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Abstract

The Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the
interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace
and atmosphere. This Sun—Earth connection variates in time scales from milli-seconds to millennia and beyond. The
solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a
possibility of a grand minimum in near future. VarSITl—variability of the Sun and its terrestrial impact—was the 5-
year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014-2018, focusing on this
variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its
past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.
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1 Introduction

The Sun, our home star, is a variable star. Its activity is
due to the action of the solar dynamo, maintaining the
solar magnetic field. The solar wind—the ever-
expanding solar atmosphere—drags the magnetic field
throughout the whole heliosphere and carries transients
like coronal mass ejections and high-speed solar wind
streams. The Earth, together with the other planets in
the solar system, is immersed in the solar wind and in-
teracts with the plasma and magnetic fields originating
from the Sun. The Sun also emits radiation in all wave-
lengths, with sporadically superposed contributions by
solar flares, and modulates the flux of galactic cosmic
rays. All these solar agents vary on time-scales from
milli-seconds to millennia and beyond. Consequently,
their impact on the terrestrial system also varies. The
variations of the Sun and the geoeffective solar agents,
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and their varying impacts on the Earth, were studied by
the SCOSTEP’s program VarSITI—Variability of the Sun
and Its Terrestrial Impact.

1.1 What is SCOSTEP

SCOSTEDP, the Scientific Committee on Solar-Terrestrial
Physics, was originally established as the Inter-Union
Commission on Solar-Terrestrial Physics (IUCSTP) by
the XIth General Assembly of the International Council
of Scientific Unions (ICSU; now the International
Science Council, ISC) in January 1966. At its XIVth
General Assembly in September 1972, ICSU reorganized
IUCSTP as a special committee with responsibility for
interdisciplinary solar-terrestrial physics programs of fi-
nite duration. The designation of SCOSTEP took effect
in September 1973 after the ratification of a new Consti-
tution by the ICSU Executive Board and General Com-
mittee. At the XVIIth ICSU General Assembly in
September 1978, SCOSTEP became a Scientific Com-
mittee of ICSU charged with the long-term responsibility
to promote international interdisciplinary programs in
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solar-terrestrial physics (https://scostep.org/). Under the
International Science Council (ISC), SCOSTEP is the
only organization to deal with the Sun-Earth
connections.

1.2 Previous SCOSTEP’s programs

1.2.1 Early programs

The early SCOSTEP’s programs were mostly focused on
separate parts of the solar-terrestrial system: Inter-
national Magnetospheric Study (IMS: 1976-1979), Solar
Maximum Year (SMY: 1979-1981), Middle Atmosphere
Program (MAP: 1982-1985), and three parallel pro-
grams during 1998-2002: International Solar Cycle
Study (ISCS), Planetary Scale Mesopause Observing Sys-
tem (PSMOS), and Equatorial Processes Including
Coupling (EPIC). Meanwhile, the first attempts were
made to incorporate all these into an end-to-end pro-
gram aiming at improving our understanding of the
linked solar—terrestrial system—the Solar—Terrestrial
Energy Program (STEP: 1990-1997), followed by its
continuation STEP—Results, Application and Modeling
Phase (S-RAMP) program (1998-2002). (https://scostep.
org/programs/).

Research in the framework of these programs had led
to significant improvements in understanding the phys-
ical processes within each of the Sun—Earth domains:
Sun, heliosphere, magnetosphere, thermosphere/iono-
sphere, middle atmosphere, lower atmosphere, and cli-
mate. Some cross-disciplinary progress was also
achieved during STEP and S-RAMP in understanding
the domain as a whole.

1.2.2 CAWSES (2004-2008)
In 2000, the SCOSTEP’s Long Range Planning Commit-
tee was constructed with the purpose to define future re-
search programs. This group came up with a new
approach for solar-terrestrial physics that led to a new
paradigm—end-to-end study of scientific “problems”
within the system as a whole on both short and long
time-scales. The program was named CAWSES—CIi-
mate and Weather of the Sun—Earth System. This new
program was intended to enable researchers in various
disciplines to work together to understand the effects of
the Sun on the Earth’s environment.

The fundamental problems for CAWSES as formu-
lated by the Planning Committee were (Schmieder et al.
2004):

— Can we link the end-to-end processes that produce
geoeffective coronal mass ejections, facilitate their
transfer through the heliosphere, their interaction
with the magnetosphere, and the production of
geomagnetic storms that affect the atmosphere?
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— Can we identify evidence for long-term variations of
solar luminosity related to solar activity and result-
ant impacts on global change, compared with other
climate change mechanisms?

— Can we reconcile apparent responses of the middle
and lower atmosphere to solar activity, identify the
physical mechanisms, in comparison with
anthropogenic influences, and estimate future ozone
changes?

— To what extent are the magnetosphere and
ionosphere-thermosphere systems modulated by
solar activity on long time scales, including the solar
cycle, and how do variations driven by different pro-
cesses interact with dynamical and radiative forcing
processes from below?

To answer these questions, four projects were defined
by the CAWSES Science Steering Group: solar influ-
ences on climate, space weather: science and applica-
tions, atmospheric coupling processes, and space
climatology.

1.2.2.1 Theme 1: Solar influence on climate The aim
of this project was to investigate the effects of solar vari-
ability on the climate of the lower and middle atmos-
phere. Evidences were accumulated that solar activity
indeed influences climate. Using cosmogenic radionu-
clides which are primarily produced by the galactic cos-
mic rays whose intensity is modulated by the open solar
magnetic field, the strength of the interplanetary mag-
netic field (IMF) was reconstructed for the past 10,000
years. The close relationship between the strength of the
IMF and the total solar irradiance (TSI) found during
the modern space era allowed TSI in turn to be recon-
structed in the past from the reconstructed IMF. TSI
was compared with selected climate records, and a rela-
tionship was found between solar variability and climate
(Beer and McCracken 2009). Considerable evidence was
also found that solar variability on decadal timescales
does influence climate; however, it was noted that the
solar signal is not uniformly distributed over the globe.
Some mechanisms were suggested for the amplification
of the solar signal, as summarized by (Haigh 2009 and
the references therein). Among then, the so called “Bot-
tom-up” mechanism works in the tropical oceans where
there is less cloud and variations of solar irradiance have
more sensible effects. It includes changes in atmospheric
circulation associated with anomalies in horizontal
temperature gradient of the sea surface. The basis of the
“Top-down” mechanism connecting the stratosphere to
the underlying tropospheric climate is the spectral solar
irradiance (SSI) variability which is much greater than
the TSI variability. Other possible mechanisms are re-
lated to modulation of El Nifio by solar activity through
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a change in ocean circulations induced by longitudinally
asymmetric changes in sea surface temperatures, etc.

1.2.2.2 Theme 2: Space weather—science and
applications “Space weather” is known as the short-
term variations of the Sun, propagation of energetic
particles, and electro-magnetic emissions through inter-
planetary space, and their effects in the magnetosphere,
ionosphere, and thermosphere that can influence the
performance and reliability of space-borne and ground-
based technological systems and can endanger human
life or health. The goals of this project were to develop
dependable, robust deterministic end-to-end models that
predict conditions in geospace from a quantitative un-
derstanding of the observed phenomena.

In addition to Interball, Geotail, Cluster, SOHO, ACE
missions, new spacecraft were launched during CAWS
ES like Hinode, RHESSI, Solar-B, and STEREO. They
allowed to study in unprecedented detail processes on
the Sun responsible for solar flares, energetic particles,
and geoeffective transients in the solar wind. The ob-
served properties of CMEs and ICMEs were summa-
rized, with an emphasis on those properties that
determine the ability of CMEs in causing space weather.
On the applied side, special attention was paid to the ef-
fects of solar events on satellite missions in near-Earth
orbit.

1.2.2.3 Theme 3: Atmospheric coupling processes
Solar and magnetospheric inputs propagate downward
through the atmosphere while tropospheric effects
propagate upward to the thermosphere—ionosphere sys-
tem. This project sought to gain greater understanding
of atmospheric coupling processes by means of observa-
tions, theory, and modeling. Global observing campaigns
were conducted to characterize tides and their influence
from the troposphere to the thermosphere, gravity waves
and turbulence, solar and galactic cosmic rays influence
on minor constituents, and layers at the extra-tropical
summer mesopause. In the framework of the new topic
“Equatorial atmosphere coupling processes,” low latitude
ionospheric disturbances associated with geomagnetic
activity and electrodynamic coupling of equatorial F re-
gion with conjugate E regions were studied. A project
was dedicated to atmospheric wave interactions with the
winter polar vortices.

1.2.2.4 Theme 4: Space climatology Climatology in-
cludes a description and understanding of the average
properties and regular variations of the system and is
concerned with the long-term effects (e.g., longer than
the solar rotation period). The goal of this project was to
provide the data necessary to study the climatology of
the Sun—Earth system with an emphasis on both a
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critical review of the original observations and their in-
terpretations. Two composites of total solar irradiance
measurements (PMOD and ACRIM) were updated, and
a third composite (IRMB) was additionally presented
(Frohlich 2009). New geomagnetic indices [e.g., the
Inter-Hour Variability (IHV), the Inter-Diurnal Variabil-
ity (IDV), and Polar Cap Potential (PCP)] were devised
from which the long-term variations of the solar wind
parameters can be derived (Svalgaard and Cliver 2007).
Special attention was paid to the long-term changes and
trends found in the upper atmosphere at heights above
50 km, i.e., in the mesosphere, thermosphere, and iono-
sphere (Lastovicka, Akmaev and Emmert 2009).

A summarizing CAWSES symposium was held in
Kyoto in 2007, and selected papers from the symposium
were gathered in the monograph “Weather of the Sun—
Earth System (CAWSES): Selected papers from the 2007
Kyoto Symposium” (Tsuda et al. 2009) which is freely
available online at https://www.terrapub.co.jp/
onlineproceedings/ste/ CAWSES2007/index.html.

