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Abstract 

Soil erosion substantially implicates global nutrient and carbon cycling of the land surface. Its monitoring is crucial for 
assessing and managing global land productivity and socio-economy. The Zhuoshui River Basin, the largest catch‑
ment, in Taiwan is highly susceptible to soil erosion by water due to extremely high rainfall, rugged terrain, easily 
eroded soil, and intensively agricultural cultivation over the steep land. Hence, this study examines the annual soil ero‑
sion rate for 2005, 2011, and 2019 and the average long-term soil erosion and sediment yield (SY) during 2005–2019. 
Coupling of the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models is imple‑
mented using remote sensing and GIS techniques. The soil erosion rate is classified into five classes, namely mild (0–10 
t ha−1 year−1), moderate (10–50 t ha−1 year−1), moderately severe (50–100 t ha−1 year−1), severe (100–150 t ha−1 year−1), 
and very severe (> 150 t ha−1 year−1). Over one half of the total area is categorized as moderate and moderately severe 
classes, and one-third of the whole basin as severe and very severe classes. Recently, mild and moderate classes increase, 
while moderately severe, severe, and very severe decrease. During 2005–2019, the annual soil loss rate ranges from 0.00 
to 6,881.88 t ha−1 year−1 with an average rate of 122.94 t ha−1 year−1. Among the SDR models, the RUSLE combined 
with the SDR model with the length and slope gradient of mainstream shows satisfactory sediment yield estimation. 
Predictably, the downstream receives a massive sediment delivery from all upper streams (246.06 × 106 t year−1), and 
the percent bias values for all sub-basins are below ± 39.0%. The study provides a rapid approach to investigate soil 
erosion and sediment yield, and it can be applied to the other basins in Taiwan. More importantly, information about 
spatial patterns of soil erosion and SY is critical to establish suitable measures to achieve effective watershed planning 
and optimize the regional productivity and socio-economy. The proposed approach is potentially to identify risk areas, 
conduct scenario estimation for management, and perform spatiotemporal comparison of soil erosion, while adjust‑
ment in the empirical formulas of the proposed approach may be needed when it is applied to the other regions, 
especially outside Taiwan.
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1  Introduction
Erosion is a process that makes the soil particles dis-
placed by agents, such as water, wind, and gravity (Lal 
1994; Zhang et al. 2019; Xie et al. 2021a). It can be trig-
gered by natural disturbance, especially associated with 
heavy rainfall over the cyclone-prone regions, e.g., East 

of Southeast Asian countries (Liu et al. 2015; Liou et al. 
2016, 2018; Nguyen et  al. 2021; Pandey et  al. 2021). In 
addition, the human-included perturbation can accel-
erate the soil erosion rate (SER), resulting in adverse 
impacts on soil productivity, waterway obstruction, water 
quality decline, etc. (Lal 1994). To calculate soil loss, field 
measurement is considered as the most reliable asset, 
but it is challenging to clarify the main cause of the ero-
sion process (Morgan 2005). Besides, it is rather time-
consuming and costly to conduct field measurements. 
Therefore, it is impractical to count on this traditional 
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approach to estimate the soil loss rate to establish the 
management plans for soil loss mitigation at regional 
scale. To overcome the limitations, soil erosion mod-
eling is useful means to obtain essential information on 
spatial patterns and trends of erosion severity to help the 
land-use stakeholders build scenarios for further analy-
sis in consideration of the current or potential land uses 
(Karydas et  al. 2012; Millington 1986; Xie et  al. 2021b). 
Currently, soil erosion models can be divided into empir-
ically-, conceptually-, and physically-based models to 
simulate spatiotemporal erosion at different scales (Mer-
ritt et  al. 2003). Understanding the spatial distribution 
of erosion rate within a watershed is necessary for plan-
ning soil and water conservation (Vigiak and Sterk 2001). 
Although physically-based models can express the natu-
ral mechanisms in erosion and deposition processes by 
integrating into a complex model, these models require 
massive input data, making them inefficient for soil and 
water conservation planning (Ketema and Dwarakish 
2019; Vigiak and Sterk 2001).

Until now, the Revised Universal Soil Loss Equation 
(RUSLE), recognized as an empirical soil erosion model, 
is the most widely used worldwide (Pandey et al. 2021). 
Because of its flexibility and less input requirement, it is 
found with some limitations in predicting gully, stream 
bank erosion, sediment deposition, and sediment yield 
(SY) (Alewell et al. 2019; Batista et al. 2017; Ketema and 
Dwarakish 2019; Lin et  al. 2002). To estimate the sedi-
ment yield, the combination of soil erosion and sediment 
delivery ratio (SDR) is commonly used (Swarnkar et  al. 
2018; Walling 1983). Under such circumstance, the cou-
pled RUSLE-SDR model has been employed to predict SY 
in the previous studies (Almagro et al. 2019; Ghani et al. 
2013; Jain and Kothyari 2000; Lin et  al. 2002; Rajbanshi 
and Bhattacharya 2020; Swarnkar et  al. 2018; Walling 
1983). The SDR depends on geomorphological character-
istics of a watershed, such as drainage size, relief, stream 
length, slope gradient of mainstream (Ferro and Min-
acapilli 1995; Walling 1983). Its value tends to increase 
with decreasing catchment area. Like the RUSLE, an 
SDR equation is developed in a particular region so that 
it is limited when it is applied for the regions outside its 
original area (Alewell et  al. 2019; Ferro and Minacapilli 
1995). Despite its drawbacks, the RUSLE, together with 
Geographic Information System (GIS) is popularly used 
in modeling soil erosion by water globally, particularly 
at a large scale (Batista et  al. 2017). The RUSLE model 
uses six parameters that affect the soil erosion process by 
water, including climate, land use/land cover, soil prop-
erty, topographic condition, and conservation practice. 
Currently, the RUSLE model is standard for soil loss pre-
diction mentioned in the Soil and Water Technical Regu-
lations by Taiwan’s Council of Agriculture (Chou 2009). 

