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Abstract 

Detailed investigations of time series features across climates, continents and variable types can progress our under-
standing and modelling ability of the Earth’s hydroclimate and its dynamics. They can also improve our comprehen-
sion of the climate classification systems appearing in their core. Still, such investigations for seasonal hydroclimatic 
temporal dependence, variability and change are currently missing from the literature. Herein, we propose and apply 
at the global scale a methodological framework for filling this specific gap. We analyse over 13,000 earth-observed 
quarterly temperature, precipitation and river flow time series. We adopt the Köppen–Geiger climate classification 
system and define continental-scale geographical regions for conducting upon them seasonal hydroclimatic fea-
ture summaries. The analyses rely on three sample autocorrelation features, a temporal variation feature, a spectral 
entropy feature, a Hurst feature, a trend strength feature and a seasonality strength feature. We find notable differ-
ences to characterize the magnitudes of these features across the various Köppen–Geiger climate classes, as well 
as between continental-scale geographical regions. We, therefore, deem that the consideration of the comparative 
summaries could be beneficial in water resources engineering contexts. Lastly, we apply explainable machine learn-
ing to compare the investigated features with respect to how informative they are in distinguishing either the main 
Köppen–Geiger climates or the continental-scale regions. In this regard, the sample autocorrelation, temporal vari-
ation and seasonality strength features are found to be more informative than the spectral entropy, Hurst and trend 
strength features at the seasonal time scale.
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1 Introduction
The study of temporal and spatial aspects of the various 
hydroclimatic phenomena (e.g. the ones linked to tem-
perature, precipitation or streamflow variables) holds 
a prominent position in Earth system science and engi-
neering (see, for example, the detailed lists of research 
topics compiled by Montanari et  al. 2013 and Blöschl 
et al. 2019), with a large variety of hydroclimatic features 
being investigated with increasing frequency. Such inves-
tigations, as well as their underlying methodologies, are 
indeed necessary either when referring to high-impact 
case studies (i.e. case studies conducted for areas with 
large engineering interest; see, for example, Montanari 
2012), or when based on large-sample datasets (see, for 
example, Archfield et  al. 2014; Ledvinka and Lamacova 
2015; Fischer and Schumann 2018; Hall and Blöschl 2018; 
Hanel et al. 2018; Markonis et al. 2018; Tyralis et al. 2018; 
Jehn et al. 2020; Messager et al. 2021; Papacharalampous 
et al. 2021; Slater et al. 2021), and often focus on hydrocli-
matic temporal dependence (which can be characterized 
by estimating the autocorrelation of hydroclimatic time 
series), variability and change. An overview of the related 
literature, summarizing information on both mean- and 
extreme-value hydroclimatic time series analyses, can be 
found in Papacharalampous et al. (2021).

Detailed comparisons of hydroclimatic features across 
different climate classes and geographical regions have 
their own key role towards improving our understanding 
and modelling ability of the Earth’s hydroclimate and its 
dynamics (through the identification of climates and/or 
regions with similar hydroclimatic characteristics) and, 
at the same time, facilitate a direct connection with the 
climate literature. From a different point of view, they can 
also progress our comprehension of the climate classifi-
cation systems appearing in their core, especially when 
conducted at the global scale (see, for example, Beck et al. 
2005; Markonis et al. 2018; Tyralis et al. 2018; Messager 
et  al. 2021; Slater et  al. 2021; Papacharalampous et  al. 
2022). Nonetheless, such comparisons in terms of hydro-
climatic temporal dependence, variability and change are 
currently missing from the literature for time series with 
seasonality, although the scientific interest in the more 
general topic of investigating hydroclimatic features at 
the seasonal and monthly time scales at different parts 
of the world (see, for example, the analyses by Nigam 
and Ruiz-Barradas 2006; Ljungqvist et  al. 2016; PAGES 
Hydro2k Consortium 2017; Thomas and Nigam 2018; 
Papacharalampous et al. 2021, and the review by Koster 
et al. 2017) is undoubtedly large.

Herein, we fill this specific knowledge gap. More pre-
cisely, our aims are to:

 (i) Devise a methodological framework for (a) the 
comprehensive characterization of the Earth’s sea-

sonal hydroclimate and its dynamics, and (b) the 
improved understanding of climate classification 
systems in terms of their seasonal hydroclimatic 
properties, through detailed feature investigations 
and comparisons across climate classes and conti-
nental-scale regions.

 (ii) Apply the new framework to global temperature, 
precipitation and river flow time series datasets, 
thereby providing the first scientific insights on the 
targeted topic.

The remainder of the paper is structured as follows: 
Sect. 2.1 presents information on the investigated global 
datasets and their attentive use towards reaching our 
second aim, while Sect. 2.2 covers the feature estimation 
methodology, and the methodology followed for com-
paring the features across climates and continental-scale 
regions. Furthermore, Sect.   2.3 describes some addi-
tional methodological steps taken for ranking the inves-
tigated features according to how indicative they are in 
explaining roughly summarized climate or geographical 
information. These latter methodological steps are based 
on explainable machine learning, the role of which in 
delivering scientific insights and discoveries in natural 
sciences has been extensively discussed by Roscher et al. 
(2020). The results are presented in Sects. 3.1, 3.2, 3.3 and 
3.4, which are devoted to the global summaries, the sum-
maries across climates, the summaries across continents 
and the comparisons enabled by explainable machine 
learning, respectively. The most important findings are 
further elaborated and discussed with respect to their 
theoretical and practical implications, as well as their 
links with the climate literature, in Sect.   4. In the same 
section, the strengths and limitations of the work are out-
lined. The paper concludes with Sect.  5, where the find-
ings are summarized in the form of take-home messages.

2  Data and methods
2.1  Seasonal hydroclimatic time series, geographical 

divisions and climate classes
Peterson and Vose (1997), Do et  al. (2018) and Menne 
et  al. (2018) have compiled and made publicly available 
high-quality global time series datasets that summarize 
earth-observed hydroclimatic quantities. Starting from 
13,104 mean monthly temperature, total monthly pre-
cipitation and mean monthly river flow time series that 
(i)  originate from the aforementioned open time series 
datasets (see the information on their availability in the 
“Availability of data materials” section) and (ii)  satisfy a 
series of specific length and quality conditions, we com-
pute 13,104 39-year-long quarterly time series of 3-month 
means. These latter time series are the ones analysed 
herein in terms of their features (according to Sect. 2.2), 
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after being standardized, and are referred to hereafter 
as “seasonal” time series. Each of them starts from win-
ter and ends to fall, with winter, spring, summer and fall 
being represented by the month sets {December, January, 
February}, {March, April, May}, {June, July, August} and 
{September, October, November}, respectively. This spe-
cific seasonal representation scheme is adopted both in 
hydrology and hydroclimatology for conducting investi-
gations at the global scale (see, for example, Angell 1988; 
Dai and Wigley 2000; Arnal et  al. 2018); therefore, it is 
considered appropriate for reaching the aims of the pre-
sent work. Also notably, the length and quality condi-
tions imposed for time series selection are the same with 
those outlined in the data sections of the earlier works by 
Papacharalampous et al. (2021, 2022). In summary, all the 
monthly hydroclimatic time series of these earlier works 
(that are used to compute the seasonal hydroclimatic 
time series of this work) had to be complete and with the 
same length, and a good compromise between their num-
ber and their length had to be made. Indeed, the available 
longer complete time series are much fewer. As regards 
the quality conditions, the monthly temperature and pre-
cipitation time series did not require additional testing 
other than that already applied during their original for-
mation (Peterson and Vose 1997; Menne et al. 2018). On 
the other hand, the monthly river flow time series had to 
be filtered through visual quality inspections for identify-
ing irregularities (e.g. abrupt changes in their mean and 
variance) that could be due to human activities (Papacha-
ralampous et al. 2021).