In summary, the first phase of CAWSES led to a sig-
nificant improvement in our understanding of the solar
influence on climate changes, effects of sporadic solar
events on the terrestrial system and satellite missions in
near-Earth orbit, and the coupling of atmospheric layers
through dynamical, electromagneticc and photo-
chemical processes. It was recognized, however, that
there was still much that needs to be achieved, and
therefore, the SCOSTEP endorsed the continuation of
the CAWSES program as CAWSES II during 2009—
2013.

1.2.3 CAWSES Il (2009-2013)

CAWSES 1I had four task groups: solar influences on
Earth’s climate, geospace response to altered climate,
short-term solar variability and geospace, and geospace
response to variable inputs from the lower atmosphere.
Additional activities were related to capacity building
and E-science and informatics, including the creation of
scientific databases and their effective utilization in
solar—terrestrial physics research. Below is a brief sum-
mary of the overview of the achievements by the CAWS
ES II working groups mostly based on Tsuda et al
(2015).

1.2.3.1 TG1: Solar influences on Earth’s climate An
important contribution of TG1 was the highlighting of
the role of the spectral solar irradiance in the solar influ-
ences on climate. Before CAWSES 1I, the total solar ir-
radiance (TSI) was the only factor considered to
quantify the solar influences on climate change. In
addition to the “bottom-up” mechanism relying on the
influence of the TSI on the tropical sea surface
temperature with resulting changes in the circulation
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(Meehl et al. 2008), the “top-down” mechanism was pro-
posed highlighting the role of the spectral solar irradi-
ance (SSI) forcing on chemical-dynamical coupling via
its interactions with atmospheric ozone and connecting
the stratosphere to the underlying tropospheric climate
(Gray et al. 2010). A major development during the
CAWSES-II period for studies of energetic particle pre-
cipitation effects on the middle and upper atmosphere
was the shift of focus from the previously dominant
topic of solar proton events (SPE) to investigations in-
cluding energetic electron precipitation (EEP). These
two topics together defined as energetic particle precipi-
tation (EPP). In the high latitude atmosphere, the en-
hanced ionization from EPP leads to the production of
HOx and NOx which have an important role in middle
atmosphere ozone balance, thus providing a potential
link to dynamics and regional climate (Rozanov et al.
2012). Significant advances were also made in the field
of cosmic rays. An extensive review on the results of
TG1 is given by Seppild et al. (2014).

Solar influence on climate is now accepted as an im-
portant contribution to climate variability, particularly
on regional scales. During CAWSES 1I, the main focus
has moved not only from TSI towards understanding
SSI variations and their impact, but as well shifting from
the global responses to more regional responses. With
better understanding of SSI, the importance of the top-
down stratospheric UV mechanism has been widely ac-
cepted. Improved measurements of both TSI and SSI be-
came available leading to more reliable solar cycle
variation estimates, and a new lower value for TSI was
recommended for the IPCC AR5 climate simulations
(Kopp and Lean 2011).

1.2.3.2 TG2: Geospace response to altered climate
The main focus of TG2 was on the effect of anthropo-
genic emissions of greenhouse gases (GHG) on the geo-
space—the region of the atmosphere between the
stratosphere and several thousand kilometers above
ground where atmosphere-ionosphere-magnetosphere
interactions occur. GHG cause warming in the tropo-
sphere but cooling in the upper atmosphere.

GHG are not the only driver of long-term changes and
trends in the upper atmosphere and ionosphere. A re-
gionally important driver is the secular change of the
main magnetic field of the Earth. Model simulation
showed that the secular variation of the Earth’s magnetic
field may be the dominant cause of trends in the Atlantic
region ionosphere (Cnossen and Richmond 2013). In the
mesosphere and lower thermosphere, important add-
itional drivers appear to be stratospheric ozone, changes
in CHy, and mesospheric water vapor concentration,
though the modelled changes are much higher than the
observed (Qian et al. 2011). The poorly known trends in
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atmospheric circulation and particularly in atmospheric
wave activity with predominantly tropospheric sources
(one of potential trend drivers) remained key open ques-
tion in the upper atmosphere and ionosphere trends (Las-
tovicka et al. 2014).

A sufficient amount of information had made it pos-
sible to create a first scenario of global change in the
mesosphere, thermosphere, and ionosphere (Lastovicka
et al. 2006). During CAWSES-II period, this scenario
had been continuously improved and updated (e.g.,
Lastovicka et al. 2012; Danilov 2012; Lastovicka
2013). The derived trends qualitatively agree with
model simulations that show that they are the conse-
quences of the enhanced greenhouse gases. However,
some of the trends are still controversial or discrepant.
The key challenges now are to improve the accuracy of
various parameters and to reduce the differences in trends
between models and observations.

A summary of the CAWSES-II TG2 achievements is
given by Lastovicka et al. (2014).

1.2.3.3 TG3: Short-term solar variability and
geospace Towards the understanding of the origin and
emergency of solar magnetism, the development of im-
proved mean field solar dynamo models that take into
account physical ingredients such as mutli-cellular and/
or time varying meridional circulation, magnetic pump-
ing, North-South asymmetry, irregularity in the cycles,
or improved source function for the poloidal field, has
been accomplished (e.g., Gopalswamy et al. 20153, b, c).
The first self-consistent models were developed for gen-
eration of magnetic wreaths at the base of the convec-
tion zone that have become unstable and started to rise
to the top (surface) of the numerical domain (Nelson
et al. 2011, 2013, Nelson 2013). Three-dimentional
MHD numerical simulations successfully explained the
dynamics of several CMEs and the associated shock
waves (Shen et al. 2011).

The International Study for Earth-Affecting Solar
Transients (ISEST) program was newly created within
the frame of CAWSES Task Group 3. It continued dur-
ing the VarSITI program, with the focused objective of
improving the scientific understanding of the origin and
propagation of solar transients and developing the pre-
diction capacity of these transients’ arrival and potential
impact on the Earth.

1.2.3.4 TG4: Geospace response to variable inputs
from the lower atmosphere The Task Group 4 focused
on the geospace response to variable inputs from the
lower atmosphere. This contains atmospheric waves
generated by meteorological disturbances, their inter-
action with the background mean flow in the middle at-
mosphere and with the ionospheric plasma, and their
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relation to competing disturbances in the thermosphere
and ionosphere generated by energy inputs from the
magnetosphere. A comprehensive summary of Task
Group 4 is given by Oberheide et al. (2015).

The major scientific findings during CAWSES-II Task
Group 4 are for impacts from lower atmosphere to the
middle and upper atmosphere and ionosphere through
various atmospheric waves, i.e., gravity waves with pe-
riods from 5 min to a few hours; tides with periods of 6,
8, 12, and 24h; and planetary waves with periods of
days. Vadas and Crowley (2010) showed the features of
the penetration of gravity waves generated from convect-
ive plume to the middle atmosphere and ionosphere.
Tsugawa et al. (2011) reported clear concentric waves in
ionospheric total electron content (TEC) map generated
by catastrophic Tohoku earthquake and Tsunami on 11
March 2011. This event provided a strong visual evi-
dence of gravity wave penetration to the ionosphere.
The wavenumber 4 structure observed in the equatorial
ionosphere by Immel et al. (2006) was recognized as a
result of penetration of atmospheric tides to the E- and
F-region ionosphere and electromagnetic coupling be-
tween E- and F-region ionosphere (e.g., England 2012).
After the discovery of response of ionospheric TEC to
the stratospheric sudden warming (SSW) induced by
planetary wave collapse by Goncharenko and Zhang
(2008), many evidences of planetary wave penetration to
the thermosphere and ionosphere have been reported
during the CAWSES-II period.

A summarizing CAWSES-II symposium was held in
Nagoya in 2013, and selected papers from the sympo-
sium were gathered in the special issue of Earth Planets
and Space at https://www.springeropen.com/collections/
ICS (overview: Yamamoto et al. 2016). Review papers of
the four task groups and overall CAWAES-II (overview:
Tsuda et al. 2015) were published in the special issue of
Progress in Earth and Planetary Science which is freely
available online at https://www.springeropen.com/
collections/cawses2reviewcollection.

2 VarSITI (2014-2018)

CAWSES coincided with the prolonged period of very
low solar activity between sunspot cycles 23 and 24.
CAWSES 1I started in 2009, the long-awaited beginning
of cycle 24, and covered the rising phase of the cycle. It
was even subtitled “Towards solar maximum.” However,
that solar maximum was a surprise to most of the
community.

Both CAWSES and CAWSES II were mainly focused
on the Earth’s atmosphere: how it is affected by solar ac-
tivity on short and long time scales, how anthropogenic-
ally induced changes in the atmosphere affect climate,
how the solar effects in the atmosphere depend on a

(2021) 8:21

Page 5 of 43

changing climate, and how upper atmospheric levels are
influenced by lower levels.

Due to the observed decline in solar activity which
puts an end to the Modern Grand Maximum, as shown
in Fig. 1, by the time of the start of the next SCOSTEP’s
scientific program, more attention was directed to the
Sun: are we facing the next grand minimum in solar ac-
tivity or will this be just a regular secular minimum? In
either case, what are the most extreme solar events that
we can expect, and how will they affect the Earth’s sys-
tem and its technological infrastructure? In a period of
low solar activity, what are the characteristics of geoef-
fective solar agents, and how does the terrestrial system
respond to them?

Basically, all we know about the Sun and the geoeffec-
tive solar transients from space-borne and in situ mea-
surements is for the period of the “space era,” coinciding
with the period of the grand maximum of solar activity
in the second half of the twentieth century. The question
arises whether the mechanisms and models based on
these observations will hold true in a period of lower
activity.