Antecedent studies in Taiwan attempted to develop 
empirical equations as the RUSLE input parameters 
and SDR of various basins that have been further incor-
porated into the Soil and Water Conservation Bureau’s 
Handbook for designing the soil and water conservation 
facilities in controlling the sediment volume (Lin et  al. 
2015). However, it requires detailed land-use information 
that is challenging to acquire under rugged terrains. Also, 
it is difficult to simulate slope length and steepness of 
topography with complex condition at a large scale if the 
suggested methods are utilized. The SDR formulas in Tai-
wan were developed in the past, while they are subjective 
to the biophysical conditions, particularly human factors 
(Soil and Water Conservation Bureau [SWCB] 2019). 
Until now, the coupled RUSLE-SDR has been rarely seen 
in Taiwan. Hence, its predictive capacity is now also 
questionable, especially in environmental conditions of 
rugged topography with extremely high rainfall. Accord-
ing to Kao and Milliman (2008), the annual average sedi-
ment yield from the 16 Taiwanese rivers is sixty times 
higher than the global average (150 t km−1 year−1). Thus, 
the integrated RUSLE and SDR model, which enables a 
rapid and reliable assessment of soil erosion and SY at a 
basin scale, is still needed for the effective basin manage-
ment in Taiwan.

The Zhuoshui River Basin (ZRB), located in the central 
region, is the largest catchment in Taiwan. It produces 
the highest amount of sediment loads compared to the 
other river basins (such as Tamshui, Zengwen, Gaop-
ing, and Hualien) in Taiwan (Chiang et al. 2019). A vast 
amount of sediment delivery mainly results from the 
geological characteristics with geographical distribution 
prone to heavy precipitation, typhoons, and landslides 
(Chiang et al. 2019).

Hence, this study aims to (1) apply the RUSLE model to 
predict the soil loss rate for 2005, 2011, and 2019 and the 
corresponding average SERs; (2) combine the RUSLE and 
SDR models to estimate the long-term sediment yield for 
each sub-basin; and (3) examine how well the coupled 
RUSLE-SDR model perform SY prediction as compared 
with the observed sediment at gauge stations under the 
complex biophysical conditions of the ZRB. The modeled 
outcomes of SER and SY would be helpful for the local 
authority in proposing further practical measures for soil 
and water conservation.

2 � Methods/experiment
2.1 � Study area
The Zhuoshui River, also called Choshui River, is the 
longest river in Taiwan. It originates from the west part 
of the central mountain range and travels through four 
counties (Nantou, Changhua, Yunlin, and Chiayi) before 
joining the Taiwan Strait. The main stream of the ZRB 
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is ~ 187 km in length with basin area of ~ 3200 km2 (Kuo 
et al. 2017). The upper basin is characterized by a fragile 
slate, shale, and sandstone vulnerable to erosion forcing 
(Kuo et  al. 2017). This basin mainly lies between 0 and 
3873 m above sea level, and a significant portion is char-
acterized by steep and rugged terrains (Fig. 1). Annually, 
this basin receives an average rainfall of 2500 mm, signifi-
cantly varying from 1500 to 4000 mm over the lowland 
plains and mountainous areas. The rainy season from 
May to October accumulates more than 75% of its total 
annual precipitation (Kuo et al. 2017).

2.2 � Data used
To achieve the objects of the study, we used various sat-
ellite, GIS, and station level data. The details of primary 
data are given below.

(1)	 Digital elevation model (DEM) from Shuttle Radar 
Topographic Mission (SRTM), known as SRTM 
DEM at 30-m resolution, was collected from United 
States Geological Survey website (downloaded at 
https://​earth​explo​rer.​usgs.​gov/);

(2)	 Four scenes of Landsat 8 OLI TIRS data (Scene 
1: Path = 118, Row = 43; Scene 2: Path = 118, 

Row = 44; Scene 3: Path = 117, Row = 43; Scene 4: 
Path = 117, Row = 44) were downloaded from the 
United States Geological Survey website with 20, 
19, and 20 images for 2005, 2010, and 2019, respec-
tively;

(3)	 Long-term average annual precipitation at 49 mete-
orological stations located in and around the ZRB 
were collected from the Central Weather Bureau, 
Taiwan;

(4)	 Soil map was obtained from the Taiwan Agricul-
tural Research Institute, Council of Agriculture; and

(5)	 Sediment and water discharge at 6 gauge stations 
from 2005 to 2018 were collected from the Water 
Resources Agency, Taiwan.

To diminish the effects of high cloud frequency, we 
prioritized Landsat 8 OLI TIRS series of images during 
the dry season (January to April). The land-use/land-
cover (LULC) classification was defined by four scenes 
of Landsat 8 OLI TIRS data. Also, Landsat images were 
processed on the Google Earth Engine Platform to 
compute the Normalized Different Vegetation Index 
(NDVI)-based C factor used in the RUSLE model.