In greater detail, the herein analysed temperature, 
precipitation and river flow time series originate from 
2432, 5071 and 5601 geographical locations, respectively. 
These geographical locations are presented in Fig.  1. In 
the same figure, climate classification information for 
these geographical locations is provided in terms of per-
centages both at the global and at continental scales, 
and regional groups of stations that are characterized by 
large or medium densities of observational stations are 
defined. The climate classification information is based 
on the well-established and interpretable system by Kot-
tek et al. (2006), an updated version of the Köppen–Gei-
ger climate classification system. The latter is the first 
quantitative system of its kind, as well as the most fre-
quently used one (Kottek et al. 2006; Belda et al. 2014). It 
has been introduced by Wladimir Köppen and has later 
been made available as a  world map updated by Rudolf 
Geiger (see Köppen 1936), while other historical infor-
mation on its formation can be found in Thornthwaite 
(1943). The exact numbers of temperature, precipitation 
and river flow stations representing the various climate 
classes in our global hydroclimatic time series datasets 
(see also Kottek et  al. 2006 for the statistical criteria 

underlying their definition) are presented in Fig. S1 of 
the supplementary material (see Additional file 1), while 
the respective counts of stations representing the main 
climate divisions (else referred to in the literature and in 
what follows as “climate zones”) can be found in Fig. S2 of 
the same material. These climate zones are the equatorial 
(A), arid (B), warm temperate (C), snow (D) and polar (E) 
ones, and are defined by specific temperature or precipi-
tation conditions that allow the growth of different veg-
etation groups.

2.2  Feature computation, summaries and comparisons
We separately characterize each quarterly hydroclimatic 
time series (see Sect.  2.1) by estimating eight interpret-
able features (see Table 1). Three of these features belong 
to the large family of the sample autocorrelation features 
(see, for example, Wei 2006), thereby being appropriate 
for investigating the temporal dependence structure. The 
first of them is the lag-1 sample autocorrelation of the 
time series (hereafter referred to simply as “lag-1 autocor-
relation”). This feature characterizes both the magnitude 
and the sign of the correlation between two subsequent 
points in the time series and, thus, between the hydro-
climatic means corresponding to two subsequent sea-
sons for the analyses herein. The second autocorrelation 
feature is the sum of the squared sample autocorrelation 
values of the time series at the lags equal from 1 to 10 
seasons. This specific feature is hereafter referred to sim-
ply as “autocorrelation summary”, as it summarizes mul-
tiple autocorrelation features. The third autocorrelation 
feature supporting the investigations of this work is the 
lag-4 sample autocorrelation of a time series, a feature 
particularly relevant to characterizing the magnitude of 
the relationship between time series values correspond-
ing to the same season (i.e. the annual-scale dependence) 
in a quarterly time series and, thus, hereafter referred to 
simply as “seasonal autocorrelation”.

Another feature supporting our investigations herein 
is called “temporal variation”. This feature is the stand-
ard deviation of the first-order differenced standardized 
time series and is similar to the coefficient of variation. 
For detailed information on time series differencing and 
its usefulness in reducing seasonality and trend features 
before conducting further analyses, the reader is referred 
to Hyndman and Athanasopoulos (2021). Moreover, we 
compute the “spectral entropy” of the time series by fol-
lowing the method by Jung and Gibson (2006). This fea-
ture is usually perceived to be measuring the random (or 
noisy) component of the time series (see, for example, 
Hyndman and Athanasopoulos 2021) and, therefore, it 
facilitates characterizations and comparisons in terms of 
predictability. The sixth feature investigated in this work 
is the Hurst parameter of the fractional Gaussian noise 
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Fig. 1 Geographical locations of the a temperature, b precipitation and c river flow stations exploited in the present work, climate classification 
information following the system by Kottek et al. (2006) and definition of regional groups of stations



Page 5 of 20Papacharalampous et al. Progress in Earth and Planetary Science           (2023) 10:46  

process, an analogous of the autoregressive fractionally 
integrated moving average process (see, for example, Wei 
2006). This feature is computed by applying the method 
by Tyralis and Koutsoyiannis (2011) to time series that 
have been previously deseasonalized according to the 
additive classical model for time series decomposition 
(see, for example, Hyndman and Athanasopoulos 2021) 
and by assuming four seasons. It is herein referred to 
as “Hurst exponent” and is broadly known to support 
long-range temporal dependence (or “Hurst phenom-
enon”) investigations. While the term “autocorrelation 
feature” could also be used to refer to Hurst features, in 
what follows we will be using it to refer only to the lag-1 
autocorrelation, autocorrelation summary and seasonal 
autocorrelation features.

The computation of the last two time series features of 
this work involves seasonal and trend time series decom-
position using Loess (STL decomposition; see, for exam-
ple, Hyndman and Athanasopoulos 2021, Chapter  3.6). 
The exact procedures followed for obtaining the seasonal, 
smoothed trend and remainder components of each time 
series can be found in Hyndman and Khandakar (2008). 
Once these procedures have been completed, the “trend 
strength” and “seasonality strength” of the time series are 
computed according to Kang et al. (2017). Then, the for-
mer of these features is equal to 1 minus the quotient of 
the remainder component’s variance and the variance of 
the deseasonalized time series, while the latter of them is 
equal to 1 minus the quotient of the remainder compo-
nent’s variance and the variance of the time series with its 
smoothed trend component removed.

We characterize the Earth’s seasonal hydroclimate 
by providing global summaries, in the forms of histo-
grams and means, of the previously computed features 
(see above) of the seasonal temperature, precipitation 
and river flow time series. Most importantly, we pro-
vide feature summaries and comparisons across climates 
and continents. The latter investigations are enabled by 
side-be-side boxplots and mean value computation and 

are conducted conditional upon the information summa-
rized in Fig. 1. More precisely, we summarize the results 
per climate class, per main climate division and per fea-
tured group of stations, with each of these groups rep-
resenting a different pair {time series type, geographical 
division}. While all the geographical locations are taken 
into consideration in the computation of the global and 
regional summaries, the climate classes and main cli-
mate divisions represented by less than 30 stations are 
not studied and compared with the remaining ones for 
ensuring the sufficient representativeness of our results.

2.3  Feature importance comparisons
We apply explainable machine learning to compare the 
eight time series features of this work (see Sect. 2.2) with 
respect to their relevance as explanatory variables in two 
types of classification settings that differ in their depend-
ent variables. More precisely, the investigated classifica-
tion settings target at predicting—in the form of a best 
guess—and explaining–interpreting either (i) the main 
climate division from which a seasonal hydroclimatic 
time series originates or (ii) the group of stations and, 
therefore, the geographical division from which a sea-
sonal hydroclimatic time series originates (only for those 
time series originating from one of the groups of stations 
featured in this work; see Fig. 1), given only the values of 
the eight features characterizing this time series. These 
classification settings allow objective comparisons of 
the magnitude of the relationships between the seasonal 
hydroclimatic features assessed in this work and other 
Earth’s features, and are studied separately for seasonal 
temperature, precipitation and river flow; therefore, we 
study 2 (number of classification setting types) × 3 (num-
ber of time series types) = 6 classification problems.

Each time, we fit random forests (Breiman 2001) for 
classification with 500 trees and compute two variable 
importance measures, namely the “mean decrease accu-
racy” and “mean decrease Gini” ones. We do not opti-
mize the parameters of random forests, as according to 

Table 1 Features computed for characterizing each quarterly hydroclimatic time series

S/n Name Brief description

1 Lag-1 autocorrelation Lag-1 sample autocorrelation of the time series

2 Autocorrelation summary Sum of the squared sample autocorrelation values of the time series at the lags equal from 1 to 10 seasons

3 Seasonal autocorrelation Lag-4 sample autocorrelation of the time series

4 Temporal variation Standard deviation of the first-order differenced standardized time series

5 Spectral entropy Spectral entropy of the time series estimated by applying the method by Jung and Gibson (2006)

6 Hurst exponent Hurst parameter of the fractional Gaussian noise process estimated by applying the method by Tyralis 
and Koutsoyiannis (2011) on the deseasonalized time series

7 Trend strength Strength of trends in the time series estimated according to Kang et al. (2017)

8 Seasonality strength Strength of seasonality in the time series estimated according to Kang et al. (2017)
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the literature (see, for example, the review by Tyralis et al. 
2019): (a) the performance of this algorithm is expected 
to increase with increasing the number of trees, and (b) 
the default values of its remaining parameters have been 
empirically proven to be adequate. In summary, the first 
variable importance measure is computed as follows 
(Liaw 2018): For each tree, the error rate on the out-of-
bag portion of the data is computed. The computation 
is repeated after permuting each predictor variable. The 
difference between the two are then averaged over all 
trees, and normalized by the standard deviation of the 
differences. If the standard deviation of the differences is 
equal to 0 for a variable, the division is not done (but the 
average is almost always equal to 0 in that case). The sec-
ond metric is the total decrease in node impurities from 
splitting on the variable, as measured by the Gini index 
and averaged over all the trees (Liaw 2018). Once all the 
variable importance scores have been computed, the 
time series features are ranked based on them. The rank-
ings are made separately for each set {time series type, 
dependent variable, variable importance measure}. The 
variable importance scores are not compared in terms of 
their magnitude, as such comparisons have only limited 
reliability (Tyralis et al. 2019).