The definition of the VarSITI program was a commu-
nity effort (Gopalswamy 2013). The primary input was a
set of nine white papers received from the community
spanning the interests of all the scientific unions and
interdisciplinary bodies of ICSU represented in the SCO-
STEP Bureau. Community input was also received dur-
ing the International Symposium on Solar-Terrestrial
Physics in Pune India in 2012 when a panel discussion
was held on the next scientific program. After a thor-
ough discussion among the Bureau members, a set of 30
experts from the SCOSTEP community was invited to a
brainstorming forum organized by the International
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Fig. 1 Instrumental sunspot observations: group sunspot number
(Hoyt and Schatten 1998)—blue line and international sunspot
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Space Science Institute (ISSI) in Bern, Switzerland, dur-
ing May 7-8, 2013. The participants were the authors of
the white papers, the SCOSTEP Bureau, and inter-
national scientists. The 9 white papers and the commu-
nity input were synthesized into four projects:

(i) Solar Evolution and Extrema (SEE)

(ii) International Study of Earth-affecting Solar Tran-
sients (ISEST/MiniMax24,)

(iii) Specification and Prediction of the Coupled Inner-
Magnetospheric Environment (SPeCIMEN)

(iv) Role Of the Sun and the Middle atmosphere/
thermosphere/ionosphere In Climate (ROSMIC).

The name VarSITI (Variability of the Sun and Its Ter-
restrial Impacts) was proposed and accepted at the ISSI
Forum. Further community input was received during
the CAWSES-II Symposium in Nagoya in 2013 and the
VarSITI Town Hall during the AGU 2013 fall meeting
in San Francisco.

3 Selected results from VarSITI
3.1 Project SEE: Solar Evolution and Extrema
During CAWSES 1II, physical models based on the
solar dynamo theory, together with other approaches
(statistics, precursors, correlations, neural networks,
etc.), were employed for the first time in predicting
the following sunspot cycle 24. A set of predictions of
the amplitude of Solar Cycle 24 accumulated in 2008
ranged from very low to unprecedented high levels of
solar activity (Fig. 2). The predictions formed an al-
most normal distribution, centered on the average
amplitude of all preceding solar cycles (Pesnell 2012).
The wide range of the predicted amplitudes, even de-
rived using the same methods, demonstrated that at
the time of the completion of CAWSES II, we were
still far from understanding the physics of the solar
cycle.

The goal of the project SEE was to answer the follow-
ing questions:

1. Are we at the verge of a new grand minimum? If
not, what is the expectation for cycle 25?

2. For the next few decades, what can we expect in
terms of extreme solar flares and storms, and also
absence of activity? Another Carrington event?
What is the largest solar eruption/flare possible?
What is the expectation for periods with absence of
activity?

3. Does our current best understanding of the
evolution of solar irradiance and mass loss resolve
the “Faint Young Sun” problem? What are the
alternative solutions?
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3.1.1 Forecasting solar activity

One of the main focuses of VarSITI program was the
end of the modern grand maximum of solar activity and
what we can expect after it. Different approaches are
employed to forecast the future sunspot cycles: extrapo-
lations and statistical relations between some character-
istics of the average sunspot cycle and between
consecutive cycles, precursor methods, data-driven flux-
transport simulations, machine learning, neural network,
autoregressive models, etc. All prediction methods can
be generically divided into three broad groups, including
the majority of the above classifications: statistical or ex-
trapolation methods, precursor methods, and model-
based methods. Extensive reviews of the prediction
methods and some early forecasts of cycle 25 are given
by Petrovay (2020).

It should be noted here that a major event occurred
during the VarSITI program though it was not part of it.
After a series of “Sunspot Number Workshops” (http://
ssnworkshop.wikia.com/wiki/Home), on July 1, 2015, the
Sunspot Index Data Center in Brussels terminated the
more than 400 years long data series of the International
relative sunspot number Rz and replaced it by a new
entirely revised data series Sy (Cliver et al. 2013;
Clette et al. 2014). In this revised data series Sy, the
overall level of solar activity was significantly in-
creased as compared to Rz. In the future solar activity
forecasts, some authors still use the original R series,
others use the new Sy series, and the comparison of
the predictions for cycle 25, as well as between cycle
24 and the predictions for cycle 25 is not straightfor-
ward. To avoid misunderstanding, for each forecast,
we will indicate which series is used: V1 for the ori-
ginal Rz (Clette et al. 2007) or V2 for the recalibrated
Sy (Clette et al. 2014).

The statistical and extrapolation methods include lin-
ear regression techniques (e.g., Chae and Kim 2017;
Werner and Guineva 2020), multivariate regression
(Sabarinath and Anilkumar 2018), neural networks
(Covas et al. 2019), deep learning (Pala and Atici 2019),
and non-linear prediction algorithms (Sarp et al. 2018).

Extrapolation methods can theoretically yield very
long-term predictions. An attempt to make a super-
long-term forecast was made by Popova et al. (2018),
where it is stated that two fundamental dependences
were found for a solar dipole and a quadrupole, on the
basis of which one can make a forecast for many cycles
ahead. This forecast was an example of the methods
based on spectral analysis in which it is assumed that
the sunspot time series is a superposition of periodic-
ities. This article was criticized by Usoskin (2018), which
the authors disagreed with Zharkova et al. (2018).

Most of the predictions based on statistical and ex-
trapolation methods are for a low cycle 25, similar
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(possibly somewhat higher of somewhat lower) to cycle
24. Some studies predict a very weak cycle (e.g., Covas
et al. 2019), a cycle stronger than cycle 24 (Sarp et al.
2018), or stronger than both cycles 23 and 24 (Pala and
Atici 2019).

In the precursor methods, the future sunspot max-
imum is predicted using its correlations with other

heliophysical parameters observed before this maximum
(“precursors”). Helal and Galal (2013) used a correlation
between the number of spotless days and the upcoming
solar maximum to estimate that Solar Cycle 25 will have
R, = 1182 (V1), peaking 4.0 years after the solar mini-
mum. Yoshida (2014) used correlations between R, be-
fore minimum with the upcoming solar maximum, using
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the symmetries of the even/odd cycles to derive the pre-
diction: R, = 115.4 + 11.9 (V1). Based on the empirical
correlation between the dipole moment during solar
minimum and the strength of the subsequent cycle,
Cameron et al. (2016) suggest that Cycle 25 will be of
moderate amplitude, not much higher than cycle 24.
Kirov et al. (2018) show that both the maximum sunspot
number of a solar cycle and the minimum of geomag-
netic activity preceding it can be predicted from the
maximum value of the solar dipole magnetic field of the
previous cycle which is observed well before the sunspot
minimum. They estimated that the minimum geomag-
netic activity between cycles 24 and 25 as quantified by
the geomagnetic ap-index will be about 5, and the max-
imum sunspot number for cycle 25 about 50-55 (V1).
Petrovay et al. (2018) focused on the rush—to-the-poles
(RTTP) phenomenon in coronal green line emission.
Considering various correlations between properties of
the RTTP with the upcoming solar cycle, they found a
correlation between the rate of the RTTP and the time
delay until the maximum of the next solar cycle. On the
basis of this correlation and the known internal regular-
ities of the sunspot number series, they predict that, fol-
lowing a minimum in 2019, cycle 25 will peak in late 2024
at an amplitude of about 130 (V2). This slightly exceeds
the amplitude of cycle 24, but it would still make cycle 25
a fairly weak cycle. Gopalswamy et al. (2018) used polar
and low-latitude brightness temperatures from the
Nobeyama Radioheliograph at 17 GHz as proxies to the
polar and active region magnetic fields, respectively, and
the locations of prominence eruptions as a proxy to the
filament locations to study their time variation. They
showed that the polar microwave brightness temperature
is highly correlated with the polar magnetic field strength
and the fast solar wind speed, and that the polar micro-
wave brightness in one cycle is correlated with the low-
latitude brightness with a lag of about half a solar cycle.
They used this correlation to predict the strength of the
solar cycle 25: the smoothed sunspot numbers (V2) in the
southern and northern hemispheres can be predicted as
89 and 59, respectively. These values indicate that cycle 25
will not be too different from cycle 24 in its strength.
Gopalswamy et al. (2018) also combined the rush-to-the-
pole data from Nobeyama prominences with historical
data going back to 1860 to study the north-south asym-
metry of sign reversal at solar poles. They find that the re-
versal asymmetry has a quasi-periodicity of 3—5 cycles.
The model-based methods are based on the theory of
solar dynamo. A very recent review of dynamo models
of the solar cycle is presented by Charbonneau (2020).
The flux-transport mechanism allows predictions by as-
similating the observed magnetic field on the surface.
Since the emergence of sunspot groups has random
properties, making it impossible to accurately predict
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the solar cycle and strongly limiting the scope of cycle
predictions, Jiang et al. (2018) developed a scheme to in-
vestigate the predictability of the solar activity over one
cycle. When a cycle has been ongoing for more than 3
years, the sunspot group emergence can be predicted along
with its uncertainty during the rest time of the cycle. The
method gives maximum strength of cycle 25 in the range
125 + 32 (20 uncertainty range, V2), which is about 10%
stronger than cycle 24 based on the mean value. Using an
Advective Flux Transport (AFT) model, Hathaway and
Upton (2016) predicted that cycle 25 will be similar in
strength to the cycle 24, with an uncertainty of about 15%.
AFT also predicted that the polar fields in the southern
hemisphere would weaken in late 2016 and into 2017 be-
fore recovering. After two more years of observations,
Upton and Hathaway (2018) examined the accuracy of the
2016 AFT prediction and found that the new observations
track well with AFT’s predictions for the last 2 years. The
updated prediction for cycle 25 was that it will be slightly
weaker than cycle 24, making it the weakest cycle on rec-
ord in the last hundred years. As weak cycles are preceded
by long extended minima, we may not reach the cycle24/
25 minimum until 2021. Bhowmik and Nandy (2018)
coupled 2D flux transport model to a 2D kinematic dy-
namo model and sequentially calculated the polar field of
one cycle and the number of sunspots in the next cycle.
They predicted the maximum of cycle 25 in 2023-2025
with the height of 109-139 (V2).