Fig. 1  Geographic location of the Zhuoshui River Basin; its sub-basins; and pink dots along with texts are gauge stations and code names

https://earthexplorer.usgs.gov/
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2.3 � Implementation process
Figure  2 presents a comprehensive step-by-step proce-
dure of the study.

Firstly, the RUSLE inputs were identified to simulate 
SER for the three years of interest. Landsat data were 
prepared to retrieve the NDVI and LULC for calculat-
ing the C and P factors, while the other factors were esti-
mated from rainfall, soil, and DEM data. Secondly, we 
stacked all the input layers at a 30-m resolution to model 
the SER for 2005, 2011, and 2019, and the correspond-
ing long-term average SERs. Thirdly, the DEM analysis 
was conducted to determine sub-basin boundary and 
its size, mainstream length, and mainstream bed slope, 
which served as input parameters of the SDR formulas. 
The SDR values were calculated for each sub-basin with 
respect to the three SDR formulas of concern. Fourthly, 
the long-term SY was estimated by the RUSLE and SDR 
models. Finally, the coupled RUSLE-SDR performance 
respective to each SDR model was evaluated by compari-
son with the observed sediment discharge.

2.4 � LULC retrieval from Landsat image
Before LULC classification, some preprocessing steps 
were conducted to enhance the image quality. First, 
geometric, atmospheric, and topographic corrections 
were implemented on each Landsat image. Next, cloud 
removal was implemented to detect the cloud-shadow 
pixels, which were then replaced by cloudless pix-
els from the other images to create a single cloud-free 

Landsat image for the three different years. Random For-
est was selected as a classifier to produce the LULC maps 
because of its superiority over the other machine learn-
ing algorithms (Talukdar et al. 2020). It has advantages in 
coping with noise of the unbalanced and discrete or con-
tinuous datasets (Breiman 2001) to achieve high accuracy 
(Abdullah et al. 2019; Pal et al. 2021). In order to collect 
training samples for LULC classification, we scrutinized 
high-resolution images from Google Earth, different 
band composites, and indices (NDVI, Normalized Dif-
ferent Bare Land Index, Urban Index). To obtain a bet-
ter result of the LULC classification, some types were 
divided into smaller classes for better matching the spec-
tral profile to create a preliminary map. Thereafter, the 
final LULC map was regrouped into five different classes, 
namely forest, built-up land, bare land, agricultural land, 
and water body.

2.5 � Determination of the RUSLE inputs
The RUSLE was originally developed by Wischmeier and 
Smith (1965) and then modified by Renard et al. (1997). It 
can be described as:

where A is the average soil loss rate (t ha−1  year−1), R is 
the rainfall erosivity (MJ mm ha−1  h−1  year−1), K is the 
soil erodibility (t h MJ−1  mm−1), L is the slope length 
(dimensionless), S is the slope steepness, C is the cover 

(1)A = R × K × L× S × C × P

Fig. 2  The implementation flowchart of this study
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and management (dimensionless), and P is the conserva-
tion practice (dimensionless).

2.5.1 � Rainfall Erosivity (R factor)
The R factor indicates the energy of precipitation that 
can detach and transport soil particles from the surface 
to the other sites. It depends on the amount and magni-
tude of rainfall. The R formula was developed for a given 
region (Panditharathne et  al. 2019; Renard et  al. 1997; 
Wischmeier and Smith 1978). We selected the R equa-
tion mentioned by SWCB (2019) for the Nantou County 
nearby the ZRB:

where R is the rainfall erosivity (MJ mm ha−1 h−1 year−1), 
and P is the annual average rainfall (mm).

Because a high variation in topographic conditions 
might affect the precipitation spatial pattern, the long-
term average annual rainfall data at 49 meteorological 
stations and their geographical locations were used to 
simulate spatial pattern of the annual average rainfall 
using the co-kriging interpolation.

2.5.2 � Soil erodibility (K factor)
The K factor expresses the ability of soil to resist the force 
of rainfall and surface runoff. Wischmeier and Smith 
(1978) and Renard et al. (1997) used the K equation for 
the RUSLE, which requires the soil texture, structure, 
organic matter content, soil permeability, and infiltra-
tion. However, these parameters might not be available 
or match the other soil classifications. Thus, alternative 
methods were developed to estimate the K factor with 
less soil information than the original formula. For exam-
ple, Williams et al. (1983) used sand, silt, clay, and organic 
content, whereas David (1988) based on one more 
parameter, pH value, and El-Swaify and Dangler (1976) 
only used the textural information and base saturation.

In this study, the K factor was extracted from the soil 
index (KI) of Taiwanese soil types via KI value’s relation 
to the K value of the USLE model (Table 1). The K value 
was determined by the following equation (SWCB 2019):

where K is the soil erodibility (t h MJ−1 mm−1), and KI is 
the Taiwanese soil index.

2.5.3 � Slope length (L) and steepness (S) factors
The LS factor consists of slope length (L) and steepness 
(S), strongly affecting soil erosion. In this study, the slope 
length was calculated by following the method proposed 
by Desmet and Govers (1996), in which the authors used 
the concept of the contributing area. It can be retrieved 

(2)R = 17.02× 0.020653× P
1.35072

(3)K = (KI − 1)/200

from flow algorithms by using DEM (Desmet and Govers 
1996; Huang et  al. 2007). The S factor was computed 
according to Zevenbergen and Thorne (1987). This LS 
factor algorithm is appropriate for modeling soil erosion 
at landscape-scale and can represent complex topogra-
phy (Desmet and Govers 1997; Panagos et  al. 2015). To 
simulate the LS factor, the SRTM DEM at 30-m resolu-
tion was put into the SAGA (System for Automated Geo-
scientific Analyses) software via its terrain analysis tool.

