.

We consider a sequence of motion such as “pick one part 
and assemble it to another part” as a unit of reuse. This is 
represented as a sequence of command execution offered 
by robot controllers. Strictly speaking, the state-machine 
is a mid-level task program rather than a simple motion 
pattern. It describes command calls to lower-level con-
trollers depending on each state. The control flow of the 
program may change according to the result of the pre-
vious command execution. It is assumed that commands 
that can be executed by the low-level controller are 
defined. Apart from the basic ones, it is difficult to share 
the interface of the controller of the robot. So we do not 
premise a specific controller interface. If the commands 
referenced by a state-machine is implemented by the 
controller, the task model is executable on that controller. 
If not, the task model is not executable on that controller.

The task parameters correspond to R2-1 and R2-2. 
They enable to change the layout of objects and adjust 
motion patterns.

Fig. 1  Unit of data reuse



Page 5 of 16Hanai et al. Robomech J  (2018) 5:21 

When defining a state-machine, expressions using task 
parameters are described as arguments of command 
calls in each state. The goal positions of the hand or joint 
angles are not always given directly by users. Appropri-
ate task parameters are chosen to model each task. These 
expressions describe how to calculate the motions of the 
robots from these selected parameters.

Figure  2 illustrates the relations among the above-
mentioned elements using an example. We assume a low-
level controller is given and the controller has commands 
such as moveArm and closeGripper. hole position is a 
task parameter. A trajectory of screwing are arguments 
for moveArm command executions. Mapping functions 
define the trajectory, which depends on the value of hole 
position.

The unit of data reuse is the combination of a task 
model, metadata which is information added by users, 
and initial values of task parameters. The “3D models” 
section, “Meta-data” section, the initial value “Default 
values of task parameters” section will be explained in 
detail.

3D models
In order to satisfy R3-1, we allow users to register 3D 
models in each task model and associate them with some 
task parameters. This mechanism enables to change the 
associated task parameter by moving the 3D model in 
the simulator interactively. As a result, the motion of the 
robot changes indirectly.

This mechanism is not sufficient to support the move-
ment of items caused by the robots. When expressing the 
environment in the 3D model, we expect that environ-
mental changes due to robot motion will be reproduced 
in the simulator. Otherwise, it is difficult to check if the 
combined motion sequence works well and the intended 
assembly will be achieved. In order to express the envi-
ronmental changes caused by the robot, we add a mecha-
nism to describe the changes in connections between 
hands and objects at the time of grasp and release 
actions, and changes in the connection between objects 
when they are assembled. These side effects can be added 
to each command execution.

Meta‑data
We introduce an additional mechanism to anno-
tate task models with texts, images, movies and other 
documents corresponding to the requirements R1-2 
and R1-3. The meta-data is used to make task models 
searchable. The system uses the meta-data as clues to 
retrieve task models.

From the search result, a user selects a motion pat-
tern that can be used for his target assembling work. At 
this time, if the user does not understand what kind of 
motions they are, the user can not evaluate their avail-
ability. Our tool provides two confirmation means. One 
is the execution of the motion in the simulator. The 
other is the meta-data. The meta-data plays a dual role 
of clues for the user to understand the contents of tasks 
and the key of the search.

Another view of this mechanism is the unified man-
agement of related data for the tasks. Users associate 
what they think is important for each task model. Con-
cretely, this is used by users to present know-how on 
task implementation and to consider the re-usability of 
task models. The texts typically include but not limited 
to generic terms or model numbers of items related 
to the task, verbs expressing actions used for the task, 
phrases describing the task objectives. Extensive word 
sense is employed for texts because we assume the 
users who have not sufficiently formalizing what words 
are appropriate to annotate their tasks. If it is possible 
to give a set of appropriate words, it may be provided as 
a dictionary.

The images typically include photographs of objects 
such as parts, fixtures, tools or devices, key poses of 
robots while performing the task, and geometric rela-
tions between objects when they are assembled. This idea 
is borrowed from information management tools such as 
Evernote [18]. The concept of the annotation is Capture 
what’s on your mind on tasks. Know-how for task imple-
mentation includes various things. Some are well rep-
resented by data suitable for tool interpretation such as 
CAD models. However, some are useful to assist human 
understanding but do not have a well-accepted way of 
representation. So the framework does not prescribe 
strictly what kind of data should be associated.

Default values of task parameters
Task models are recorded together with default values of 
their task parameters. There are two reasons for this.

The first reason is to make task models executable as a 
partial motion pattern. After searching for a task, users 
expect to check its contents in the simulator view. The 
task model only describes the relationship between vari-
ous parameters and the motion pattern of the robot. In Fig. 2  State machine for a task model
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order to execute it, each task parameter needs to be ini-
tialized with some appropriate value.