The general conclusion is that the beginning of the
twentyfirst century will be characterized by one or two
cycles with a fairly low or just low intensity. A more ser-
ious, Maunder-type decline of activity cannot be ruled
out either, but in the next few decades, the level of solar
activity is expected to be either average (more likely) or
of the type of the Dalton minimum (less likely).

A review of the recent results on predicting the future
solar activity in the framework of VarSITI program is
given by Nandi et al. (this issue).

3.1.2 Extreme solar events
Extreme can be considered events on the tail of a distri-
bution—for example, a CME with speed or magnetic field
exceeding certain thresholds that very few observed so far
events have exceeded (Gopalswamy 2018). From the ter-
restrial point of view, extreme are solar events leading to
disturbances in the terrestrial system that very few ob-
served so far events have caused. It should be noted that
there is no direct correspondence between the two types
of extreme events: extreme geomagnetic storms are nearly
always, but not always, produced by extreme solar events,
and extreme solar events do not necessarily cause extreme
geomagnetic storms (Schmieder 2018).

The ability of a solar active region to produce an ex-
treme event depends of the maximum possible magnetic
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potential energy that can be converted into magnetic
kinetic energy. The visual indicators of active regions are
sunspots.

The number and area of sunspots reflect the intensity
of the solar magnetic fields in the solar active regions
(Houtgast and van Sluiters 1948). Therefore, using his-
torical data of active regions’ areas, estimations can be
made of the active regions’ magnetic fields, respectively,
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of the magnetic potential energy, and of the ability of
the solar active regions to produce extreme events.
Figure 3 shows the cumulative distribution of the ac-
tive regions’ areas A for the period 1874-2016
(Gopalswamy 2018). The cumulative number de-
creases slowly until the area reaches ~ 1000 msh (mil-
lionths of solar hemisphere) and then decreases
rapidly. The overall distribution can be fit to the Weibull’s
function, and its high area tail—also to a power law. An
extreme active region (once in 100 years) has an area
of ~7000 msh according to the power law and ~
6000 msh according to the Weibull function.

3.1.2.1 Coronal mass ejections Figure 4 presents the
cumulative distribution of CMEs’ speed from SOHO/
LASCO (https://cdaw.gsfc.nasa.gov) with the average
speeds of the various CME populations marked on the
plot: metric type II radio bursts (m?); magnetic clouds
(MC); ejecta (EJ)—ICMEs lacking flux rope structure;
interplanetary shocks (S) detected in the solar wind; geo-
magnetic storms (GM) caused by CME magnetic field or
shock sheath; halo CMEs (Halo) that appear to surround
the occulting disk of the coronagraph and propagating
Earthward or anti-Earthward; decameter-hectometric
(DH) type II bursts indicating electron acceleration by
CME-driven shocks in the interplanetary medium; SEP
events caused by CME-driven shocks; and ground level
enhancement (GLE) in SEP events indicating the accel-
eration of GeV particles.

The fastest CME observed by SOHO/LASCO occurred
on November 10, 2004, with an average speed in the
coronagraph field of view of 3387 km/s, and there are
very few CMEs with speeds exceeding ~ 3000 km/s. Fig-
ure 5a illustrates the occurrence frequency of CMEs
with speeds exceeding certain values. From the Weibull
distribution, once in 100 years an event may occur with
V' > 3800 km/s, and once in 1000 years—an event with V'
> 4700 km/s (Gopalswamy 2018).

Figure 5b gives the cumulative distribution and occur-
rence frequency of the CMEs’ kinetic energy. The once
in 100 years and once in 1000 years events have kinetic
energies 4.4 x 10* and 9.8 x 10®® erg, respectively,
which are not much higher than the highest reported
values. The CME with the highest kinetic energy of 4.2
x 10% erg was observed by SOHO/LASCO on Septem-
ber 9, 2005 (Gopalswamy 2018).

3.1.2.2 Flares As in the case of CMEs, the extreme solar
flares are defined as one in 100 years and one in 1000
years events. Figure 6 is the cumulative distribution of
all flares recorded by various GOES satellites since 1969
in the 1-8 A° energy band.

For the flare intensity, the Weibull and the power law
distributions give almost identical results: the 100-year
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and 1000-year event sizes are X43.9 and X101, respect-
ively, according to the Weibull distribution, and X42
and X115 according to the power law distribution
(Gopalswamy 2018). As mentioned above, the largest
flare during the space age was registered by the GOES
satellite on November 4, 2003, but as the GOES X-ray
sensor saturated at a level of X17.4 for about 12 min
during this event, it was suggested that the flare size
should have been in the range X34-X48, with a mean
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value of X40 (Brodrick et al. 2005). Therefore, it is about
the size of the 100-year maximum.

The bolometric energy (the energy emitted across the
whole electromagnetic spectrum) corresponding to an
X100 flare is 10°® erg (see e.g, Benz 2017). Flares with
bolometric energies > 10°* erg are considered super flares.

There is no agreement about how extreme a solar flare
can be, and how often extreme flares can occur. The
period of instrumental observations of the Sun is only
400 years which is far from good statistics. However, we
can complement these observations with observations of
solar-like stars. Superflare stars are generally character-
ized by larger chromospheric emissions than other stars,
including the Sun, but superflare stars with activity levels
lower than, or comparable to, the Sun do exist, suggest-
ing that solar flares and superflares most likely share the
same origin (Karoff et al. 2016). Therefore, if we observe
10,000 solar type stars (slowly rotating G-type main se-
quence stars with surface temperatures between 5600
and 6000 K) for 1 year, we can get the data similar to the
data obtained from 10,000 years’ observations of the
Sun. Maehara et al. (2012) using Kepler satellite data,
which include observations of 80,000 solar type stars,
found 365 superflares with total bolometric energy from
10*® to 10 erg on 148 solar type stars. Superflares of
10** erg on Sun-like stars were estimated to occur once
every 800 year, and those of 10°> erg—once every 5000
year. This is much more frequently than implied by Fig. 3
where the tail of the flare-size distribution suggests that
super flares (>10% erg) can occur on the Sun once in a
millennium, and a 10** erg flare—only once in 125,000
years (Gopalswamy 2018). Besides, historical surveys of
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bright or oddly colored Sun, short intense heat waves, or
low-latitude auroras indicate that the Sun has likely not
had any superflares in the last two millennia (Schaefer
et al. 2000).

Aulanier et al. (2010, 2013) used a dimensionless numer-
ical 3D MHD simulation for solar eruptions. When the
model is scaled to the strongest measured sunspot group’s
area and magnetic field (6000 msh and 3.5 kG, respect-
ively), it can be used to calculate the size of the sunspot
pair that is required to generate the solar flares of various
energies. Further, observations show that large sunspots
groups are always fragmented into several spots and are
never involved in a given flare as a whole, only one bipole
will be involved in the flare. Aulanier et al. (2013) esti-
mated that only 30% of the area of a given sunspot group
can be involved in a flare. Figure 7 from Schmieder (2018)
illustrates the size of the sunspot group needed to host a
bipole which can produce a flare of a given size. With
these scalings, a superflare of 10*® erg requires a very large
single pair of spots, whose extent is 48° in longitude/lati-
tude, at the surface of a Sun-like star. Such spots have
never been reported on the Sun (Aulanier et al. 2013).

These scalings resulted in a maximum solar flare en-
ergy of~6 x 10®® erg which is only about six times that
of the strongest-ever directly observed flare of Nov. 4,
2003. Aulanier et al. (2013) argued that superflares of
10>* erg are unrealistic for the Sun because of the ob-
served fragmentation of the magnetic flux in the active
regions. However, Toriumi and Takasao (2017) demon-
strated that even one of the largest, highly fragmented
sunspot groups, such as the one numbered 14585 by the
Royal Greenwich Observatory (RGO), produced a flare
eruption leaving AR-sized, gigantic flare ribbons (on July
25, 1946), which may point to the possibility that even

(2021) 8:21

Page 11 of 43

larger ARs could occur and cause a superflare. For the
largest sunspot group on 1947 April 8, RGO 14886 with
a maximum spot area of 6132 msh, Toriumi and Wang
(2019) estimated its total flux to be 2.0 x 10*® Mx, lead-
ing to a flare with energy 1.5 x 10** erg. This is more
than twice larger than the maximum possible energy es-
timated by Aulanier et al. (2013), and in the energy
range of the weak superflares reported by Maehara et al.
(2012) for numerous slowly rotating and isolated Sun-
like stars, but is several orders of magnitude smaller than
that of strong stellar superflares.

An open question is whether the current solar dynamo
can produce much larger sunspot groups as required to
produce stronger flares.

3.1.2.3 Terrestrial perspective From the terrestrial per-
spective, a crucial question is how extreme geomagnetic
storms the solar extreme events can produce. The Dst-
index is available since 1957, and since then, there has
been only one storm with Dst < 500 nT. It had an intensity
of Dst = - 589 nT and happened on March 13-14, 1989.
Another very intense magnetic storm, reaching almost the
level of a superstorm with Dst < 490 nT, occurred on No-
vember 20, 2003. Only these two events can qualify as pos-
sible superstorms since the Dst-index is available.

Before the Dst-index became available, the geomag-
netic storms can be estimated from magnetic field data
from the Colaba and Alibag Observatories operating
since 1841. The strongest geomagnetic storm since then
is the famous Carrington event on September 1, 1859
(Lakhina and Tsurutani 2018). The depletion of the
horizontal component of the magnetic field measured in
the Colaba observatory in Mumbai, India, was 1600 nT.
The transit time of the ICME from the Sun to the Earth

P
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Fig. 7 Schematic representation of several modeled sunspot groups on the solar disk, with their corresponding modeled flaw energies
computed with the Aulanier et al. (2013) simulation. A sunspot group consists of several pairs of sunspots. In each group, a pair of sunspots
(surrounded by red curve) representing 30% of the sunspot group area is modeled in the simulation (taken from Schmieder 2018)
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was 17 h and 40 min, so the average shock transit speed
is found to be 2380km/s, and the estimated speed at
Earth’s orbit was estimated to have been 1850 km/s.
Based on the empirical relation between the speed and
magnetic field of the ejecta (Gonzalez et al. 1998), the
magnetic field magnitude was calculated to have been 90
nT at 1 AU. Finally, from the empirical expression for the
dependence of the Dst-index of the speed and magnetic
field of the ejecta, the Dst-index of the Carrington event
was estimated as — 1760 nT (Tsurutani et al. 2003).