3  Results
3.1  Overall summary of the Earth’s seasonal hydroclimate
The global summaries of the seasonal temperature, pre-
cipitation and river flow features are provided in Fig.  2. 
As the strengths of these features vary largely from geo-
graphical location to geographical location with few 
exceptions (referring to specific temperature features; see 
Fig. 2a, b, g, j, m, v), providing characterizations and com-
parisons across climates and continents becomes even 
more important from both a scientific and a practical 
point of view. Aside from this important remark, other 
interesting results also stem from Fig. 2. For instance, the 
lag-1 autocorrelation of the seasonal temperature time 
series is very close to zero, indicating almost uncorre-
lated variables due to the remarkably strong seasonality 
patterns at the quarterly time scale. These patterns seem 
to be manifesting themselves into pairs of consecutive 
values in each time series that are much less correlated 
than in other time scales, such as the monthly one. Nota-
bly, the same is not observed for the precipitation, and 
especially for the river flow, time series. Also notably, 
the autocorrelation summary feature takes remarkably 
large values for seasonal temperature, while the same 
does not apply to the cases of seasonal precipitation and 
river flow. Indeed, while lag-1 autocorrelation is almost 
zero for seasonal temperature and has absolute values 
that are much larger than zero for seasonal precipitation 
and river flow, it seems that the autocorrelation values at 

other lags (among those equal from 2 to 10 seasons) are 
much larger for seasonal temperature than for seasonal 
precipitation and river flow.

3.2  Seasonal hydroclimatic feature comparisons 
across climates

Statistical summaries of the features of the seasonal tem-
perature, precipitation and river flow time series across 
the investigated Köppen–Geiger climate classes are pre-
sented in Figs.  3, 4, 5, while the respective summaries 
per main climate division are presented in Figs.  6 and 
7. These summaries offer a new basis for comparing the 
various Köppen–Geiger climates, other than the one 
offered by their original definitions (see the related dis-
cussions in Sect.   4). Moreover, especially Figs.  5 and 7 
offer information that could be exploited for constraining 
the uncertainty in the design of seasonal stochastic mod-
els. This latter contribution holds particularly for geo-
graphical locations with short or no time series records. 
In what follows, Figs. 3, 4, 5, 6, 7 are collectively summa-
rized and discussed, as they are interconnected.

In brief, both the Hurst phenomenon and trends are 
here found to be more intense for the seasonal temper-
ature time series originating from the equatorial zone 
(A) than for those originating from other Köppen–Gei-
ger climate zones (Figs. 6f, g and 7a). This climate zone 
has minimum monthly temperatures equal or less than 
18 °C (Kottek et al. 2006). Notably, seasonal temperature 
time series from this zone are further found to exhibit 
comparably large and even larger trends and long-range 
dependence, on average, than the seasonal river flow time 
series (Figs. 6f, g and 7a, c). The same also holds (but to 
a less extent) for the seasonal temperature time series 
from the polar zone (E; composed by climates with maxi-
mum monthly temperatures less than 10 °C; Kottek et al. 
2006). The polar zone is mostly represented in the exam-
ined temperature dataset by polar tundra climates (ET) 
and is here found to exhibit more intense seasonal tem-
perature trends and long-range dependence compared to 
the remaining main climate divisions (i.e. the arid, warm 
temperate, and snow ones; Figs. 6f, g and 7a, c).

Still, the same does not hold for all the individual Köp-
pen–Geiger climate classes (defined by the main climate 
and subsequent precipitation conditions). Indeed, snow 
and winter dry climates with warm summer (Dwb) are 
here found to have the largest trend strength and Hurst 
exponent values among all the examined individual Köp-
pen–Geiger climate classes, including the polar tundra 
climates (ET) (Figs. 4b, c and 5a). Comparably large trend 
strength and Hurst exponent values have been com-
puted, on average, for the warm temperate and summer 
dry climates with warm summer (Csb; Figs.  4b, c and 
5a). On the other hand, the least pronounced seasonal 
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Fig. 2 Global summaries of the seasonal a, d, g, j, m, p, s, v temperature, b, e, h, k, n, q, t, w precipitation and c, f, i, l, o, r, u, x river flow features. 
For comparison purposes, the limits of the horizontal axes have been set common for the histograms in the same row. The relationships 
between the features can be inspected through Figs. S3 − S5 of the supplementary material
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Fig. 3 Side-by-side boxplots of the values of a lag-1 autocorrelation, b autocorrelation summary, c seasonal autocorrelation and d temporal 
variation per climate division (Kottek et al. 2006) for seasonal temperature, precipitation and river flow. The limits of the vertical axes of the blue 
rectangles have been set identical to the upper and lower limits of the blue ribbons, thereby allowing comparisons both within and across time 
series types. The corresponding mean values are presented in Fig. 5
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Fig. 4 Side-by-side boxplots of the values of a spectral entropy, b Hurst exponent, c trend strength and d seasonality strength per climate division 
(Kottek et al. 2006) for seasonal temperature, precipitation and river flow. The limits of the vertical axis of the blue rectangle have been set identical 
to the upper and lower limits of the blue ribbon, thereby allowing comparisons both across the various temperature time series and across time 
series types. The corresponding mean values are presented in Fig. 5
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temperature trends and long-range dependence are 
found to characterize, again on average, the snow and 
fully humid climates with either hot (Dfa), warm (Dfb) 
or cool (Dfc) summer (Figs.  4b, c and 5a). Apart from 

being characterized by the largest trends and long-
range dependence, the seasonal temperature time series 
originating from equatorial climates have also the larg-
est spectral entropy, followed by those originating from 

Fig. 5 Mean values of the seasonal a temperature, b precipitation and c river flow features in the various climate classes (Kottek et al. 2006). 
The mean values presented in each column have been ranked and coloured from the smallest (white) to the largest (dark green), thereby 
highlighting even the smallest differences. The grey areas (i.e. areas lacking statistical summaries) correspond to under-represented climate classes 
in the investigated global datasets (see Fig. S1 in the supplementary material). The corresponding boxplots are presented in Figs. 3 and 4
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Fig. 6 Side-by-side boxplots of the values of a lag-1 autocorrelation, b autocorrelation summary, c seasonal autocorrelation, d temporal variation, 
e spectral entropy, f Hurst exponent, g trend strength and h seasonality strength per main climate division (Kottek et al. 2006) for seasonal 
temperature, precipitation and river flow. The limits of the vertical axes of the blue rectangles have been set identical to the upper and lower limits 
of the blue ribbons, thereby allowing comparisons both within and across time series types. The corresponding mean values are presented in Fig. 7
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polar climates (Figs.  6e and 7a). The latter climates are 
additionally found to have comparably large spectral 
entropy with three snow climate classes (specifically, the 
Cwa, Csa and Csb ones).

Links between seasonal temperature features with 
smaller interquartile ranges of values and the features 
defining the various Köppen–Geiger climates (Kottek 
et al. 2006) also emerge. For instance, it is found that the 
seasonal temperature time series originating from warm 
temperate and summer dry climates with warm summer 
(Csb) are those with the largest positive lag-1 autocor-
relation (i.e. correlation between the mean values of two 
subsequent seasons in our investigations) and the small-
est autocorrelation summaries, seasonal autocorrelation, 
temporal variation and seasonality strength, together 
with those originating from warm temperate and fully 
humid climates with warm summer (Cfb) and those 
originating from polar tundra climates (ET) (Figs. 3a, b, 
c, d, 4d and 5a). It is additionally found that the seasonal 
temperature time series from warm temperate and win-
ter dry climates with hot summer (Cwa) have the small-
est negative lag-1 autocorrelation, followed by those 
from the snow and winter dry climates with either warm 
(Dwb) or cool (Dwc) summer (Figs. 3a and 5a). These lat-
ter two climate types exhibit the most intense summary 
autocorrelation and seasonality features as regards their 
seasonal temperature time series. Furthermore, they 
exhibit equally pronounced temporal variation features 

with the Cwa climates (again as regards their seasonal 
temperature time series; Figs. 3d and 5a).