2.5.4 � Cover and management (C factor)
The C factor represents the ability of vegetation to pro-
tect the soil surface from raindrop and runoff. RS data 
with high spatiotemporal coverage have been intensively 
used to extract the C value instead of the LULC-based 
method. The C factor is estimated using NDVI trans-
formation proposed by various studies, such as Durigon 
et  al. (2014) and van der Knijff et  al. (1999). The equa-
tion from the verification of several watersheds in Taiwan 
(Chou 2009) was used in this study:

The Google Earth Engine was used to acquire Landsat 
time-series data for the years 2005, 2011 and 2019. Ini-
tially, preprocessing was required for further analysis. 
Firstly, the CFMask algorithm was used for the removal 
of clouds and cloud shadows (Foga et al. 2017). Secondly, 
the topographic illumination correction was conducted 
to minimize the effect of rugged topographic conditions 
to achieve consistency of spatiotemporal measurements 
(Hurni et  al. 2019) whereby applying a physical method 

(4)C =
1−NDVI

2

1+NDVI

Table 1  K value obtained from KI value based on Taiwanese soil 
types (adapted from (SWCB 2019))

Soil types KI value K

Diluvial Material Yellow Soils 10 0.045

Diluvium Red Soils 7 0.030

Metamorphic Rock Pale Colluvial Soils 8 0.035

Miscellaneous Lands 11 0.050

Precipitous Areas 8 0.035

Sandstone-Shale Darkish Colluvial Soils 7 0.030

Sandstone-Shale Lithosols 6 0.025

Sandstone-Shale Order Alluvial Soils 12 0.055

Sandstone-Shale Pale Colluvial Soils 14 0.065

Sandstone-Shale Yellow Soils 7 0.030

Sandstone-Shale-Slate Calcareous Alluvial Soils 10 0.045

Sandstone-Shale-Slate Non-Calcareous Alluvial Soils 13 0.060

Slate Calcareous Alluvial Soils 3 0.010

Slate Calcareous Older Alluvial Soils 11 0.050

Slate Non-Calcareous Alluvial Soils 11 0.050
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proposed by Dymond and Shepherd (1999). Finally, the 
yearly mean Landsat data were obtained for the years of 
concern and exported as a single cloud-free image. All 
previous processes are referred the tool for preprocessing 
Landsat image as described by Hurni et al. (2017). After 
that, NDVI-based transformation in Eq.  (4) was utilized 
to calculate the mean C value of the three different years.

2.5.5 � Conservation practice (P factor)
The P factor represents the effects of controlled meas-
urements to reduce the rate of the amount of runoff and 
raindrop that strike on the soil surface. The common 
support practices are contour farming, terracing, strip 
cropping, and grassed waterways (Ghosal and Das Bhat-
tacharya, 2020). The lower the P value, the more effective 
the support practice promotes the deposition of soil par-
ticles (Alewell et al. 2019).

Within the RUSLE, a list of P values corresponding to 
a wide range of support practice conditions are mainly 
derived from the experiment data at plots or field scale. 
Therefore, while transferring the P factor from a field 
scale to a large scale based on GIS-based modeling, it 
is considered as the least reliable of the RUSLE factors 
because of the lack of spatial information (Alewell et al. 
2019). The P estimation is primarily controlled by two 
determinants, e.g., land-use types and the terrain slope 
(Nyssen et  al. 2009; Tian et  al. 2021). The topographic 
conditions are characterized by steep and rugged fea-
tures, so that they might strongly affect soil erosion pro-
cess. Hence, the equation developed by Wenner (1981) 
that shows the linear relationship between the slope and 
amount of conservation practice (P) (Ghosal and Bhat-
tacharya 2020; Lufafa et al. 2003) was selected:

where P is the amount of conservation practice, and S is 
the slope in percentage.

2.6 � Sediment delivery ratio and sediment yield estimation
The SDR is defined as the proportion of gross erosion 
expected to travel to the outlet of a given catchment area 
(Ferro and Minacapilli 1995). It is influenced by various 
environmental variables, such as rainfall, vegetation, 
topography, and soil properties and their complicated 
interactions (Walling 1983). Due to the complex mech-
anism of basin sediment transport, the physical-based 
distributed models are still rarely seen (Wu et al. 2017). 
Thus, the empirical SDR developed for a given water-
shed is widely used for estimating SDR (Lim et al. 2005). 
The empirical SDR equations have been discussed and 
can be used for Taiwan (SWCB 2019). Out of 10 equa-
tions, this study considered three empirical equations as 
they provide satisfactory results. Other equations cannot 

(5)P = 0.2 + 0.03× S

give satisfactory results as they lack some basic informa-
tion and are proposed for the other specific catchments 
of reservoirs. Hence, they cannot be used in the current 
analysis. The selected SDR equations were developed for 
10 on-stream reservoirs; and the watersheds of Zengwen 
Reservoir and eight others (Chen and Lai 1999; SWCB 
2019). These equations were described in Eqs. (6, 7, and 
8), respectively.

where A is the watershed area in km2, L is the length of 
mainstream in km, and Sr is the slope gradient of stream 
bed in percentage (%).