Tsurutani and Lakhina (2014) and Lakhina and Tsurutani
(2018) estimated the maximum possible intensity of a
superstorm. They assumed a maximum CME speed close
to the Sun of 3000 km/s, and a 10% decrease on the way to
the Earth, or a speed 2700 km/s at 1 AU. This would give
shock transit time from the Sun to the Earth of ~12.0h
(for comparison, the fastest ever recorded event on August
1972 took 14.6h and the Carrington event 17.6h). This
would mean Alfvén Mach number of ~ 63 and magnetoso-
nic Mach number of ~ 45. The largest magnetosonic Mach
number of the shock observed so far is ~ 28 and that is for
the shock associated with the extreme ICME of July 23,
2012 (Riley et al. 2016). The ram pressure of the maximum
intensity superstorm downstream of the ICME shock was
calculated to be 244 nPa, which would cause the magneto-
pause to be pushed inward from its quiet time position of
~11.9 RE to a new subsolar position at ~ 5.0 RE from the
center of the Earth, where RE is an Earth radius (6371 km).
So far, the lowest magnetopause position detected is at 5.2
RE for the August 1972 storm. Using the empirical relation-
ship between the speed and magnetic field strength of the
ICME at 1 AU (Gonzalez et al. 1998), the magnetic cloud
field strength of 127 nT was estimated by Tsurutani and
Lakhina (2014). This yields a maximum strength of the
interplanetary electric field of 340 mV/m, and if we accept
a linear dependence of the intensity of all magnetic storms
on the interplanetary electric field (Burton et al. 1975; Echer
et al. 2008), the maximum possible intensity of a super-
storm is expected to be twice the intensity of the Carring-
ton storm, that is, Dst ~ 3500 nT.

Figure 8 shows the cumulative distribution of geomag-
netic storms with Dst < 100 nT. According to the
Weibull distribution which fits better the data points, a
100-year event has a size of 603 nT, and a 1000-year
event has a size of 845 nT. The 100-year event is con-
sistent with the March 1989 event, while the 1000-year
event is half the estimated size of the Carrington storm.
It should be noted, however, that some authors argue
that the — 1760 nT of the Carrington event is an over-
estimation and suggest a Dst around — 900 nT as a nom-
inal value for it (Gopalswamy 2018).

Yermolaev et al. (2018), assuming power law, calculated
the tails of distributions in the area of moderate and
strong storms (from — 150 to — 300 nT) where statistics of
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Fig. 8 Cumulative distribution of intense geomagnetic storms (Dst <
100 nT) and their yearly rates since 1957 (taken from
Gopalswamy 2018)

events are sufficiently high in the period 1963-2015 and
then extrapolated the distributions to the area of extreme
magnetic storms where statistics are poor. They found
that the most probable waiting times for extreme mag-
netic storms with Dst < 500, - 1000, and — 1700 nT are
24 years, 250 years, and 1500 years, respectively (with er-
rors 10%, 40%, and 100%). If only the storms caused by
magnetic clouds are considered, the waiting times reduce
to 20, 120, and 500 years, respectively. A detailed review of
the SEE results is given by Nandi et al. (2021).

3.1.3 Highlights of contribution from young scientists to the
SEE project

As has been shown in the highlight of young scientists
in VarSITI Newsletter, several active young scientists
have contributed to the VarSITI/SEE project. Toriumi
et al. (2014) studied solar flux emergence and formation
of flare-productive active region on solar surface using
both satellite observation and three-dimentional simula-
tion. Jiang et al. (2014, 2015) studied effects on sunspot
group tilt angles on large-scale magnetic field on the
solar surface, and relation of the solar surface field evo-
lution to the weak solar cycle 24. Pal et al. (2017, 2018)
reported Sun-to-earth analysis of magnetic helicity of
the 2013 March 17-18 interplanetary coronal mass ejec-
tion and the dependence of coronal mass ejection prop-
erties on their solar source active region characteristics
and associated flare reconnection flux. Holappa et al
(2014a, b) showed a long-term relationship between
solar wind structures and geomagnetic activities using
new principal component analysis. For solar effect on
the Earth’s atmosphere, Maliniemi et al. (2014, 2016) re-
ported spatial distribution of Northern Hemisphere win-
ter temperatures during different phases of the solar
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cycle and the effect of geomagnetic activity on the
Northern Annular Mode in the lower atmosphere.

3.2 Project ISEST/MiniMax24: International Study of Earth-
affecting Solar Transients

The International Study for Earth-Affecting Solar Tran-
sients (ISEST) program started already within the frame-
work of CAWSES II Task Group 3 (“Short-term Solar
Variability and Geospace”). The summary of this activity
is given by Gopalswamy et al. (2015a). The project con-
tinued during the VarSITI program, focused on the ori-
gin and propagation of solar transients, and their impact
on the Earth.

Solar transients are short time-scale (from minutes to
days) energetic and/or eruptive events occurring on the
Sun that directly cause transient disturbances in the
Earth’s space environment and possibly impose adverse ef-
fects on advanced technological systems of human society.

Solar transient events can be divided in the following
four categories: (1) solar flares, (2) coronal mass ejections
(CMEs) including their interplanetary counterparts ICMEs,
(3) solar energetic particle (SEP) events, and (4) stream
interaction regions (SIRs) including corotating interaction
regions (CIRs). These four types of Earth-affecting transi-
ent events differ in their physical origin or processes, ob-
servational appearances, and their geoeffectiveness.

The implementation of the ISEST project was centered
around seven working groups, which are as follows:

(1) Data

(2) Theory

(3) Simulation

(4) Campaign study

(5) SEP

(6) Bs challenge

(7) MiniMax24 campaign.

This overview is a brief summary of the detailed descrip-
tion of the working group activities by Zhang et al. (2021).

3.2.1 Data
In the last decade, a large fleet of spacecraft provided
continuous measurements of the Sun and the interplan-
etary space. Unprecedented multiple-angle observations
were provided by the Solar Terrestrial Relations Obser-
vatory Ahead/Behind (STEREO A/B). Thanks to these
observations, our knowledge on CME morphological
and kinematics properties has improved significantly.
Several studies focused on Sun-to-Earth analysis of
CMEs by linking the low coronal behaviour and properties
of the eruption with its observed in situ signature (D’Huys
et al. 2017; Temmer et al. 2017). A number of studies also
compared magnetic flux rope properties, such as the mag-
netic flux, the chirality, and its helicity sign determined
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from post-eruptive arcades, flare ribbons, and coronal
dimmings measured close to the Sun with magnetic cloud
properties at 1 AU (Qiu et al. 2007; Gopalswamy et al.
2017; Palmerio et al. 2017; James et al. 2017).

The weak solar cycle 24 was one of the main focuses
of the VarSITI program. The properties of the transient
events were extensively studied in the framework of
ISEST/MiniMax. The overall rate of CMEs was found to
have increased in solar cycle 24 relative to cycle 23, al-
though the rate of fast and wide CMEs decreased.
Marked changes are observed in the number of intense
(Dst < 100 nT) geomagnetic storms (Gopalswamy et al.,
2015a, b, ¢) and high-energy (= 500 MeV) SEP events
(Gopalswamy et al. 2014; Mewaldt et al. 2015). On the
other hand, the number of halo CMEs in cycle 24 did
not decrease significantly (Gopalswamy et al. 2015b). In
fact, the number of halo CMEs as well as the total num-
ber of CMEs normalized to the sunspot number is larger
in cycle 24 than in cycle 23.

3.2.2 Theory
Scolini et al. (2019) used proxies of magnetic flux esti-
mates determined from post-flare arcades (Gopalswamy
et al. 2017), flare ribbons (Kazachenko et al. 2017;
Tschernitz et al. 2018), and coronal dimmings (Dissauer
et al.,, 2018a, b) as initial input for the EUropean Helio-
spheric FORecasting Information Asset (EUHFORIA)
model, to study the geoeffectiveness of the famous 2017
September events. Good agreement with the observed
Dst profile was found for simulations using the opti-
mized input and including CME-CME interactions.
Recently, there has been substantial development in
the forward modelling of the magnetic structures using
physics-based empirical models. The forward models
typically assume a specific morphology of a magnetic
structure, i.e., flux rope, and evolve it, assuming specific
propagation and expansion (Wood et al. 2017). A step
further is to include a specific flux rope magnetic field
topology (e.g., Patsourakos et al. 2016; Isavnin 2016; Kay
et al. 2017; Mostl et al. 2015).

3.2.3 Simulation

During the period of the VarSITI/ISEST, the main focus
in the MHD space weather modeling was in the following
areas: the background solar wind, CME initiation and
propagation, interaction between CMEs and solar wind
structures (CIR and HCS), and CME-CME interaction.

A detailed review of the recent progress in these areas
is given in Zhang et al. (2021), and the main conclusions
are as follows:

There has been a significant increase in the number of
3-D MHD codes that has been successfully used to
simulate the Sun-to-Earth propagation of CMEs; this has
been the case most notably in Europe with EUHFORIA,
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Japan, with SUSANOO and China with IN-TVD MHD.
In addition, a number of existing MHD codes have been
adapted to investigate the heliospheric propagation of
CMEs, including LFM into LEM-Helio and MAS into
MAS-Helio.