The equatorial zone (A) also stands out because of its 
seasonal precipitation features. Indeed, the seasonal pre-
cipitation time series originating from this zone exhibit 
the largest autocorrelation summary, seasonal autocor-
relation and seasonality strength values, and at the same 
time the smallest spectral entropy values, by far, com-
pared to the seasonal precipitation time series originating 
from other climate zones (Figs. 6b, c, h and 7b). Among 
the various climatic sub-regimes composing the equato-
rial zone, autocorrelation, temporal variation and season-
ality features are more pronounced for the monsoonal 
ones (Am), which are also found to have equally intense 
autocorrelation and seasonality features with the warm 
temperate and winter dry climates with either hot (Cwa) 
or warm (Cwb) summer (Figs.  3b, c, 4d and 5b). Again 
referring to the strength of the same time series charac-
teristics, the Am, Cwa and Cwb climates are closely fol-
lowed by the warm temperate and summer dry climates 
with either hot (Csa) or warm (Csb) summer and the 
equatorial climates with either dry summers (As) or win-
ters (Aw) (Figs. 3b, c, 4d and 5b). These latter four climate 
types are, in their turn, closely followed by the hot arid 
steppes (BSh), which also exhibit somewhat more intense 
autocorrelation and seasonality, on average, than the 
total of the examined seasonal precipitation time series, 
in contrast to the remaining climate classes (BWk, BWh, 

Fig. 7 Mean values of the seasonal a temperature, b precipitation and c river flow features in the main climate divisions (Kottek et al. 2006). The 
mean values presented in each row have been ranked (separately for temperature, precipitation and streamflow) and coloured from the smallest 
(white) to the largest (dark green), thereby highlighting even the smallest differences. Polar climates are under-represented in the investigated 
precipitation and river flow datasets (see Fig. S2 in the supplementary material); thus, no statistical summaries are available for them in b and c. The 
corresponding boxplots are presented in Fig. 6
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BSk, Cfa, Cfb, Dfa, Dfb), while those seasonal precipita-
tion time series originating from snow and fully humid 
climates with cool summer (Dfc) are, on average, charac-
terized by seasonality and summary autocorrelation fea-
tures approximately equal to the global means (Figs. 3b, 
c, 4d and 5b). Largely similar (but not identical) would be 
the ordering of the various climate classes regarding the 
temporal variation characteristics of the seasonal precipi-
tation time series; however, in the case of these charac-
teristics the magnitude differences are less pronounced 
(Figs. 3d, 5b, 6d and 7b).

Similar to the summary autocorrelation and season-
ality features of the seasonal precipitation time series, 
their entropy features are strongly related to the features 
defining the various Köppen–Geiger climates (Kottek 
et al. 2006), with the cold arid deserts (BWk), as well as 
the warm temperate and fully humid climates with hot 
(Cfa) or warm (Cfb) summer, being those with the larg-
est mean values (Figs.  4a and 5b). The opposite holds 
for three equatorial (Am, As and Aw) and four warm 
temperate (Csa, Csb, Cwa and Cwb) climates, while 
medium-magnitude entropy means characterize the sea-
sonal precipitation time series of the remaining climates 
(Figs. 4a and 5b). The trend and long-range dependence 
features of seasonal precipitation have smaller ranges of 
values compared to their entropy features; nonetheless, 
they are also somewhat related to the features defining 
the Köppen–Geiger climates (Figs. 4b, c and 5b).

Mostly positive lag-1 autocorrelation is found to char-
acterize the seasonal river flow time series originating 
from all the examined Köppen–Geiger climates apart 
from the snow and fully humid climates with warm (Dfb) 
or cool (Dfc) summer, and the snow and summer dry cli-
mates with warm summer (Dsb), for which the means 
(and the medians) of lag-1 autocorrelation of their sea-
sonal river flow time series are quite close to (and, spe-
cifically, a bit larger than) zero (Figs. 3a and 5c). The same 
three climate classes (Dfb, Dfc and Dsb) are found to 
also stand out for the pronounced autocorrelation sum-
mary, seasonal autocorrelation, temporal variation and 
seasonality strength features of their seasonal river flow 
time series, as well as for the smallest spectral entropy 
values of the same time series (Figs.  3b, c, d, 4a, d and 
5c), which also characterize the snow zone (D) in general 
(Figs.  6b, c, d, e, h and 7c). This latter climate zone has 
minimum monthly temperatures less than − 3 °C (Kottek 
et al. 2006).

Other Köppen–Geiger climates standing out for the 
pronounced autocorrelation summary, seasonal auto-
correlation, temporal variation and seasonality strength 
features of their seasonal river flow time series are the 
equatorial savannahs with dry winter (Aw) and the warm 
temperate climates with dry winter and hot summer 
(Cwa), while the equatorial monsoonal climates (Am) and 
the equatorial savannahs with dry summer (As) are those 
with the least pronounced autocorrelation summary, sea-
sonal autocorrelation, temporal variation and seasonality 
strength features (Figs. 3b, c, d, 4d and 5c). These latter 
two climate classes are also characterized by the largest, 
among all the examined Köppen–Geiger ones, spectral 
entropy values of seasonal river flow time series, followed 
by the snow and fully humid climates with hot summer 
(Dfa), which also have among the smallest means of the 
autocorrelation summary, seasonal autocorrelation, tem-
poral variation and seasonality strength features of their 
seasonal river flow time series (Figs.  3b, c, d, 4a, d and 
5c). Regarding the long-range dependence and trend fea-
tures of the same time series, these are found to be more 
pronounced, by far, for the warm temperate climates with 
dry winter and hot summer (Cwa), with the equatorial 
savannahs with dry winter (Aw) and the warm temperate 
climates with dry winter and hot summer (Csa) following 
(Figs. 4b, c and 5c). On the other hand, the seasonal time 
series from the snow and fully humid climates with cool 
summer (Dfc) are found to have the smallest trends and 
long-range dependence (Figs. 4b, c and 5c).

3.3  Seasonal hydroclimatic feature comparisons 
across continents

Statistical summaries of the seasonal temperature, pre-
cipitation and river flow features across the various 
examined continental-scale regions (represented by spe-
cific groups of temperature, precipitation and river flow 
stations in our global hydroclimatic time series datasets; 
see Fig. 1) are presented in Figs. 8 and 9. These summa-
ries could be used for reducing uncertainty in the design 
of seasonal stochastic models for geographical locations 
with short time series records, in a similar way to the pre-
viously discussed summaries. Their physical interpreta-
tion through Figs. 1, 3, 4 and 5 is also possible to some 
extent. Rather small differences are found between sea-
sonal temperature in North America, Europe and East 
Asia, with the latter continental-scale region having the 
most pronounced autocorrelation summary, seasonality, 

Fig. 8 Side-by-side boxplots of the values of a lag-1 autocorrelation, b autocorrelation summary, c seasonal autocorrelation, d temporal variation, e 
spectral entropy, f Hurst exponent, g trend strength and h seasonality strength per featured group of stations (representing a specific geographical 
division) for seasonal temperature, precipitation and river flow. The limits of the vertical axes of the blue rectangles have been set identical 
to the upper and lower limits of the blue ribbons, thereby allowing comparisons both within and across time series types. The corresponding mean 
values are presented in Fig. 9

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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temporal variation, spectral entropy, long-range depend-
ence and trend features of seasonal temperature time 
series, and Europe having the least pronounced autocor-
relation summary, seasonality and temporal variation 
features (Figs. 8 and 9a).

The most notable differences from continent to con-
tinent are identified in terms of seasonal precipitation 
(Figs.  8 and 9). In these terms, the most intense auto-
correlation summary and seasonality features are found 
to characterize Central Africa. Two other continental-
scale regions with comparably pronounced autocorrela-
tion summary and seasonality features are East Asia and 
India, with the latter one having also the most intense 
temporal variation features of seasonal precipitation, fol-
lowed closely by Central Africa and East Asia (Figs. 8b, c, 
d, h and 9b). The same three geographical divisions also 
stand out for the spectral entropy values of their seasonal 
precipitation time series. These values are, on average, 
the smallest among those computed for the eight exam-
ined geographical divisions, while the largest are, by far, 

those characterizing North America, Europe and Aus-
tralia (Figs. 8e and 9b). Regarding the long-range depend-
ence and trend features of the seasonal precipitation 
time series, these are somewhat more intense for South 
America than they are for the remaining examined geo-
graphical divisions, with Australia being next and this lat-
ter continent being followed, in its turn, by Central Africa 
(Figs. 8f, g and 9b).