The second reason is that parameter values adjusted in 
the real environment is worth reusing as mentioned in 
the introduction. They include values adjusted to archive 
the task efficiently and robustly. Some of the examples 
are control parameters such as stiffness, thresholds for 
mode switching, parameters to control trajectories such 
as movement speed or waiting time in some state.

Workflow
We call a longer motion sequence obtained by combin-
ing tasks workflow (R1-1). Figure 3 shows an example of 
the workflow. The workflow is also expressed as a state 
machine diagram like a task. Nodes of the workflow are 
tasks instead of command executions. The syntax ele-
ments are sequential execution, conditional branch, the 
merge of the control flow, initial node, final node, and 
task node. The conditional branch switches control flow 
depending on the result of the previous task execution. 
It is possible to describe an expression using flow param-
eters explained in “Flow parameters” section for a more 
complicated condition. The task node has a triangular 
port for connecting control flow. On the other hand, a 
node representing a flow parameter described later has 
only a round port. A node representing a 3D model node 
has a square port together with an image icon.

Flow parameters
If there is data that fits exactly to a target assembly task, 
it can be used as it is in a new workflow. However, there 
are many cases where some adjustments are needed 
such as the change of the position of an object, the 
replacement of some part. This is realized by changing 
task parameters and 3D models (R3-1, R3-2).

Next, we need to think about what kind of operations 
are suitable to make this adjustment. There is a prob-
lem with the method of directly rewriting the value of 
the parameter each task model has. Consider the situa-
tion where a robot places a screw in a hole and tightens 
it with a screwdriver. If this is represented by two task 
models, the screw that appears in two task models is the 
same entity. If the result position of the first task execu-
tion is not the same as the initial position of the sec-
ond task, the whole workflow is not consistent. It takes 
time for users to adjust all the values of the respective 
task parameters to make the workflow consistent when 
the number of tasks and parts in the workflow is large, 
and fine adjustment of the layout is repeated. Therefore, 
we introduce a flow parameter which is a parameter 
that can be referred to throughout the entire workflow. 
Task parameters which are expected to keep the same 
value over several tasks are associated with the flow 
parameter. A user can graphically make a new associa-
tion by connecting a port of a task node representing a 

Fig. 3  An example of workflow
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task parameter and a flow parameter node as shown in 
Fig. 3.

A round port of a task node represents a task param-
eter of it. When this port is connected to a flow parame-
ter node, the value of the task parameter is synchronized 
with the value of the connected flow parameter. That is, 
when a certain task changes the value of a flow parame-
ter, the value of the task parameter of another task linked 
to that flow parameter also changes. The read/write tim-
ings are determined by the definition of the tasks.

Sharing and replacement of 3D models in a workflow
If multiple tasks and flows have the copies of 3D mod-
els, the delay of model loading unacceptably increases. 
The size of the database also becomes remarkably large. 
To avoid this, 3D models are registered in advance and 
each task and flow have references to them. This 3D 
model data registered in advance is called model masters. 
Replacement of a 3D model in a workflow is performed 
using this model master. Consider a case where a user 
wants to replace a 350 ml plastic bottle used in an exist-
ing task with a 500 ml plastic bottle. In this case, the user 
add a 3D model node and make it refer to a master of the 
tall bottle.

In Fig.  3, the node with the image of a plastic bottle 
is the 3D model node. The 3D model node has a square 
port that can be connected to a square port of a task. In 
addition to robot motion, the task performs attach and 
detach operations on 3D models as described in “3D 
models” section. The square port is used to change the 
target of these operations.

Frames can be defined in addition to the origin on 3D 
models. For example, you can define screw hole posi-
tions with the names of hole1 to hole4 for a part with 4 
screw holes. Flow parameters can be associated with task 
parameters. In the same way, these frames defined on 
3D models can also be associated with task parameters. 
These frames are a kind of flow parameters and repre-
sented as round ports on 3D model nodes.

Output to parameters
The values of task parameters and flow parameters some-
times need to be updated while executing a task. A typi-
cal use case is recognition of an object. The recognized 
position and posture is usually used in subsequent tasks. 
This pattern can be implemented by outputting the rec-
ognition result to an appropriate flow parameter in the 
task of recognition and associating the flow parameter 
with a task parameter of another task that uses the value. 
In Fig.  3, the position of the plastic bottle is updated 
using a recognized value.

User interface
We will describe the design corresponding to R4-1. In the 
case of mass production, the roles of end users and sys-
tem integrators are comparatively separated. The system 
integrators design systems taking a long time. However, 
in order to utilize flexible robot systems, it is necessary 
for the end user to be more involved in engineering work.