After determining the gross erosion from the RUSLE 
model and SDR, sediment yield for a given catchment 
can be defined as (Jain and Kothyari 2000):

where SYi is the sediment yield for a grid cell i, SDRi is 
the soil delivery ratio for a cell i, and Ai is soil loss rate 
predicted by the RUSLE model (t ha−1 year−1) for a grid 
cell i.

2.7 � Computation of observed sediment
The measured sediment data from the Water Resource 
Agency of Taiwan over the period of 2005–2018 were 
computed for 6 gauge stations. At each gauge station, the 
water and suspended sediment discharge were sampled 
two to three times a month. The rating curve method, 
which presents an exponential regression between the 
measured daily flow discharge Q (m3 s−1) and meas-
ured daily sediment discharge Qs (t day−1), was utilized 
to estimate the annual amount of suspended sediment 
discharge. This method is widely used for gauge stations 
where sampling frequency is unusual or insufficient (Ahn 
and Steinschneider 2018; Hung et al. 2018). To reduce the 
residuals between the calculated and observed suspended 
sediment discharge, a modified rating curve method pro-
posed by Kao et al. (2005) was applied.

3 � Results
3.1 � Final LULC maps
The final LULC maps extracted from Landsat images 
were validated for the five classes: water, forest, bare land, 
built-up land, and agricultural land. The random forest in 
mapping LULC showed a satisfactory performance. More 
specifically, the LULC maps for 2005, 2011, and 2019 
obtained high overall accuracy values (0.91, 0.93, and 

(6)SDR1 = 249× A
−0.316

(7)SDR2 = 165.67× A
−0.24

(8)SDR3 = 129.02× (L/
√
Sr)−0.19

(9)SYi = SDRi × Ai
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0.90, respectively) and Kappa values (0.91, 0.92, and 0.90, 
respectively).

The spatial distribution of LULC types and their sta-
tistical information for 2005, 2011, and 2019 are shown 
in Fig.  3 and Table  2, respectively. Forest occupied the 
largest portion of the total area (over 75%), while built-
up land shared smallest percentage of the whole area 
(around 1.10%). Agricultural land was ranked at the 
second dominant LULC type (11.0%), followed by bare 
land (5.80%). In general, the ZRB has undergone a minor 
change among LULC types over the 15-year period. 
Forest and bare land slightly reduced in 2011 and then 

increased by under 0.50% in 2019. In contrast, agri-
cultural land recently decreased by 2.05% after a small 
increase of 0.43% from 2005 to 2011. Water and built-up 
lands gradually increased.

3.2 � The RUSLE modeling
3.2.1 � Estimating the RUSLE factors
Rainfall erosivity in the ZRB ranged from 4575.03 to 
17,544.86 MJ mm ha−1  h−1  year−1 with a mean value of 
12,351.11  MJ  mm  ha−1  h−1  year−1 and standard devia-
tion of 2394.30  MJ  mm  ha−1  h−1  year−1. The value of 
this parameter tended to increase from low plains to 

Fig. 3  LULC maps for the years 2005, 2011, and 2019

Table 2  Descriptive information on LULC types

LULC types 2005 2011 2019

Area (ha) and percentage (%)

Water 12,733.65 4.02 13,593.69 4.30 12,455.28 4.78

Forest 239,234.04 75.61 237,657.96 75.11 240,571.98 75.75

Bare land 20,558.34 6.50 18,491.49 5.84 21,053.25 6.47

Built-up land 3604.41 1.14 5054.94 1.60 6175.17 1.90

Agricultural land 40,284.90 12.73 41,626.26 13.16 36,168.66 11.11
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mountainous regions (Fig.  4a). The K value varied from 
0.01 to 0.065 t h MJ−1 mm−1, and the mean K value was 
0.04 t h MJ−1 mm−1, as presented in Fig. 4b.

The spatial distribution of the combined LS factor is 
presented in Fig. 4c. Due to the rugged topography, the 
LS factor obtained a mean value of 8.15. The highest 
value was found on the slope land nearby the water body, 
while the bottom of the valley or low plain received the 
lowest value close to zero. The increase in the LS value 
means that the runoff and soil erosion are likely to speed 
up at a higher rate.

As shown in Fig. 4d, the C value ranged from 0 to 0.781 
with a mean value of 0.06. The lower C value represents 
a more effective ability of vegetation cover to protect the 
soil surface from erosion forcing. Generally, forests at 
the high elevation obtained the lowest C value, close to 
0, while agricultural crops distributed in the river valley 
or low plain had a higher C value. In contrast, bare land 
obtained the highest C value.

The P value for agricultural land was derived from 
Eq. (5). It was set to be 0 for the water body and built-up 
land, and 1 for the forest and bare land. The LULC types 

associated with slope gradient were gathered to compute 
the P value for the years of interest. Results reveal that 
the P value slightly fluctuated because agricultural land 
remained stable during the study period.