Heliospheric codes (starting typically at 0.1 AU) have
been used with spheromak and/or flux rope CMEs,
which bridges the gap between computationally inten-
sive Sun-to-Earth simulations and heliospheric simula-
tions with code models. These types of simulations may
be used to investigate the magnetic field configuration
inside CMEs as well as their arrival time, and are more
physically consistent when investigating CME-CME
interaction than simulations in which the CMEs do not
have internal magnetic fields.

In parallel, there has been an effort to make the CME
initialization quicker and easier to perform in coronal
codes using out-of-equilibrium flux ropes. This paves the
way for future real-time Sun-to-Earth simulations with
magnetized CMEs initiated based on magnetograms, EUV
images, and early coronagraphic images. It is well known
that major changes in the CME properties, including its
speed and orientation, may occur below 0.1 AU where
heliospheric models are initiated. At this time, it is how-
ever unclear whether simulations with magnetized CMEs
initiated at 0.1 AU using multi-viewpoints coronagraphic
measurements will perform worse than simulations with
magnetized CMEs initiated at the solar surface, in term of
space weather forecasting capabilities. The number of
Sun-to-Earth simulations of CMEs initiated at the solar
surface with a realistic model is still relatively low, even
though there has been effort in presenting the results near
1 AU of more complex initiation mechanisms.

There has been significant new physics included in the
solar wind models, including more advanced thermody-
namics treatment and the inclusion of Alfvén waves.
There has not been significant work quantifying how
these new additions affect the CME propagation and the
resulting structure near 1 AU.

There has been progress towards coupling time-
dependent magnetic field models with coronal models and
heliospheric models. Initiating CMEs by means of magneto-
frictional or other self-consistent models based on solar ob-
servations or flux emergence may lead the way to a better
physical understanding of CMEs and is also the only way
space weather forecasting could provide information before
the launch of a CME. Further improvements towards this
coupling are expected in the next few years.

3.2.4 Campaign study

The task of ISEST Working Group 4 (campaign events)
was to integrate theory, simulations, and observations
for better understanding of the chain of activity from the
Sun to the Earth for a few carefully selected events. One
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focus of WG 4 was on why forecasts fail and how we
can improve our predictions. This included analyzing
the complications in linking CMEs to ICMEs, usually
observed only in situ at 1 AU.

After examination, WG 4 classified the studied events
into three general categories (Webb and Nitta 2017) as
follows:

1. “Textbook” cases in which the complete chain of
well-observed events is relatively well understood
from its solar source, through its heliospheric
propagation, to its geo-effects. These cases involve
forecasts that are successful in a general way.

2. Cases in which there were problems understanding
the complete chain, but which we think we now
understand it. Thus, something was missing in the
chain of a well-observed event but, in retrospect
after analysis, we now know why. These cases usu-
ally involve forecasts that failed because the events
were not geoeffective or were underestimated.

3. Problem cases in which the chain is not complete,
and we still do not understand why.

Fourteen campaign events were discussed and analyzed
by WG 4 (Table 5-1 in Zhang et al. 2021). Figure 9 is an il-
lustration of the first GLE event observed on September 10,
2017, on two planets: Earth and Mars. A detailed descrip-
tion of the event and the modeled geometry, kinematics,
propagation, and interaction of the three CMEs launched
around 2017-09-10 from their solar origin to their arrivals
at Mars and Earth are given by Guo et al. (2018).

3.2.5 SEP events

3.2.5.1 SEP origin One of the more unusual solar phe-
nomena is the long-duration gamma-ray flares (LDGR
Fs). The prime characteristic of these events is delayed
and prolonged y-ray (> 100 MeV) emission after the im-
pulsive phase. Recently, the Fermi Large Area Telescope
(LAT) observed dozens of LDGRFs. Share et al. (2018)
characterized and catalogued 30 solar eruptive events
observed by Fermi/LAT from 2008 to 2016, referring to
this emission as “late-phase gamma-ray emission”
(LPGRE). In all the events studied, Share et al. (2018)
found that the LPGRE is temporally and spectrally dis-
tinct from the impulsive phase emission and concluded
that due to the broad range of the LPGRE characteristics
it is unlikely that the mechanism of acceleration of parti-
cles by the CME-driven shock alone is able to account
for the emission in all of the events under study.

3.2.5.2 SEP acceleration Some studies have provided
new support for a significant contributory or dominant
role for flare acceleration of high-energy protons in
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respectively. The ENLIL modeled results at three locations are also plotted as dashed lines. d Plots of the Alfvén Mach number (black, yl), plasma
(blue, year), and flow pressure (red, year) estimated at Earth. e, k The vector magnetic fields at Earth/STA in Geocentric Solar Ecliptic (GSE) or
spacecraft Radial-Tangential-Normal (RTN) coordinate and negative ENLIL modeled magnetic field strength (dashed line). f The normalized count
rate for downward particles stopping in RAD and penetrating RAD with the former/later approximating protons with energies larger than 175/
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associated shock passage at Earth and Mars. Cyan-highlighted areas are high-speed streams (of two different ones) passing Earth and STA during

this period. Vertical solid lines in a, b, f, g, and i indicate the particle onset time at Earth/Mars/STA (taken from Guo et al. 2018)

gradual SEP events, contrary to the generally accepted sce-
nario favoring shock acceleration (e.g., Dierckxsens et al.
2015; Grechnev et al. 2015). Several other recent studies
support the prevailing shock picture for gradual SEP
events, such as the observation of a prompt SEP event at
widespread locations in conjunction with the longitudinal
propagation of a white-light shock (Lario et al. 2016), the
SEP source temperatures (Reames 2015), and the hier-
archical relationship between the fluence spectra of grad-
ual SEP events and the kinematics of the CMEs.

3.2.5.3 SEP transport The unprecedented orbits of the
two-spacecraft STEREO mission provided well-separated
observations at 1 AU and allowed to study the longitu-
dinal distribution of SEPs and especially events with
extraordinarily wide particle spreads in great detail. The
STEREO mission has also enabled the identification and

study of some extreme cases of widespread events with
distributions up to 360° around the Sun.

3.2.5.4 SEP compositional results Measurements of
relative abundances of heavy elements and their isotopic
and ionic charge state composition in SEP events have
been used in a wide variety of ways to infer critical infor-
mation about the origins of the seed populations and the
physical conditions under which these populations are
produced. These seed particles are accelerated by CME
shocks or in solar jets and indicate the conditions of
their transport through the solar corona, the interplanet-
ary medium, and out into the heliosphere (e.g., see
Reames 2015; Desai and Giacalone 2016).

3.2.5.5 Progress in SEP theory and modeling Valuable
insight on particle acceleration at coronal shock waves
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has been recently obtained by studying the evolution of
CME and shocks in the corona, as well as their inter-
action with underlying magnetic fields and coronal
plasma, both through data-driven or analytical model-
ling, as well as MHD simulations and combinations of
different approaches. New information has been gath-
ered about the relevant parameters for efficient shock
acceleration (such as the Mach number, compression ra-
tios, and geometry of shock waves), the primary acceler-
ation regions along the shock, the role of coronal
magnetic field configuration, and how these factors are
related to the particle spectra observed in space.

The effect of large-scale streamer-like magnetic config-
uration on particle acceleration at coronal shocks has been
investigated by considering a CME-driven shock propagat-
ing through a streamer-like magnetic field (Kong et al
2017) or from its flank (Kong et al. 2019), i.e., when the
streamer is rotated with respect to the CME propagation
direction. By numerically solving the Parker transport
equation with both parallel and perpendicular diffusion in
such configuration, Kong et al. (2019) found that the pri-
mary sources for particle acceleration are located at differ-
ent regions and vary significantly as the shock propagates
and expands, depending on the particle energy and time.

The well-separated SEP observations with the STER
EO mission have also lent themselves to study the trans-
port of SEPs in more detail. The comparison of multi-
spacecraft observations with results of 2D or 3D models
solving the focused transport equation allowed to study
not only transport along the mean magnetic field but
also perpendicular to it. It was found that the role of ef-
ficient transport perpendicular to the mean magnetic
field can eventually be much stronger than expected
(e.g., Dresing et al. 2012) and might play an important
role, among extended injection and acceleration regions,
in the longitudinal spreading of SEPs (e.g., Droge et al.
2014), but also in creating asymmetries in their longitu-
dinal distribution at 1 AU (He and Wan 2015).

An important step taken in SEP transport modelling is
the inclusion of a realistic solar wind background. Wijsen
et al. (2019) used the data-driven EUHFORIA (Pomoell
and Poedts 2018) to generate a background solar wind for
their SEP transport code. This allows, on the one hand,
the study of the effect of solar wind streams on the SEP
propagation and also on adiabatic energy changes. On the
other hand, case studies with a realistic background field
will be possible accounting for the effects of transient
structures leading to non-Parker field configurations.

3.2.6 Stream Interaction Regions/Co-rotating Interaction
Regions (SIRs/CIRs)

The evolution of long-lived coronal holes, closely related
to SIRs/CIRs, can be studied in detail using multiple
views on the Sun from combined STEREO and Earth
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imagery. It was found that coronal holes undergo evolu-
tionary patterns revealing a growing and declining phase
where area increases and decreases again over several
solar rotations (Heinemann et al. 2018, 2019). The cor-
onal hole area is found to be well related to the solar
wind speed measured in-situ at 1 AU (e.g., Vr$nak et al.
2007; Rotter et al. 2012). With this well-known area-
speed relation, empirical forecasting tools for the “pure”
background solar wind on the basis of coronal hole area
measurements are performed on a regular basis (Vr$nak
et al. 2007; Rotter et al. 2012). By understanding the
photospheric and coronal evolutionary characteristics of
coronal holes, one can aim to gain a better understanding
and in turn improve the forecast of CIRs (Heinemann
et al. 2018). The forecasts are found to be most successful
for periods of low solar activity, as during increased solar
activity transient events, such as CMEs, strongly disturb
the rather stable solar wind outflow for several days
(Temmer et al. 2017). As the high-speed solar wind
streams emanate from coronal holes which are low
dynamic structures, CIRs can be forecast with long
lead times. Based on that, a variety of persistence
models were developed. Under the assumption of per-
sistence, in situ measurements of the solar wind
plasma flow from L1 and varying STEREO vantage point
provide a forecast for Earth position with lead times of up
to 27 days (depending on the exact STEREO spacecraft
position). Implementing the actual changes of coronal
hole areas (from EUV data) into such simple forecasting
tools can improve the forecast quality (Temmer et al.
2018). Lead times with about 4.5 days could be achieved
when using data from an instrument permanently located
at the Lagrangian point L5 (60° behind Earth; ESA prepar-
ation for the future L5 mission “Lagrange”).