We classify users of the software into two groups: User 
and Expert and offer perspectives suitable for their typi-
cal use cases. Expert has a comparatively high level of 
knowledge on robots, programming and system inte-
gration, which is required to design task models. On the 
other hand, User has limited knowledge of them. Expert 
typically indicates engineers ranging from robot makers, 
system integrators to skillful people of end-user compa-
nies (Fig. 4). Expert designs basic patterns of data reuse. 
User customizes the patterns for specific objects or sys-
tem layouts and combines them to describe workflows. 
User also manages meta-data.

Perspective for User
Figure  5 shows the perspective for User. The window 
consists of 4 views, In the search view, User enters key-
words such as “gear” or “screwing”. Then User selects 
from the search results. Various information related to 
the selected task model is shown in each view. Meta-data 
related to the task model is shown in the meta-data view. 
In the scene view, the robot and 3D models related to the 
task model is presented. User also checks the motion in 
the scene view.

Next, User combines the search results to describe a 
workflow. By the operation of dragging from the search 
view into workflow view, the selected task is added to the 
workflow. The connection among added tasks and flow 
parameters are edited in the workflow view.

Visibility of parameters
In addition to the control flow of the program, display-
ing various parameters and their relationships in one 
figure is suitable to understand the overall structure of 
a workflow. However, excessive information has a risk 
of making the figure difficult to understand, when the 
number of parameters and task nodes is large. The user 
interface needs some ingenuity to control the amount of 

Fig. 4  Classification of users
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information presented in the workflow view. In order to 
alleviate this problem, we introduce a function to switch 
the visibility of parameters.

Basically, the design of workflows consists of two 
phases. Control parameters used for an assembly opera-
tion between specific parts are not often changed, once 
the adjustment is made. When the layout of the objects 
and the robot is changed, setting these control param-
eters invisible makes the other adjustment such as the 
design of the working environment easy.

To enable this, task parameters can be set to invisible 
in the workflow view. In addition, in order to improve the 
operability, the GUI has functions of enlargement/reduc-
tion, the shift of display area, switching of edit mode. By 
setting the edit mode off, it is possible to prevent mis-
takenly changing parameters or structure of workflow 
during the operations such as search and execution of 
motions.

Perspective for Expert
Figure 6 shows the perspective for Expert. Expert mainly 
designs task models. For this purpose, views for defining 
the information necessary for the task model is prepared. 
The state machine view is used to design the structure of 

state machines. The command list defined by the low-
level controller is shown. A command node is added by 
dragging them into the state machine view. The param-
eter view is used to define task parameters and changing 
values of them. When a command node is selected in the 
state machine view, information of the node is displayed 
in a separate dialog. Expressions to calculate command 
arguments from task parameters are edited in the dialog. 
The task model can also be defined in a text file. Cur-
rently, YAML format is supported. Some people prefer 
to import the task model after exporting and editing it in 
YAML format once at a time.

Implementation
The system architecture is shown in Fig.  7. The frame-
work was implemented as a plugin for Choreonoid [8], 
which is an integrated development environment for 
robot tools with a powerful plugin-based extension 
mechanism. The plugin implementing the framework is 
shown as Teaching core plugin in the figure. All the data 
including the motion patterns designed by Expert and 
associated meta-data are managed by a relational data-
base. SQLite [19] is used as a database management sys-
tem. The stored data can be exported to YAML files and 

Fig. 5  Perspective for User
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Fig. 6  Perspective for Expert

Fig. 7  System architecture of the framework
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imported after editing with a text editor. YAML files are 
also useful for the cooperation with other tools. One pos-
sible cooperation is to import a task model generated by 
a tool to analyze human demonstrations.

Controllers used in the task models are implemented as 
separate plugins. This is shown as Controller plugin in the 
figure. Controller plugin needs to implement a common 
interface so that the commands defined by it are called 
by Teaching core plugin. The controllers can be imple-
mented by directly mapping standard API of robots or by 
using different abstractions. Teaching core plugin obtains 
the list of the commands when the Controller plugin is 
loaded, calls the commands based on the command spec-
ification, and branches based on the result of the com-
mand execution.

Experiment
In this section, we show how a robot motion sequence is 
created using an example of YCB airplane [20] assembly. 
The robot used in this example is UR3 made by Universal 
Robots with a dual-arm configuration. This task consists 
of four parts: a partially assembled airplane body, a main 
wing, and two screws. The goal of this task is to assemble 
these four parts into one. Figure 8 shows these parts and 
how they are assembled.