3.2.2 � Soil erosion dynamics
The soil erosion rate was estimated by overlaying the five 
thematic layers designed in raster format with 30-m reso-
lution. The long-term average soil erosion rate was calcu-
lated by averaging soil erosion rate. Then, the soil erosion 
rate was classified into 5 soil erosion severity classes 
(Kimaro et  al. 2008; Turkelboom 1999), namely mild 
(0–10 t ha−1  year−1), moderate (10–50 t ha−1  year−1), 
moderately severe (50–100 t ha−1  year−1), severe (100–
150 t ha−1 year−1), and very severe (> 150 t ha−1 year−1). 
The soil erosion class and its percentage area are pre-
sented in Fig. 5. The moderate class was dominated and 
followed by moderately severe class, while severe class 
occupied a smallest proportion of the ZRB over the given 
years. The mild and moderate class experienced a slight 
drop by around 2% before increasing by 3% and 8% from 
2011 to 2019, respectively. Conversely, the moderately 

(a) Rainfall erosivity (b) Soil erodibility

(c) Slope and Length factor (d) Average C value
Fig. 4  a Rainfall erosivity, b soil erodibility, c slope and length factor, and d average C value
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severe and severe class rose by 4.31% and 0.85% from 
2005 to 2011, respectively, and then reduced by 0.89% 
and 2.77% from 2011 to 2019, respectively. A decreasing 
trend was observed at the very severe class over the study 
period, particularly a remarkable reduction by 7.82% 
from 2011 to 2019.

Figure  6 shows spatial distribution of soil erosion 
classes during 2005–2019. It is observed that the mod-
erate and moderately severe classes occupied a large 
portion with 54.15% of the total area. The mild class 
accounted for around 14.39% and the remaining severe 
and very severe classes together shared 31.47%. The SER 
ranged from 0.00 to 6,881.88 t ha−1 year−1, and the aver-
age rate was 122.94 t ha−1 year−1.

In general, the mild class occurred in the low plain, 
bottom of river valleys, and high mountains with closed 
vegetation. The moderate class is distributed dispersedly 
in different kinds of terrains. Conversely, the severe and 
very severe erosion rates (over 100 t ha−1  year−1) hap-
pened on the sloping land with a sparse cover like bare 
land or upland agricultural crops.

3.2.3 � Soil erosion intensity at different LULC types
Table 3 illustrates a significant difference in SER among 
LULC types. Bare land suffered the most detrimental 
impacts of soil erosion at the highest rate of over 390 t 
ha−1  year−1, while water and built-up land were not 
affected by the soil erosion process. Although forest less-
ened the risk of soil erosion, the average SER was still 
high at over 100 t ha−1  year−1. Additionally, agricultural 

land was eroded at a rate above 22 t ha−1 year−1. In brief, 
soil erosion recently occurred on main LULC types that 
reduce intensity as compared to the previous years.

3.3 � Sediment yield prediction
To calculate the three empirical SDR equations, two 
major steps were carried out. Firstly, the spatial bound-
ary of each sub-basin respective to its gauge station was 
delineated by using the DEM analysis via the Hydrology 
and Surface tool of ArcGIS software (as presented in 
Fig. 1); then, the size of sub-basins and their slope gradi-
ent and mainstream were identified. Each sub-basin rep-
resents its whole upstream area with water flowing into 
its outlet (gauge station).

As shown in Table  4, the SDR1 and SDR2 at each 
sub-basin ranged from 20.02% to 61.13%. The SDR2 
was slightly higher than SDR1, except for sub-basin 
1510H050. As for the SDR3, its value varied from 57.26 
to 89.33%. The SRD3 for a certain sub-basin gave higher 
SDR values than the two equations SDR1 and SDR2 
within the ZRB.

As for each sub-basin, the gross erosion value was com-
puted from the RUSLE. Then, it was combined with the 
three SDRs to determine sediment yield according to Eq. (9).

Table 5 shows a large variation of the SY values following 
the SDR equations among sub-basins. The SY estimation 
produced by the SDR1 and SDR2 gave a slight difference 
(around 10 × 106 t year−1) compared to the SDR3 (approxi-
mately two times higher) for each sub-basin.
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Fig. 6  Spatial distribution of soil erosion classes during 2005–2019; inserted image is zoomed-in spatial pattern of soil erosion classes

Table 3  Average soil erosion rate corresponding to LULC types

Soil erosion rate of water and built-up land is zero

LULC types 2005 2011 2019

Average value and its standard variation (t ha−1 year−1)

Forest 124.59 217.47 119.81 208.70 102.84 316.11

Bare land 521.92 737.61 537.10 732.10 396.58 684.64

Agricultural land 32.41 96.09 31.16 84.11 22.79 72.05

Table 4  Sediment delivery ratio for each sub-basin

Each sub-basin represents the whole upper areas where water flows into its 
gauge station; SDR1,2,3 values were obtained from the three SDR equations, 
respectively

Sub-basin Gauge station Area (km2) SDR1 SDR2 SDR3

1510H050 Yanping 85.15 61.13 57.02 89.33

1510H079 Longmen 360.37 38.75 40.33 78.62

1510H049 Neimaopu 367.17 38.52 40.15 81.42

1510H075 Bǎoshí 1576.42 24.31 28.30 63.09

1510H063 Yufeng 2096.46 22.21 26.43 61.37

1510H057 Zhang Yun 2911.13 20.02 24.43 57.26

Table 5  The predicted sediment yield (106 t year−1) with respect 
to the three SDR equations

Gross erosion (A) is obtained from the annual average soil erosion rate for 2005, 
2011, and 2019 by using the RUSLE model; SY1,2,3 values are obtained from the 
RUSLE and SDR1,2,3 equations, respectively

Sub-basin Gross erosion (A) SY1 SY2 SY3

1510H050 8.30 5.07 4.73 7.41

1510H079 46.15 17.88 18.61 36.28

1510H049 52.77 20.33 21.19 42.97

1510H075 284.05 69.05 80.39 179.22

1510H063 352.93 78.40 93.28 216.59

1510H057 429.71 86.05 104.97 246.06
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3.4 � Validation of sediment yield estimation
In this study, annual suspended sediment discharge at 6 
gauge stations was calculated by using the modified rat-
ing curve derived from the daily water discharge from 
2005 to 2018 (measured days over 250). The results of the 
observed sediment calculation are presented in Table 6.