Forecasting solar wind structures in interplanetary
space serves also as important information for analytical
CME propagation models and space weather models.
Therefore, under the Space Situational Awareness
Program of the European Space Agency, forecasting
services using empirical, and numerical models for
the solar wind are available (see http://swe.ssa.esa.int).
As the forecasting/nowcasting quality is still not suffi-
cient for producing reliable space weather alerts, we
need to better understand and closely monitor SIRs/
CIRs. Main aims for the near future are to verify and
evaluate background solar wind models, and with that
improve the input for CME propagation models, to
predict periodic and recurrent geomagnetic effects
from CIRs more accurately. In general, single events
are easier to forecast compared to multiple events
covering CME-CME interactions or interactions of
CMEs with CIRs. By better understanding the physics
behind the coronal hole evolution, we may improve
their forecasting capability. With that we will also
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gain more insight in the ejection and acceleration
processes that define high-speed streams. For this we
can exploit data from the NASA mission Parker Solar
Probe (PSP) measuring the near-Sun space and with
that regions where the solar wind actually gets
accelerated.

Though harder to evaluate and forecast, interaction
events between SIR/CIR and CMEs are of special inter-
est. Interaction events can lead to significant increase in
geomagnetic effects when compared to individual events
of similar strength (e.g., He et al. 2018).

In a recent paper by Jian et al. (2019), physical proper-
ties of a large sample of slow-to-fast SIRs were investi-
gated using STEREO-A and -B data. They identified 518
pristine SIRs, of which more than 50% are associated
with crossings of the heliospheric current sheet (HCS)
and are of slow speeds but higher densities, and of in-
creased dynamic and total pressure compared to those
without HCS. In that respect, HCS-related SIRs can be
classified as more effective in terms of space weather.

The detection and extraction of reliable coronal hole
areas from operational solar observations is extremely
important, not only for solar wind forecasting using the
area-speed relation, but also for investigating the mag-
netic open flux on the Sun. At present, most extraction
methods focus on EUV observation taken by SDO/AIA,
SOHO/EIT, GOES/SUVI, and/or STEREO/EUVIL. A
multi-wavelength approach was developed by Garton
et al. (2018) in the form of the multi-thermal emission
recognition algorithm CHIMERA. Recently, with the
dawn of machine learning, new methods, utilizing the
increased computational performance have also emerged
to provide an additional tool to identify and extract cor-
onal holes (e.g., Illarionov and Tlatov 2018).

Using various techniques, several coronal hole datasets
were gathered (especially for coronal hole areas) that are
freely available. Automatically created SPOCA boundar-
ies of coronal holes are available via the Heliophysics
Events Knowledgebase (HEK: https://www.lmsal.com/
hek/index.html), and the automated coronal hole detec-
tion and extraction using three SDO/AIA wavelengths
(171, 193, 211 A) CHIMERA is available via SolarMoni-
tor (https://www.solarmonitor.org/) and an extensive,
manually checked, coronal hole catalogue covering the
SDO-era (2010-2019) created using CATCH is available
via the VizieR catalog service (http://cdsarc.u-strasbg.fr/
viz-bin/cat/J/other/SoPh/294.144). VizieR, the CDS cata-
log service, provides the most complete library of pub-
lished astronomical catalogs (currently, 20391)—tables
and associated data—with verified and enriched data
(DOLI: 10.26093/cds/vizier).

To improve solar wind models and to ensure accurate
space weather forecasting, the solar wind models have to
be tested and validated. The validation of solar wind

(2021) 8:21

Page 17 of 43

models is done by comparing the simulation results with
in situ measurements.

The performance assessment of the EUHFORIA solar-
wind model was analyzed by Hinterreiter et al. (2019).
The solar wind was modeled rather well for times of
solar minimum but not during increased solar activity.
In a study by Lee et al. (2009), the heliospheric models
ENLIL/MAS and ENLIL/WSA were compared with in
situ measurements from ACE and Wind (time range:
2003-2006). They found that the model results give
lower densities for faster solar wind fully agreeing with
the solar wind momentum flux constancy.

3.2.7 Forecasting CMEs

The lack of critical observations (e.g., no routine obser-
vations of the magnetic field in the corona) and limita-
tions in theory and models (e.g., idealized initial and
boundary conditions) is currently not allowed to predict
when a CME would occur. However, thanks to advances
in our observational knowledge (e.g., new observations
from STEREO, Hinode, SDO, IRIS), and in modeling
(e.g., increase of realism in models, data-constrained and
data-driven models) and in analysis and forecasting tech-
niques (e.g., use of advanced statistical tools and ma-
chine learning methods) significant progress in our
understanding and eventual prediction of CMEs has
been achieved over the last decade.

Tziotziou et al. (2012) found that helicity and magnetic
free energy thresholds of ~2 x 10** Mx” and ~4 x 10*'
erg separate eruptive with non-eruptive ARs. Magnetic
twist (Tw) (i.e., number of turns of field lines around a
magnetic axis) of magnetic field lines is another parameter
that is extensively used in CME onset studies. Magnetic
twist is an integral part of magnetic helicity discussed
above, and comparison of its properties/distribution in the
pre-eruptive/eruptive configurations in the solar atmos-
phere and at 1 AU supplies important physical clues about
CMEs (Wang et al. 2016).

The problem of predicting major CMEs could be miti-
gated to predicting major flares. Recent reviews on flare
forecasting, including machine-learning schemes, can be
found in Leka et al. (2019) and Park et al. (2020). Major
conclusions from their extensive benchmarking of a
large number of methods currently used in flare fore-
casting are that numerous such methods do better than
climatology, no method clearly outperforms the others,
and consideration of prior flare history improves the
corresponding skill scores.

Machine learning has been used directly in CME pre-
dictions. Bobra and Ilonidis (2016) applied a Support
Vector Machine classification scheme to 18 parameters
derived from HMI vector magnetograms for more than
3000 ARs and found that only 6 amongst these parame-
ters are sufficient to separate erupting and non-erupting
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ARs within 24 h from the corresponding measurements.
These parameters (e.g., mean gradient of the horizontal
magnetic field, mean current helicity, mean twist param-
eter, etc) are intensive (i.e.,, do not depend on the AR
size but are spatial averages) and not extensive (i.e.,
dependent on the AR size and corresponding to spatial
sums). Guennou et al. (2017) by means of MHD ana-
lyzed a set of eruptive and non-eruptive MHD simula-
tions and found, in agreement with Bobra and Ilonidis
(2016), that intensive parameters are more relevant to
eruptivity.

The availability of multi-viewpoint STEREO imaging
observations allowed to monitor a number of modula-
tions that CMEs experience in the corona and in the
inner heliosphere in terms of deflections and rotations.
CME rotations as well as deflections in the corona are
simultaneously addressed by the ForeCAT model of Kay
et al. (2015). The model has been applied to several
CMEs, and it was able to reproduce the deflections and
rotations that the CMEs undergone as derived from the
analysis of the corresponding STEREO observations.
The predicted deflections and rotations exhibit signifi-
cant sensitivity on the input parameters and the
employed background models.

Predicting the magnetic field distribution of CMEs/
ICMEs is of highest importance in heliophysics, as ex-
tended intervals of intense southward magnetic fields
are a necessary condition for inducing geomagnetic
storms. A thorough account of the state-of-the art in
this important problem was recently given in Vourlidas
et al. (2019).

3.2.8 Minimax24 non-flare target

The aim of the ISEST/MiniMax24 non-flare target ser-
vice is to monitor potentially geoeffective phenomena
which are not related to solar flares and to email alerts.
This service, provided daily by the observer on duty, was
first established in the scope of the SCOSTEP/CAWSES
II “MiniMax24 Campaign” in 2013, which was declared
as the year of “MiniMax24” to note that, even though
the Sun is going through activity maximum conditions,
the activity is rather low. The goal of the action was to
understand and explain the current behavior of the Sun
and its potential impact on human society and Earth’s
space environment through year-long scientific and out-
reach activities. The campaign team counted 37 institu-
tions from 17 countries focused on the solar-terrestrial
observations of solar eruptive events through the Max-
Millenium program of solar flare research (http://solar.
physics.montana.edu/max_millennium/) as well as cor-
onal holes, filaments, and CIRs (i.e., non-flare related
phenomena) through the newly established email alert
service. By the end of the year of “MiniMax24,” Mini-
Max24 email list reached more than 140 participants
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from more than 30 countries. After the end of CAWSES
II program, the action transcended from its original 1-
year-campaign scheme and was included in the new
SCOSTEP program VarSITI as one of the working
groups of the ISEST project.