The assembly procedure is as follows. First, the main 
wing is assembled on the airplane body. The wing needs 
to be holded down with moderate force to be fitted in the 
body. Then the wing is fixed with a screw. Finally, another 
screw is inserted at the rear of the airplane body.

Assemble the main wing
Assembling the main wing to the airplane body is not 
simple pick-and-place but the robot needs to push the 
wing into the body. If such a task is found in the data-
base, it can be used as it is. Here we adopt an approach 

of putting the main wing once on the body and perform-
ing the task of holding down with appropriate force from 
above, since the main wing can be placed on the body 
in a statically stable manner. Since the airplane body 
moves easily, it needs to be fixed in some way. The use of 
another jig is possible, but we fix it with the other hand of 
the robot since the robot has two hands. The work pro-
cedure on our software to make this workflow is summa-
rized as follows.

1.	 Create a new workflow and add initial and final 
states.

2.	 Search “pick-and-place” and add it to the workflow.
3.	 Replace the 3D models connected to the pick-and-

place with the main wing and the airplane body 
respectively (Fig. 9). This is performed by finding the 
desired 3D model from the model masters. Then, 
create a link between the wing frame of the airplane 
body model node and the place base frame of the 
pick-and-place task, since the placing motion needs 
to be executed with respect to the wing frame.

4.	 Next, search “press” and add the result to the work-
flow. After that, change the associated objects in the 
same way.

5.	 The pressing force or the control parameter is 
changed if necessary. When the same assembly data 
exists, the value of the parameter may be used with-
out change. If there is no such data, an appropri-
ate value is set beforehand and some adjustment is 
carried out later in the real environment. If there is 
data dealing with similar parts, the recorded data is 
expected to give a good initial value at the time of 
adjustment even if it is not optimal.

6.	 Continue to add motions to hold and release the air-
plane body with the other hand before and after pick-
and-place and press operations. Adjust the holding 

Fig. 8  A part of YCB airplane assembling
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position, gripper opening/closing width for the hold-
ing. Implementation of the main wing assembly has 
been completed (Fig. 10).

Since the force value for the pressing is not shared with 
other tasks, it is not bound to a flow parameter. Likewise, 
the grasping and hold positions, which are the relative 
position from the origin of the wind, are not necessarily 
bound to flow parameters. In the following figures, the 
selection of the hands has been completed, and the flow 
parameter for hand selection and the related links are set 
invisible.

Adding recognition
We assume that the supply position of the main wing is 
roughly given, but it is not exactly determined. This is a 
common problem setting for assembly tasks. To deal with 
this situation, we add a recognition task. The procedure is 
shown below.

1.	 Search for recognition task for the wing and add it to 
the workflow. Keywords such as “airplane” and “rec-
ognition” are expected to hit.

2.	 Recognition is also defined in the same framework 
as motion patterns. Recognition outputs to a speci-

Fig. 9  Add pick-and-place and replace 3d models

Fig. 10  Assemble main wing
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fied task variable. By adding a flow parameter to the 
workflow and binding it to the task variable, the posi-
tion and orientation of the recognized object are out-
put to the flow parameter. Bind the flow parameter 
to a task parameter of the pick-and-place task. As a 
result, the pick-and-place motion is executed based 
on the recognized position (Fig. 11).

Screw1
The procedure for assembling the first screw (screw 1) is 
as follows.

1.	 First, we add the task of pick-and-place to the work-
flow and replace the picked object with the screw of 
the YCB airplane by selecting it from the model mas-
ters. Screw 1 is inserted into a hole of the main wing, 
which is already added to the workflow. This not a 
separate object of the same type. Thus, place base 
frame of the pick-and-place is connected to the hole1 
frame of the existing model. Since the grasp pose of 
screw1 is defined with respect to the origin of the 
screw, pick base frame of the task is connected to the 
origin of the screw1.

2.	 Next, motion to tighten the screw placed in the hole 
with the driver is added. This is a task of picking and 
transporting the driver and applying force and torque 
to the screw with the driver. This task consists of 5 
steps: pick and transport the driver, screwing, trans-
port back, place the driver to the original position.

3.	 If the screw tightening torque is different from the 
registered value, add a flow parameter and connect 
them with the corresponding task parameter and set 
some new value.

4.	 Grasping the driver placed in a free posture requires 
additional recognition or re-grasping of the driver. 
This makes the work more complicated than neces-
sary. Therefore, we introduce a tool station for easy 
grasping of the driver. The 3D model of the tool sta-
tion is added from the model masters and the hole 
position of it is connected to the last place task.

5.	 The screw1 is also supplied using another slot of the 
tool station so that it can be easily picked. After add-
ing the sequence for screw1, we get the workflow in 
Fig. 12.