Table  6 illustrates that gauge stations experienced a 
large variation in suspended sediment discharge. At 
a dependent sub-basin, 1510H075 (Bǎoshí) located at 
the farthest distance from the downstream obtained a 
value of suspended sediment discharge at 156.50 × 106 
(t year−1). In contrast, 1510H050 (Yanping) nearby the 
downstream received the lowest value at 12.00 × 106 
(t year−1). The difference between these two stations 
was around 13 times. In this period, the annual sus-
pended sediment discharge at downstream gauge (Zhang 
Yun) standing for the whole upstream area was about 
325.78 × 106 (t year−1). That is, the Zhuoshui River annu-
ally produced a massive amount of sediment from its 
upper streams.

To evaluate the model performance in SY prediction, 
Pearson’s correlation coefficient (r), coefficient of deter-
mination (R2), and percent bias (PBIAS) were calculated 
from the long-term simulated SY and measured SY for 
each sub-basin.

where Oi is the observed value, Pi is the predicted value, 
and n is the number of measurements.

As shown in Table 7, the SY estimation obtained from 
the equation SDR1,2,3 reveals a strong relationship with 
the observed SY, in which both r and R2 values were 
over 0.90. However, the PBIAS derived from the SDR3 
was smaller than the SDR1,2. Meanwhile, the length and 
slope gradient of mainstream at each sub-basin gave a 
better sediment yield prediction in combination with 
the RUSLE than the catchment size. The SDR1 and SDR2 
caused estimation errors, which were over two times 

(10)PBIAS(%) =
∑

n

i=1
Oi − Pi

∑

n

i=1
Oi

× 100

higher than the SDR3 at each sub-basin, except for sub-
basin 151H049. The SDR1 and SDR2 underestimated the 
sediment yield at all sub-basins, while the SDR3 resulted 
in the same situation, except for sub-basins 1510H049 
and 1510H075 (overestimation). The estimation errors 
from the SDR3 at each sub-basin ranged from 14.52 to 
38.26%. Compared to the previous studies (Donigian 
2002; Moriasi et al. 2007), the RUSLE and SDR3 achieved 
satisfactory performance at the ZRB.

4 � Discussion
In this study, the RUSLE coupled with the empirical SDR 
equation performs satisfactorily in estimating SY at the 
ZRB. It reveals that the model’s capacity in modeling is 
unexpectedly limited when it is applied for local physical 
conditions. Due to uncertainty in identifying the RUSLE 
parameters and SDR, the model performance should be 
carefully considered and adapted to local rainfall pat-
terns, vegetation cover, and soil characteristics (Alewell 
et al. 2019). This study used the empirical equations for 
determining the RUSLE inputs and SDRs (except for the 
P and LS factors), which were developed in the environ-
mental conditions of Taiwan. Also, the selected methods 
for determining the C, P, and LS factors are derived from 
remote sensing data and LS algorithm to compensate 
the rugged terrains in Taiwan. In contrast, the suggested 
methods by SWCB (2019) reveal disadvantages as applied 
for a large scale. For example, the C and P factors based 
on a lookup table require detailed land-use information 
and its corresponding management practice, while the 
LS factor is developed by experiment based on a one-
direction regular slope and a standard plot. Hence, the 
used methodologies may reduce uncertainty in soil ero-
sion and SY prediction. Also, this work provides a rapid 
approach for soil erosion assessment, which is adequate 
for a mountainous basin.

Table 6  Annual suspended sediment discharge (106 t year−1) at 
gauge stations

Sub-basin Gauge 
station

Period Number of 
measured 
days

Observed 
sediment

1510H050 Yanping 4/2005–2018 328 12.00

1510H079 Longmen 10/2009–2018 267 45.99

1510H049 Neimaopu 2005–2018 398 32.22

1510H075 Bǎoshí 2005–2018 443 156.50

1510H063 Yufeng 2005–2018 401 278.46

1510H057 Zhang Yun 2005–2018 407 325.78

Table 7  Model performance evaluation corresponding to three 
empirical SDR equations

Model performance SDR1 SDR2 SDR3

Pearson’s correlation coefficient (r) 0.96 0.97 0.97

Coefficient of determination (R2) 0.92 0.93 0.95

PBIAS (%)

  1510H050 57.74 60.59 38.26

  1510H079 61.11 59.53 21.11

  1510H049 36.91 34.25 -33.35

  1510H075 55.88 48.63 -14.52

  1510H063 71.85 66.50 22.22

  1510H057 73.59 67.78 24.47
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This study highlighted that among the three SDR 
candidates, the SDR3 illustrated a better prediction of 
sediment transport than the SDR1 and SDR2 at each sub-
basin when combined with the RUSLE. Obviously, the 
controlling factors of the SDR are extremely complex 
related to watershed characteristics, landforms, hydro-
logical and climatic conditions, and anthropogenic man-
agement (Wu et al. 2017). The SDR3 is identified by two 
determinants: the length of mainstream and slope gradi-
ent of stream bed, which might explain sediment trans-
port capability to the study basin. A long mainstream has 
great chances to receive eroded materials from hillslopes. 
Also, with a high gradient, mainstream is more capable of 
transporting eroded materials to down streams (USDA-
SCS 1972). The SDR3 matches with some previous SDRs, 
which are proposed for a watershed with short length and 
steep slope (Bartholic 2004). While the SDR1 and SDR2 
based on the size of basin area insufficiently identify the 
SDR value in this study, the SDR value tends to decrease 
with the catchment area and depends on many factors 
(Smith and Wilcock 2015; Wu et al. 2017). A larger basin 
has more probabilities to trap eroded materials and, then, 
lessen the amount of eroded materials traveling further 
to down streams (Bartholic 2004). This might be well 
explained for large and flat catchments. However, for 
catchments with short and high elevation variations, the 
sediment transport process may be efficiently presented 
by the slope and length of mainstreams.