Among the three geographical divisions compared with 
respect to their seasonal river flow characteristics, South 
America is the one standing out. Indeed, the values of 
lag-1 autocorrelation, autocorrelation summary, seasonal 
autocorrelation, Hurst exponent, trend strength and sea-
sonality strength of the time series originating from this 
latter geographical division are, on average, larger than 
those of the remaining two geographical divisions, while 
their temporal variation values are, on average, smaller 
(Figs. 8 and 9c). Some similarities are additionally identi-
fied between the differences in the seasonal precipitation 
features of North America, South America and Europe, 

Fig. 9 Mean values of the seasonal a temperature, b precipitation and c river flow features in the various featured groups of stations (representing 
different geographical divisions). The mean values presented in each row have been ranked (separately for temperature, precipitation 
and streamflow) and coloured from the smallest (white) to the largest (dark green), thereby highlighting even the smallest differences. The 
corresponding boxplots are presented in Fig. 8



Page 16 of 20Papacharalampous et al. Progress in Earth and Planetary Science           (2023) 10:46 

and the respective differences in the seasonal river flow 
features (Fig. 8), probably because of the strong physical 
relationship between precipitation and river flow.

3.4  Feature importance in distinguishing climates 
and continents

Feature comparisons with respect to their importance–
relevance in distinguishing the main climate divisions 
or the groups of stations (i.e. the T1, T2 and T3 ones for 
temperature, the P1, P2, P3, P4, P5, P6, P7 and P8 ones 
for precipitation and the R1, R2 and R3 ones for river 
flow) are allowed by Fig. 10. We observe that the spectral 
entropy, Hurst exponent and trend strength are ranked 
in the first three or four positions fewer times than the 
remaining features. Notably, differences in the feature 
values that are small in absolute terms (but significant 
in relative terms across climates and continents; see, for 
example, the differences in the side-by-side boxplots in 
most of the blue rectangles of Figs. 3, 4, 6 and 8) might 
be more relevant to the distinction between the climate 
zones or the groups of stations than differences that are 

larger in absolute terms (but less significant in relative 
terms).

4  Discussion
Our contribution to the literature rotates around eight 
interpretable time series features. These have been here 
computed, for the first time, for quantifying the differ-
ences in the Earth’s seasonal hydroclimate across cli-
mates and continents, and even for questioning the 
existence of such notable differences. Facilitating direct 
comparisons in terms of temporal dependence, seasonal-
ity, temporal variation, entropy and trends at the global 
scale, our methodological framework has succeeded to 
address the aforementioned important targets, thereby 
substantially progressing our understanding and knowl-
edge of the Earth’s seasonal hydroclimate, in line with 
central themes, concepts and directions provided by the 
Panta Rhei initiative for the International Association of 
Hydrological Sciences (IAHS) scientific decade 2013–
2022 (Montanari et  al. 2013). Notable differences have 
been found in the strengths of most of the investigated 

Fig. 10 Rankings of the eight features from the most (1st) to the least (8th) important ones in distinguishing a the main climate divisions or b 
the groups of stations (i.e. the T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, R1, R2 or R3 ones) for temperature, precipitation and river flow using two 
variable importance methods
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temperature, precipitation and river flow features across 
the various Köppen–Geiger climate classes, as well as 
between several continental-scale regions. We, there-
fore, deem that (most of ) the provided feature summa-
ries across climates and continents (Figs. 3, 4, 5, 6, 7, 8, 9) 
could lead to a larger reduction of the modelling uncer-
tainties than the respective global summaries (Fig.  2), 
and especially of those uncertainties that accompany the 
stochastic modelling and simulation of precipitation and 
river flow (but possibly of temperature as well) in areas 
with short or without earth-observed time series records. 
Reducing modelling uncertainties is traditionally among 
the most important targets in hydrology and hydrocli-
matology (Montanari et al. 2013; Blöschl et al. 2019). We 
also deem that the exploitation of our findings in this 
regard could be straightforward, given the direct utility 
of the computed statistics. For instance, these statistics 
could be used within feature-based time series simulation 
methodologies, such as the one proposed by Kang et al. 
(2020). In this particular case, each region or climate 
class could be represented by a set of features, with each 
of the latter taking simply as its value either the mean or 
the median of the values that have been computed for all 
the seasonal hydroclimatic time series representing this 
same region or climate class. Notably, the usefulness of 
this modelling approach depends on multiple factors, 
including the number of the time series available for each 
region or climate class and the spatial variability of the 
time series characteristics within each region or climate 
class.

From a different perspective, results of this work facili-
tate a better understanding of the various Köppen–
Geiger climate classes. Indeed, these classes are here 
compared for the first time with respect to their seasonal 
hydroclimate in different terms than those followed for 
their original definition (see Kottek et  al. 2006). Only 
a few of the relationships between the various hydro-
climatic features defining these classes and the herein 
investigated hydroclimatic dependence, variability and 
change features could be expected. Yet, even for their 
case, additional quantitative and qualitative insights have 
emerged from our investigations. For instance, one could 
expect—already from existing climate knowledge—large 
seasonality strength to characterize the seasonal precipi-
tation time series originating from equatorial monsoonal 
climates, a fact indeed confirmed and further quantified 
by our investigations. Nonetheless, one could not expect, 
among others, that seasonality strength of similar magni-
tude characterizes the seasonal precipitation time series 
originating from these latter climates and the warm tem-
perate and winter dry climates with hot summer. Given 
the long history of the Köppen–Geiger climate classifica-
tion system and its significance for the climate literature 

(see, for example, the introduction sections in Kottek 
et  al. 2006; Belda et  al. 2014), we consider this aspect 
of our results particularly important. Of course, vari-
ants of the proposed methodological framework could 
also be applied in the future to better understand, from 
a seasonal hydroclimatic feature perspective, other cli-
mate classification systems (see, for example, those by 
Thornthwaite 1948; Trewartha and Horn 1980; Fovell and 
Fovell 1993; Bunkers et al. 1996; Feddema 2005; Peel et al. 
2007; Belda et al. 2014; Netzel and Stepinski 2016; Beck 
et al. 2018; Knoben et al. 2018; McCurley et al. 2021, and 
the historical landmark discussions on the formation of 
such systems by Thornthwaite 1943, 1948).

Overall, we consider the utilization of gauge-meas-
ured time series data as a strength of our methodologi-
cal framework, given also the sufficiently large number of 
the investigated time series (i.e. 2432 temperature, 5071 
precipitation and 5601 river flow time series), their suf-
ficient length (i.e. 156 values at the quarterly temporal 
scale) and their high quality. Alternatives would include 
the use of general circulation models or gridded (e.g. rea-
nalysis) time series datasets, which offer optimal cover-
ages of the Earth’s surface and are not characterized by 
spatial heterogeneities. However, these models and data-
sets are known to contain large errors (see, for example, 
the related discussions by Tyralis et  al. 2018, as well as 
the related literature information provided therein) that 
could affect our hydroclimatic feature comparisons. As 
an inevitable consequence of the preference to gauge-
measured data, a few Köppen–Geiger climate classes 
have been left out from our analyses. The same holds for 
continental-scale regions with low densities of data-rich 
stations. Moreover, comparisons between IPCC climate 
reference regions (Iturbide et al. 2020) would be another 
considerable way for extending the results of this work. 
Still, we believe to have provided extensive characteriza-
tions and comparisons leading to a broad overview of the 
Earth’s seasonal hydroclimate.

5  Summary and conclusions
We have devised a new methodological framework for 
(a) the thorough characterization of the Earth’s seasonal 
hydroclimate in terms of temporal dependence, season-
ality, temporal variation, entropy and trends, and (b) the 
better understanding of climate classification systems 
in terms of their seasonal hydroclimatic properties. We 
have extensively applied the new framework by exploit-
ing over 13,000 temperature, precipitation and river flow 
time series, in which the seasonal hydroclimatic behav-
iour is represented by 3-month means of earth-observed 
quantities. We have adopted the well-established and 
interpretable Köppen–Geiger climate classification sys-
tem, and have characterized (most of ) its classes based 
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on their seasonal hydroclimatic feature values. We have 
further characterized continental-scale regions with large 
or medium density of observational stations, and applied 
explainable machine learning to compare the investigated 
feature types with respect to the amount of information 
that they provide for guessing either the main Köppen–
Geiger climate or the continental-scale region. Our find-
ings have both theoretical and practical implications and 
are summarized with the following points, together with 
a few key strengths and limitations of the work:

• The Hurst phenomenon and trends are more intense 
for the seasonal temperature time series originating 
from the equatorial zone than for those originating 
from the remaining climate zones. Nonetheless, each 
of the various equatorial climate classes is under-rep-
resented in the herein examined temperature data, a 
limitation that has prohibited further investigations 
and insights into their temperature environments.