Screw2
Most of the procedure to add the second screw (screw 2) 
is the same as screw 1. The difference is that the screws 
associated with the pick and screwing tasks are screw 
2 instead of screw 1. Screw 1 and screw 2 are the same 
type of screws. They are generated from the same model 
master. However since they are different entities, they 
are not shared by pick tasks. Since the way of grasp-
ing screws and the tightening torque are expected to be 
the same, the parameters representing them are shared. 
This prevents from forgetting to change some of the task 
parameters.

Figure  13 shows the integrated 3D model environ-
ment for this workflow. In the integrated 3D model 

Fig. 11  Add recognition
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environment, you can change the position where the 
assembly is performed or the supply location of the tool 
while confirming the positional relationship of all the 
related objects. The transfer part of pick-and-place can 
be designed to perform motion planning internally when 
designing the task model so as to generate collision-free 
motion in the integrated 3D model environment.

Figure 14 shows a use case of the meta-data. The text 
describes the content of work, notes when using each 

motion pattern, adjustable parameters and so on. The 
driver is attached a handle for stable grasp by a paral-
lel gripper and slippage prevention during screwing. By 
3D-printing the STL file and fitting the printed handle as 
shown in the picture, it is possible to prepare the same 
tool as the original data. This accelerates the reproduc-
tion of the similar environment. The operation of screw 
tightening includes an exploratory motion to fit the 
driver tip robustly in the screw thread. To understand 
such minute motion, real movie is often effective than 
3D models. Actually, there is information that can not be 
reproduced by the simulator, such as the movement of 
the screw caused by the contact of the tool with the screw 
at the time of exploration, which is useful information for 
understanding what kind of environment interaction was 
supposed to occur when the original data was prepared.

Discussion
As you can see from Fig.  12, the workflow tends to be 
complicated. In this figure, the choice of robot hands 
used for individual tasks is not displayed, but the figure is 
already complex. Making the diagrams easy to see is one 
of the important future works. The complexity of control 
flow and data flow is a common problem in visual lan-
guages. We would like to discuss possible approaches 
with reference to modeling software for SysML [21].

Fig. 12  Add screwing

Fig. 13  Integrated 3D models for the workflow
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Firstly, since tasks are compatible with hierarchy 
(“Related work” section), by defining a partial sequence of 
tasks as a separate state machine, the entire sequence is 
expressed with a higher degree of abstraction. Figure 15 
represents the overall workflow after hierarchization. 
Figure  16 shows the sub state machine corresponding 
to “assemble screw 1”. In the case where a large num-
ber of local nodes are connected to one parameter, this 
approach is effective to localize the links in the sub state 

machine. An example is the parameterization of the hand 
used for a sequence of tasks.

Figure 15 shows only control flow and does not display 
data flow. A typical use case of data flow is to see which 
tasks share a model or parameter and which parameters 
and models are used by a task. Therefore, we separate the 
view of data flow from the view of control flow and fur-
ther suppress the complexity on the data flow by using 
a view restricted to the data flow connected to selected 

Fig. 14  An example of meta-data usage

Fig. 15  The whole workflow
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Fig. 16  Sub state machine for assembling a screw

Fig. 17  Dataflow view for a selected task
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flow parameter nodes, 3D model nodes, or task nodes. 
Figure  17 is a view showing the data flow connected to 
“assemble screw 1” task in Fig. 15.

Conclusion
This paper presented the design of new teaching soft-
ware based on the reuse of previous teaching data. In this 
teaching software, a combination of parameters adjust-
able by users, motion pattern, 3D models as an environ-
ment expression and meta-data used for search keys and 
content understanding by users is the unit of data reuse. 
A mechanism for systematically building longer motion 
sequences by combining these data was also explained. 
This mechanism enables not only to simply arrange 
motions in line but also to replace 3D models, adjust con-
trol parameters over task models and manage the sharing 
relationship of the parameters and the 3D models when 
the data are reused in a workflow.

By using this software, it is possible to reuse motion 
patterns adjusted in the real environment, while adjust-
ing the overall layout of the working environment with 
integrated parameters and 3D models. Effective support 
by kinematic motion planning can be expected with the 
integrated 3D models in the simulator. After that, the 
implementation as a Choreonoid plug-in are mentioned.

We also presented how each function of the software 
can be utilized, taking a part of YCB airplane assembling 
as an example, and showed that a comparatively complex, 
practical assembly workflow can be implemented using 
the proposed software. As is discussed in “Discussion” 
section, introducing mechanisms to suppress the com-
plexity of diagrams is one of important future works.
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