The RUSLE-SDR3 model fairly implemented at six sub-
basins with the PBIAS values under ± 39% compared to 
previous studies (Donigian 2002; Moriasi et  al. 2007). 
Meanwhile, the SDR3 can estimate SDR for a large differ-
ence in sub-basin characteristics concerning the length of 
mainstream and slope gradient of stream bed. Thus, the 
coupled RUSLE-SDR3 model can be potentially applica-
ble for the other basins in Taiwan. Noticeably, the SDR 
value is determined by a wide range of decisive factors 
and complex processes (erosion, transportation, and dep-
osition). Hence, further consideration is still needed to 
identify the SDR and achieve a better result of sediment 
prediction.

Several authors noted that a model should be validated 
without any calibration steps (Alewell et  al. 2019; Sver-
drup et al. 1995). This study directly utilized all inputs to 
simulate the SY, which was checked and validated with 
the observed SY. Currently, on-site plots for soil loss rate 
measurement are unavailable or difficult to obtain to vali-
date the RUSLE performance at large scale (Cerdan et al. 
2010), while the output of the RUSLE-SDR can be vali-
dated with the observed SY available at many gauge sta-
tions within the watershed. Although the physical-based 
models exhibit many advances in soil erosion modeling, 
empirical models often achieve more successfully and 

are possible to perform (Morgan 2005). Managers, policy 
makers, planners demand the simple predictive tools to 
support decision-making processes rather than the com-
plicated systems (Morgan 2005; Vigiak and Sterk 2001).

The RUSLE was designed to predict the annual average 
soil loss rate by inter-rill and rill erosion as it ignores gul-
lies and stream bank erosion. Additionally, the existing 
SY models cannot fully account for gully, bank erosion, 
and mass movements (de Vente et  al. 2013). These soil 
erosion processes occur simultaneously at a catchment 
scale, so that it is challenging to quantify typical sedi-
ment sources separately. Until now, modeling approaches 
in researching soil erosion and sedimentation process 
still need much more effort due to their limitations for 
various aspects (Dutta 2016). Currently, torrents, gullies, 
and riverbank erosions in Taiwan are mostly controlled 
by man-made works (Lin et  al. 2002). Hence, this study 
assumes that inter-rill and rill erosions are the main 
sources of sediment production within the study basin. 
Despite the existing limitations, the RUSLE-SDR model 
with the assistance of GIS and RS was fairly conducted 
for the long-term estimation of SE and SY in the ZRB. 
Among the SDR models, the SDR model related to stream 
characteristics was appropriate in combination with the 
RUSLE to estimate SY under the complex biophysical 
conditions of the ZRB. It is important to note that the 
RUSLE-SDR approach enables to simulate the soil ero-
sion and SY for the environmental conditions of the ZRB, 
where has been adversely suffering from soil erosion on 
sloping lands and sediment deposition at down streams. 
The proposed approach is potentially applicable to other 
catchments in Taiwan.

5 � Conclusions
This study applied the RUSLE-SDR model with the 
support of geospatial analysis and RS data to estimate 
the annual and long-term average soil erosion and SY 
in the ZRB. The soil erosion rate is classified into five 
classes, namely mild (0–10 t ha−1  year−1), moder-
ate (10–50 t ha−1  year−1), moderately severe (50–100 t 
ha−1  year−1), severe (100–150 t ha−1  year−1), and very 
severe (> 150 t ha−1  year−1). Over one half of the total 
area is categorized as moderate and moderately severe 
classes, and one-third of the whole basin as severe and 
very severe classes. Recently, mild and moderate classes 
increased, while moderate severe, severe, and very severe 
decreased. During 2005–2019, the annual soil erosion 
rate varied from 0.00 to 6881.88 t ha−1  year−1, and the 
average rate was 122.94 t ha−1  year−1. The SDR for 
each sub-basin extracted from mainstream length and 
slope gradient of the mainstream bed together with 
the RUSLE illustrates a better prediction of SY than 
those derived from the catchment size. Predictably, 



Page 13 of 15Liou et al. Progress in Earth and Planetary Science            (2022) 9:52 	

downstream receives a massive sediment delivery from 
all upper streams (246.06 × 106 t year−1), and the PBIAS 
values for all sub-basins are below ± 39.0%. Spatial dis-
tribution of soil erosion rate and SY is valuable infor-
mation for soil and water conservation, which support 
the local government in considering controlling meas-
ures to achieve sustainable agricultural development. 
Note that this study referred to the previous studies 
with involvement of empirical equations developed 
for Taiwan and then manipulated all available data for 
modeling to achieve satisfactory outcomes. Under such 
circumstance, the used methodology is potentially 
applicable to the other catchments in Taiwan, but it 
has to be adjusted to fit the local environment for the 
regions outside Taiwan.
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