• Between a variety of well-represented climate classes 
(including several arid, warm temperate and snow 
ones, as well as the polar tundras), snow and win-
ter dry climates with warm summer have the largest 
seasonal temperature long-range dependence and 
trends, followed by the warm temperate and summer 
dry climates with warm summer.

• The differences identified in terms of long-range 
dependence and trends across the various climate 
classes for the seasonal temperature time series could 
support the design of better stochastic models. How-
ever, the respective differences identified in terms of 
autocorrelation, temporal variation and seasonality 
are expected to be less informative in engineering 
contexts due to their rather small magnitude.

• Even in terms of long-range dependence and trends, 
seasonal temperature does not differ between North 
America, Europe and East Asia as largely as it does 
between some of the investigated climate classes. 
Still, for the latter continental-scale region, the Hurst 
phenomenon and trends are somewhat more pro-
nounced.

• Moreover, the equatorial zone in general, and its 
monsoonal, summer dry and winter dry climates in 
particular, are characterized by the most pronounced 
autocorrelation and seasonality features of seasonal 
precipitation, as well as the least pronounced entropy 
features, together with the warm temperate and win-
ter or summer dry climates with either hot or warm 
summer.

• Notable differences in seasonal precipitation are 
found between continental-scale regions as well, with 
by far the most pronounced autocorrelation, tempo-
ral variation and seasonality features, as well as the 

least pronounced entropy features, characterizing 
Central Africa, East Asia and India. The opposite 
holds for Australia, while the seasonal precipitation 
time series from this latter continental-scale region, 
as well as those from North America, stand out for 
their pronounced long-range dependence and trend 
features.

• The snow and fully humid climates with warm or 
cool summer, the snow and summer dry climates 
with warm summer, the equatorial savannahs with 
dry winter and the warm temperate climates with 
dry winter and hot summer are those with the most 
pronounced summary autocorrelation, temporal 
variation and seasonality features of their seasonal 
river flow time series, while the opposite holds for 
the equatorial monsoonal climates and the equatorial 
savannahs with dry summer.

• The warm temperate climates with dry winter and 
hot summer are by far those with the most intense 
Hurst phenomenon and trends. At the same time, the 
seasonal river flow time series from North America 
are characterized by the most pronounced long-
range dependence and trends.

• These latter time series are further characterized 
by larger correlations of their subsequent seasons 
and smaller temporal variation than those originat-
ing from North America and Europe. The latter two 
continental-scale regions exhibit quite similar sum-
maries of seasonal hydroclimatic features, in general.

• Entropy, long-range dependence and trend fea-
tures are found to be (roughly) less indicative of the 
main Köppen–Geiger climate division or the con-
tinent in predictive modelling contexts than the 
remaining investigated feature types. It should be 
noted, however, that this matter requires additional 
investigations. Indeed, the coverage of the earth by 
ground-based stations with seasonal hydroclimatic 
time series that are long enough for our analyses is 
currently largely heterogeneous, with many classes 
being under-represented in the formed classifica-
tion settings. Furthermore, obtaining seasonal time 
series using different 3-month aggregation schemes 
(in which winter, spring, summer and fall are repre-
sented by different month sets) could lead to devia-
tions in the feature importance in the classification 
problems.

• Aside from progressing our understanding of the 
Earth’s seasonal hydroclimate and the Köppen–Gei-
ger climate classification, the feature summaries 
across climates and continents provided by the pre-
sent work could also help in reducing—as much as 
possible—modelling uncertainties, especially those 
that accompany the stochastic modelling of precipi-
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tation and river flow in areas with short or without 
time series records, and given the high quality and 
expected accuracy of the utilized global datasets. 
They could also be used as a metric for the evaluation 
of the performance of satellite- and reanalysis-based 
data products, as well as the performance of climate 
model products, deviating from conventional evalu-
ations (global RMSE, correlations, etc.) in the sense 
that they benefit more from the newest data science 
concepts (e.g. those synthesized by Hyndman et  al. 
2022).

Overall, we believe that the authentic and comparative 
character of the proposed framework has been the key to 
providing fresh useful insights into the Earth’s seasonal 
hydroclimate and its dynamics. We also deem that pos-
sible extensions of this framework would be beneficial 
from both a scientific and a practical point of view, given 
the high potential characterizing the newest data science 
advancements and the rare appearance of largely com-
parative hydroclimatic characterizations at the global 
scale.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40645- 023- 00574-y.

Additional file 1. Additional visualizations.

Acknowledgements
The authors are grateful to the Associate Editor and Reviewers for their con-
structive remarks.

Author contributions
GP and HT conceptualized the work and designed its experiments with input 
from YM, PM and MH. GP and HT performed the analyses and visualizations, 
and wrote the first draft, which was commented and enriched with new text, 
interpretations and discussions by YM, PM and MH.

Funding
This work was carried out within the project “Investigation of Terrestrial Hydro-
logicAl Cycle Acceleration (ITHACA)” funded by the Czech Science Foundation 
(Grant 22-33266M).

Availability of data materials
The gridded climate data (Kottek et al. 2006) can be retrieved through the 
R package kgc (Bryant et al. 2017), while the original hydrometeorological 
data (i.e. the mean and total monthly time series of varying lengths) can be 
retrieved through the following links: (a) https:// www. ncdc. noaa. gov/ ghcnm/ 
v4. php (for temperature; Menne et al. 2018); (b) https:// www. ncdc. noaa. gov/ 
ghcnm/ v2. php (for precipitation; Peterson and Vose 1997); and (c) https:// doi. 
org/ 10. 1594/ PANGA EA. 887477 (for river flow; Do et al. 2018).

Declarations

Competing Interests
The authors declare no conflict of interest.

Author details
1 Department of Water Resources and Environmental Modeling, Faculty 
of Environmental Sciences, Czech University of Life Sciences, Kamýcá 129, 

Praha-Suchdol, 16500 Prague, Czech Republic. 2 Department of Water 
Resources and Environmental Engineering, School of Civil Engineer-
ing, National Technical University of Athens, Heroon Polytechneiou 5, 
15780 Zographou, Greece. 3 Construction Agency, Hellenic Air Force, Mesogion 
Avenue 227–231, 15561 Cholargos, Greece. 

Received: 12 October 2022   Accepted: 14 July 2023

References
Angell JK (1988) Variations and trends in tropospheric and stratospheric global 

temperatures, 1958–87. J Clim 1(12):1296–1313. https:// doi. org/ 10. 1175/ 
1520- 0442(1988) 0012.0. CO;2

Archfield SA, Kennen JG, Carlisle DM, Wolock DM (2014) An objective and par-
simonious approach for classifying natural flow regimes at a continental 
scale. River Res Appl 30:1085–1095. https:// doi. org/ 10. 1002/ rra. 2710

Arnal L, Cloke HL, Stephens E, Wetterhall F, Prudhomme C, Neumann J, Krzem-
inski B, Pappenberger F (2018) Skilful seasonal forecasts of streamflow 
over Europe? Hydrol Earth Syst Sci 22:2057–2072. https:// doi. org/ 10. 
5194/ hess- 22- 2057- 2018

Beck C, Grieser J, Kottek M, Rubel F, Rudolf B (2005) Characterizing global 
climate change by means of Köppen climate classification. Klimastatus-
bericht 51:139–149

Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) 
Present and future Köppen–Geiger climate classification maps at 1-km 
resolution. Sci Data 5:180214. https:// doi. org/ 10. 1038/ sdata. 2018. 214

Belda M, Holtanová E, Halenka T, Kalvová J (2014) Climate classification revis-
ited: from Köppen to Trewartha. Climate Res 59:1–13. https:// doi. org/ 10. 
3354/ cr012 04

Blöschl G, Bierkens MFP, Chambel A, Cudennec C, Destouni G, Fiori A, Kirchner 
JW, McDonnell JJ, Savenije HHG, Sivapalan M et al (2019) Twenty-three 
Unsolved Problems in Hydrology (UPH)–a community perspective. 
Hydrol Sci J 64(10):1141–1158. https:// doi. org/ 10. 1080/ 02626 667. 2019. 
16205 07

Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https:// doi. org/ 10. 
1023/A: 10109 33404 324

Bryant C, Wheeler NR, Rubel F, French RH (2017) kgc: Köppen–Geiger Climatic 
Zones. R package version 1.0.0.2. https:// CRAN.R- proje ct. org/ packa ge= 
kgc

Bunkers MJ, Miller JR, DeGaetano AT (1996) Definition of climate regions in 
the northern plains using an objective cluster modification technique. J 
Clim 9(1):130–146. https:// doi. org/ 10. 1175/ 1520- 0442(1996) 009% 3c0130: 
DOCRIT% 3e2.0. CO;2

Dai A, Wigley TML (2000) Global patterns of ENSO-induced precipitation. Geo-
phys Res Lett 27(9):1283–1286. https:// doi. org/ 10. 1029/ 1999G L0111 40

Do HX, Gudmundsson L, Leonard M, Westra S (2018) The Global Streamflow 
Indices and Metadata Archive (GSIM) – Part 1: the production of a daily 
streamflow archive and metadata. Earth Syst Sci Data 10:765–785. https:// 
doi. org/ 10. 5194/ essd- 10- 765- 2018

Feddema JJ (2005) A revised Thornthwaite-type global climate classification. 
Phys Geogr 26(6):442–466. https:// doi. org/ 10. 2747/ 0272- 3646. 26.6. 442

Fischer S, Schumann A (2018) A distribution-free ordinal classification of floods 
based on moments. Hydrol Sci J 63(11):1605–1618. https:// doi. org/ 10. 
1080/ 02626 667. 2018. 15256 14

Fovell RG, Fovell MYC (1993) Climate zones of the conterminous United States 
defined using cluster analysis. J Clim 6(11):2103–2135. https:// doi. org/ 10. 
1175/ 1520- 0442(1993) 006% 3c2103: CZOTCU% 3e2.0. CO;2

Hall J, Blöschl G (2018) Spatial patterns and characteristics of flood seasonality 
in Europe. Hydrol Earth Syst Sci 22(7):3883–3901. https:// doi. org/ 10. 5194/ 
hess- 22- 3883- 2018

Hanel M, Rakovec O, Markonis Y, Máca P, Samaniego L, Kyselý J, Kumar R (2018) 
Revisiting the recent European droughts from a long-term perspective. 
Sci Rep 8(1):1–11. https:// doi. org/ 10. 1038/ s41598- 018- 27464-4

Hyndman RJ, Athanasopoulos G (2021) Forecasting: principles and practice. 
OTexts: Melbourne, Australia. https:// otexts. com/ fpp3

Hyndman RJ, Kang Y, Montero-Manso P, Talagala T, Wang E, Yang Y, O’Hara-Wild 
M (2022) tsfeatures: Time Series Feature Extraction. R package version 1.1. 
https:// CRAN.R- proje ct. org/ packa ge= tsfea tures

https://doi.org/10.1186/s40645-023-00574-y
https://doi.org/10.1186/s40645-023-00574-y
https://www.ncdc.noaa.gov/ghcnm/v4.php
https://www.ncdc.noaa.gov/ghcnm/v4.php
https://www.ncdc.noaa.gov/ghcnm/v2.php
https://www.ncdc.noaa.gov/ghcnm/v2.php
https://doi.org/10.1594/PANGAEA.887477
https://doi.org/10.1594/PANGAEA.887477
https://doi.org/10.1175/1520-0442(1988)0012.0.CO;2
https://doi.org/10.1175/1520-0442(1988)0012.0.CO;2
https://doi.org/10.1002/rra.2710
https://doi.org/10.5194/hess-22-2057-2018
https://doi.org/10.5194/hess-22-2057-2018
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.3354/cr01204
https://doi.org/10.3354/cr01204
https://doi.org/10.1080/02626667.2019.1620507
https://doi.org/10.1080/02626667.2019.1620507
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://CRAN.R-project.org/package=kgc
https://CRAN.R-project.org/package=kgc
https://doi.org/10.1175/1520-0442(1996)009%3c0130:DOCRIT%3e2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009%3c0130:DOCRIT%3e2.0.CO;2
https://doi.org/10.1029/1999GL011140
https://doi.org/10.5194/essd-10-765-2018
https://doi.org/10.5194/essd-10-765-2018
https://doi.org/10.2747/0272-3646.26.6.442
https://doi.org/10.1080/02626667.2018.1525614
https://doi.org/10.1080/02626667.2018.1525614
https://doi.org/10.1175/1520-0442(1993)006%3c2103:CZOTCU%3e2.0.CO;2
https://doi.org/10.1175/1520-0442(1993)006%3c2103:CZOTCU%3e2.0.CO;2
https://doi.org/10.5194/hess-22-3883-2018
https://doi.org/10.5194/hess-22-3883-2018
https://doi.org/10.1038/s41598-018-27464-4
https://otexts.com/fpp3
https://CRAN.R-project.org/package=tsfeatures


Page 20 of 20Papacharalampous et al. Progress in Earth and Planetary Science           (2023) 10:46 

Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the 
forecast package for R. J Stat Softw 27(3):1–22. https:// doi. org/ 10. 18637/ 
jss. v027. i03

Iturbide M, Gutiérrez JM, Alves LM, Bedia J, Cerezo-Mota R, Cimadevilla E, 
Cofiño AS, Di Luca A, Faria SH, Gorodetskaya IV et al (2020) An update 
of IPCC climate reference regions for subcontinental analysis of climate 
model data: definition and aggregated datasets. Earth Syst Sci Data 
12:2959–2970. https:// doi. org/ 10. 5194/ essd- 12- 2959- 2020

Jehn FU, Bestian K, Breuer L, Kraft P, Houska T (2020) Using hydrological and 
climatic catchment clusters to explore drivers of catchment behav-
ior. Hydrol Earth Syst Sci 24(3):1081–1100. https:// doi. org/ 10. 5194/ 
hess- 24- 1081- 2020

Jung J, Gibson JD (2006) The interpretation of spectral entropy based upon 
rate distortion functions. In: 2006 IEEE International Symposium on 
Information Theory, Seattle, WA, USA. IEEE, pp 277–281. https:// doi. org/ 
10. 1109/ ISIT. 2006. 261849

Kang Y, Hyndman RJ, Smith-Miles K (2017) Visualising forecasting algorithm 
performance using time series instance spaces. Int J Forecast 33(2):345–
358. https:// doi. org/ 10. 1016/j. ijfor ecast. 2016. 09. 004

Kang Y, Hyndman RJ, Li F (2020) GRATIS: GeneRAting TIme Series with diverse 
and controllable characteristics. Stat Anal Data Min ASA Data Sci J 
13:354–376. https:// doi. org/ 10. 1002/ sam. 11461

Knoben WJM, Woods RA, Freer JE (2018) A quantitative hydrological climate 
classification evaluated with independent streamflow data. Water Resour 
Res 54:5088–5109. https:// doi. org/ 10. 1029/ 2018W R0229 13

Köppen W (1936) Das geographische system der klimate. In: Köppen W, Geiger 
R (eds) Handbuch der Klimatologie Part C, vol 1. Verlag von Gebrüder 
Borntraeger, Berlin

Koster RD, Betts AK, Dirmeyer PA, Bierkens M, Bennett KE, Déry SJ, Evans JP, Fu 
R, Hernandez F, Leung LR et al (2017) Hydroclimatic variability and pre-
dictability: a survey of recent research. Hydrol Earth Syst Sci 21(7):3777–
3798. https:// doi. org/ 10. 5194/ hess- 21- 3777- 2017

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–
Geiger climate classification updated. Meteorol Z 15(3):259–263. https:// 
doi. org/ 10. 1127/ 0941- 2948/ 2006/ 0130

Ledvinka O, Lamacova A (2015) Detection of field significant long-term mono-
tonic trends in spring yields. Stoch Env Res Risk Assess 29(5):1463–1484. 
https:// doi. org/ 10. 1007/ s00477- 014- 0969-1

Liaw A (2018) randomForest: Breiman and Cutler’s Random Forests for Clas-
sification and Regression. R package version 4.6–14. https:// CRAN.R- proje 
ct. org/ packa ge= rando mFore st

Ljungqvist FC, Krusic PJ, Sundqvist HS, Zorita E, Brattström G, Frank D (2016) 
Northern Hemisphere hydroclimate variability over the past twelve cen-
turies. Nature 532(7597):94–98. https:// doi. org/ 10. 1038/ natur e17418

Markonis Y, Moustakis Y, Nasika C, Sychova P, Dimitriadis P, Hanel M, Máca 
P, Papalexiou SM (2018) Global estimation of long-term persistence in 
annual river runoff. Adv Water Resour 113:1–12. https:// doi. org/ 10. 1016/j. 
advwa tres. 2018. 01. 003

McCurley Pisarello KL, Jawitz JW (2021) Coherence of global hydroclimate 
classification systems. Hydrol Earth Syst Sci 25(12):6173–6183. https:// doi. 
org/ 10. 5194/ hess- 25- 6173- 2021

Menne MJ, Williams CN, Gleason BE, Rennie JJ, Lawrimore JH (2018) The global 
historical climatology network monthly temperature dataset, version 4. J 
Clim 31(24):9835–9854. https:// doi. org/ 10. 1175/ JCLI-D- 18- 0094.1

Messager ML, Lehner B, Cockburn C, Lamouroux N, Pella H, Snelder T, Tockner 
K, Trautmann T, Watt C, Datry T (2021) Global prevalence of non-perennial 
rivers and streams. Nature 594:391–397. https:// doi. org/ 10. 1038/ 
s41586- 021- 03565-5

Montanari A (2012) Hydrology of the Po River: looking for changing patterns 
in river discharge. Hydrol Earth Syst Sci 16:3739–3747. https:// doi. org/ 10. 
5194/ hess- 16- 3739- 2012

Montanari A, Young G, Savenije HHG, Hughes D, Wagener T, Ren LL, Koutsoy-
iannis D, Cudennec C, Toth E, Grimaldi S et al (2013) “Panta Rhei—Eve-
rything Flows”: change in hydrology and society—The IAHS Scientific 
Decade 2013–2022. Hydrol Sci J 58(6):1256–1275. https:// doi. org/ 10. 
1080/ 02626 667. 2013. 809088

Netzel P, Stepinski T (2016) On using a clustering approach for global 
climate classification. J Clim 29(9):3387–3401. https:// doi. org/ 10. 1175/ 
JCLI-D- 15- 0640.1

Nigam S, Ruiz-Barradas A (2006) Seasonal hydroclimate variability over North 
America in global and regional reanalyses and AMIP simulations: varied 
representation. J Clim 19(5):815–837. https:// doi. org/ 10. 1175/ JCLI3 635.1

PAGES Hydro2k Consortium (2017) Comparing proxy and model estimates 
of hydroclimate variability and change over the Common Era. Clim Past 
13(12):1851–1900. https:// doi. org/ 10. 5194/ cp- 13- 1851- 2017

Papacharalampous GA, Tyralis H, Papalexiou SM, Langousis A, Khatami S, Volpi 
E, Grimaldi S (2021) Global-scale massive feature extraction from monthly 
hydroclimatic time series: statistical characterizations, spatial patterns and 
hydrological similarity. Sci Total Environ 767:144612. https:// doi. org/ 10. 
1016/j. scito tenv. 2020. 144612

Papacharalampous GA, Tyralis H, Pechlivanidis I, Grimaldi S, Volpi E (2022) 
Massive feature extraction for explaining and foretelling hydroclimatic 
time series forecastability at the global scale. Geosci Front 13(3):101349. 
https:// doi. org/ 10. 1016/j. gsf. 2022. 101349

Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köp-
pen–Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644. 
https:// doi. org/ 10. 5194/ hess- 11- 1633- 2007

Peterson TC, Vose RS (1997) An overview of the Global Historical Climatology 
Network Temperature database. Bull Am Meteor Soc 78(12):2837–2850. 
https:// doi. org/ 10. 1175/ 1520- 0477(1997) 078% 3c2837: AOOTGH% 3e2.0. 
CO;2

Roscher R, Bohn B, Duarte MF, Garcke J (2020) Explainable machine learning 
for scientific insights and discoveries. IEEE Access 8:42200–42216. https:// 
doi. org/ 10. 1109/ ACCESS. 2020. 29761 99

Slater L, Villarini G, Archfield S, Faulkner D, Lamb R, Khouakhi A, Yin J (2021) 
Global changes in 20-year, 50-year, and 100-year river floods. Geophys 
Res Lett 48:e2020GL091824. https:// doi. org/ 10. 1029/ 2020G L0918 24

Thomas N, Nigam S (2018) Twentieth-century climate change over Africa: 
seasonal hydroclimate trends and Sahara desert expansion. J Clim 
31(9):3349–3370. https:// doi. org/ 10. 1175/ JCLI-D- 17- 0187.1

Thornthwaite CW (1943) Problems in the classification of climates. Am Geogr 
Soc 33(2):233–255. https:// doi. org/ 10. 2307/ 209776

Thornthwaite CW (1948) An approach toward a rational classification of 
climate. Geogr Rev 38(1):55–94. https:// doi. org/ 10. 2307/ 210739

Trewartha GT, Horn LH (1980) An introduction to climate. McGraw-Hill, New 
York

Tyralis H, Koutsoyiannis D (2011) Simultaneous estimation of the parameters 
of the Hurst–Kolmogorov stochastic process. Stoch Env Res Risk Assess 
25(1):21–33. https:// doi. org/ 10. 1007/ s00477- 010- 0408-x

Tyralis H, Dimitriadis P, Koutsoyiannis D, O’Connell PE, Tzouka K, Iliopoulou T 
(2018) On the long-range dependence properties of annual precipitation 
using a global network of instrumental measurements. Adv Water Resour 
111:301–318. https:// doi. org/ 10. 1016/j. advwa tres. 2017. 11. 010

Tyralis H, Papacharalampous GA, Langousis A (2019) A brief review of random 
forests for water scientists and practitioners and their recent history in 
water resources. Water 11(5):910. https:// doi. org/ 10. 3390/ w1105 0910

Wei WWS (2006) Time series analysis, univariate and multivariate methods, 2nd 
edn. Pearson Addison Wesley

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.5194/essd-12-2959-2020
https://doi.org/10.5194/hess-24-1081-2020
https://doi.org/10.5194/hess-24-1081-2020
https://doi.org/10.1109/ISIT.2006.261849
https://doi.org/10.1109/ISIT.2006.261849
https://doi.org/10.1016/j.ijforecast.2016.09.004
https://doi.org/10.1002/sam.11461
https://doi.org/10.1029/2018WR022913
https://doi.org/10.5194/hess-21-3777-2017
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1007/s00477-014-0969-1
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=randomForest
https://doi.org/10.1038/nature17418
https://doi.org/10.1016/j.advwatres.2018.01.003
https://doi.org/10.1016/j.advwatres.2018.01.003
https://doi.org/10.5194/hess-25-6173-2021
https://doi.org/10.5194/hess-25-6173-2021
https://doi.org/10.1175/JCLI-D-18-0094.1
https://doi.org/10.1038/s41586-021-03565-5
https://doi.org/10.1038/s41586-021-03565-5
https://doi.org/10.5194/hess-16-3739-2012
https://doi.org/10.5194/hess-16-3739-2012
https://doi.org/10.1080/02626667.2013.809088
https://doi.org/10.1080/02626667.2013.809088
https://doi.org/10.1175/JCLI-D-15-0640.1
https://doi.org/10.1175/JCLI-D-15-0640.1
https://doi.org/10.1175/JCLI3635.1
https://doi.org/10.5194/cp-13-1851-2017
https://doi.org/10.1016/j.scitotenv.2020.144612
https://doi.org/10.1016/j.scitotenv.2020.144612
https://doi.org/10.1016/j.gsf.2022.101349
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1175/1520-0477(1997)078%3c2837:AOOTGH%3e2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078%3c2837:AOOTGH%3e2.0.CO;2
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1029/2020GL091824
https://doi.org/10.1175/JCLI-D-17-0187.1
https://doi.org/10.2307/209776
https://doi.org/10.2307/210739
https://doi.org/10.1007/s00477-010-0408-x
https://doi.org/10.1016/j.advwatres.2017.11.010
https://doi.org/10.3390/w11050910

	Features of the Earth’s seasonal hydroclimate: characterizations and comparisons across the Köppen–Geiger climates and across continents
	Abstract 
	1 Introduction
	2 Data and methods
	2.1 Seasonal hydroclimatic time series, geographical divisions and climate classes
	2.2 Feature computation, summaries and comparisons
	2.3 Feature importance comparisons

	3 Results
	3.1 Overall summary of the Earth’s seasonal hydroclimate
	3.2 Seasonal hydroclimatic feature comparisons across climates
	3.3 Seasonal hydroclimatic feature comparisons across continents
	3.4 Feature importance in distinguishing climates and continents

	4 Discussion
	5 Summary and conclusions
	Anchor 15
	Acknowledgements
	References