3.2.9 Highlights of contribution from young scientists to the
ISEST/Minimax24 project

Many young scientists have been glowing to contribute
to the ISEST/Minimax24 project. Thalmann et al. (2016)
reported plasma and magnetic environment of a particu-
lar flare signature and coronal magnetic field based on
combined SDO, RHESSI, and STEREO data. Cheng
et al. (2014) made a tracking of magnetic flux rope from
inner to outer corona. Sindhuja and Gopalswamy (2020)
investigated properties of flux ropes in CME near the
Sun. Shen et al. (2014) also investigate evolution of 12
July 2012 CME from Sun to Earth. Kay et al. (2015,
2016, 2017) studied global trends of CME deflections,
evolution of CME, and predictability of the magnetic
field of earth-impacting CMEs, respectively. Shen et al.
(2017, 2018) investigated geoeffectiveness of interplanet-
ary coronal mass ejection (ICME) statistically from 1995
to 2014 and for a particular ICME event on September
8, 2017. Dumbovi¢ et al. (2018) developed an analytical
model of Forbush cosmic-ray decreases caused by flux
ropes in the solar wind associated with interplanetary
coronal mass ejection (ICME). Dissauer et al. (2018a, b,
2019) extensively investigated coronal dimmings associ-
ated with flares and CMEs.

3.3 Project SPeCIMEN: Specification and Prediction of the
Coupled Inner-Magnetospheric Environment
The coupled inner-magnetospheric environment has
been focused by the project “Specification and Prediction
of the Coupled Inner-Magnetospheric Environment”
(SPeCIMEN). The goal and objectives of this project
were the quantitative prediction and specification of the
Earth’s inner magnetospheric environment based on
Sun/solar wind driving inputs. Comprehensive review on
the achievements of this project is provided by Kanekal
and Miyoshi (2021). Here, we briefly review the high-
lights of the scientific results obtained on this topic.
Figure 10a shows basic configuration of energetic elec-
trons and ions and the waves that interact with these
particles in the inner magnetosphere around the earth.
The energetic electrons and ions rotate around the Earth
due to curvature and gradient of ambient magnetic field
with a time scale of minutes to hours and interact with
extremely low frequency (ELF) and very low frequency
(VLF) waves (electron cyclotron waves) at frequencies of
~kHz, ultra-low frequency (ULF) (Pc1) waves (ion cyclo-
tron waves) at frequencies of ~Hz, and ULF (Pc4-5)
waves at frequencies of ~mHz. These energetic particles
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Fig. 10 Schematic picture of the energetic electron and ions and waves that interact with these particles in the inner magnetosphere around the
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and waves propagate along the geomagnetic field line
and cause aurora and ionization of the atmosphere, as
shown in Fig. 10b.

During the VarSITI program, two major satellite pro-
jects had been in actively operated to investigate the
inner magnetosphere, i.e,, Van Allen Probes (also called
as Radiation Belt Storm Probes) (2012-2019, Kirby et al.
2013) and Energization and Radiation in Geospace (ERG,
also called as Arase) (2016-, Miyoshi et al. 2018). The Time
History of Events and Macroscale Interactions during Sub-
storms (THEMIS) satellites (2007-, Angelopoulos 2008)
have also been in operation throughout the VarSITI Pro-
gram, and Magnetospheric Multiscale (MMS) satellites
(2015-, Burch et al. 2016) was newly launched. The THEM
IS and MMS can provide information of the outer mag-
netosphere, which is the boundary condition of the energi-
zation of plasma in the inner magnetosphere. Recently,
Cubesat measurements also contribute to the understand-
ing of radiation belt precipitation at low-Earth orbit (e.g., Li
et al. 2015; Kanekal et al. 2019).

Ground network instruments have been deployed ex-
tensively at subauroral latitudes by the PWING project
since 2016 (Shiokawa et al. 2017). PWING stands for
study of dynamical variation of Particles and Waves in
the INner magnetosphere using Ground-based network
observations. Modeling efforts to cover the inner mag-
netosphere has also been made, such as Block-Adaptive-
Tree-Solar-wind-Roe-Upwind-Scheme with Comprehen-
sive Ring Current Model (BATSRUS/CRCM, Glocer
et al. 2013) and Ring current—Atmosphere interaction
Model (RAM, Jordanova et al. 2010). These extensive

observation networks and advanced modeling efforts
make a golden era of research for the inner magneto-
sphere during the VarSITI program.

Figure 11 shows an example of 1-year electron flux
variation in 2013 at energies from 46 keV to 1.553 MeV
in the inner magnetosphere observed by the Van Allen
Probes (Reeves et al. 2016). The vertical axis is the L
value, which is the radial distance from the Earth with a
unit of Earth’s radius. We can see dynamic variation of
electron fluxes in the inner magnetosphere. The ampli-
tude of the variation reaches a few orders of magnitudes.
The enhancements of electron fluxes clearly correlated
with solar wind speed enhancements and decreases of
Dst index (geomagnetic storms). The high-flux regions
are separated into two regions around L ~ 4—6 and L <
2, forming outer and inner radiation belts, respectively.
Clear differences can be also seen in the electron behav-
ior at different energies and from event to event. Basic-
ally, no significant electron fluxes are seen at energies
above 1 MeV in the inner belt at L value less than 3, as
newly found by Fennel et al. (2015), while the inner belt
clearly appears at energies below 459 keV. At further
high energies, Van Allen Probes also discovered sharp
inner boundary for the ultrarelativistic (energies higher
than 5MeV) electrons in the Earth’s radiation belts
(Baker et al. 2014). A comprehensive review of the re-
sults obtained by the Van Allen Probes mission has been
provided by Baker et al. (2018).

The ERG satellite was launched in December 2016
and has provided several interesting observations par-
ticularly related to the wave-particle interactions in the
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inner magnetosphere. Figure 12 shows one-to-one cor-
respondence between ELF/VLF chorus wave elements
(panel c) that have a time scale of less than 1s observed
by ERG with electrons at energies of kilo-electronvolts
that causes visible flush aurora observed by ground an
all-sky camera (panels b and f) (Ozaki et al. 2019). ERG
and the ground all-sky camera were nearly on the same
geomagnetic field line. Clear one-to-one correspondence
can be seen at four ELF/VLF chorus wave elements in
panel (c) with the four auroral flashes in panel (f) at ~
13:01:28 UT and ~ 13:01:32 UT. This correspondence
indicates that the observed ELF/VLF chorus waves scat-
ter electrons along the magnetic field line to cause pre-
cipitation of the electrons and the flash aurora. Kasahara
et al. (2018) did show one-to-one correspondence be-
tween ELF/VLF chorus waves and electron fluxes in the
loss cone, which is the direct evidence of pitch-angle
scattering of keV-energy electrons by ELF/VLF chorus
waves. On the other hand, Teramoto et al. (2019)

provided evidence of wave-particle interaction between
ULF (Pc4-5) waves at frequencies of mHz with energetic
electrons through drift resonance based on multi-
satellite coordinated observation by the Van Allen
Probes and ERG satellites. More comprehensive results
obtained from the ERG mission have been provided by
two special issues in Earth Planets and Space in 2017
and in Geophysical Research Letters in 2018.

In the objectives of SPeCIMEN (specification and
prediction), the modeling takes the part of quantita-
tive prediction of the Earth’s inner magnetospheric
environment. BATSRUS/CRCM model (Glocer et al.
2013) provides global response of the outer and inner
magnetosphere to the solar wind. RAM simulation
(Jordanova et al. 2010, 2012) provides distribution of
whistler-mode chorus waves that contribute acceler-
ation and loss of the radiation belt electrons.
Geomagnetic Environment Modeling System for Inte-
grated Studies (GEMSIS)-Ring Current and Radiation
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Fig. 12 Coordinated ground and ERG (Arase) observations. a lllustration of conjugate observations from the ground network of the PWING
project and the ERG satellite. Earth in panel a is mapped using NASA image. All rights reserved. b All-sky EMCCD snapshot observed at Gakona in
Alaska at 13:01:28 UT, 30 March 2017. Dotted lines indicate the spacing of geographical latitudes and longitudes at 1° and 2° intervals. The yellow
frame indicates the auroral region that is focused on in this study. The green diamond symbol indicates ERG's footprint at the time of
observation. ¢, @ The dynamic spectrum, wave-normal angle with respect to the geomagnetic field line, and the waveform of large-amplitude
chorus elements observed by ERG near the magnetic equator. f North to South cross-section (keogram) of auroral emissions with a time shift of

Frequency
(kHz)
10log, /Bl

(dBp T Hz'")

Frequency
(kHz)
Wave normal angle
(degrees)

St

Belt models reproduce interaction of Pc5 magnetic
pulsations with relativistic electrons (Kamiya et al
2018). Not only by these physical models, artificial
intelligence has been introduced for reconstruction of
the inner magnetosphere dynamics. Figure 13 shows
neural network reconstruction of the global plasma
density as a function of L and MLT by Bortnik et al.
(2016), using measurements by three THEMIS satel-
lites between 2008 and 2014.

3.3.1 Highlights of contribution from young scientists to the
SPeCIMEN project

More than ten active young scientists contributed to the
researches of the SPeCIMEN project and wrote articles
for highlight of young scientists in the VarSITI newslet-
ter. For studies of whistler mode waves which possibly
accelerate relativistic electrons, Li et al. (2014) have
shown acceleration of radiation belt electrons by chorus
waves during the March 17, 2013, storm based on obser-
vations by the Van Allen Probes satellites. Nishimura
et al. (2015) reported chorus intensity modulation driven
by time-varying field-aligned low-energy plasma ob-
served by the Time History of Events and Macroscale
Interactions during Substorms (THEMIS) satellites. Gab-
rielse et al. (2014) reported statistical characteristics of

particle injections, which can be a source of the waves,
in the equatorial plane of the magnetotail using THEM
IS satellites. Martinez-Calderon et al. (2015a, b, 2016,
2019) reported ground and conjugate satellite observa-
tions of VLF chorus waves to find their propagation
characteristics from the inner magnetosphere to the
ground. Douma et al. (2018) showed comparison of rela-
tivistic electron microburst activity seen by SAMPEX
with ground-based wave measurements at Halley, Ant-
arctica, and concluded that whistler mode chorus waves
are, most likely, the primary drivers of relativistic elec-
tron microbursts. Jones et al. (2017) and Greeley et al.
(2019) reported secular drift of South Atlantic anomaly
during solar cycle 22-24 and quantify the contribution
of relativistic electron microbursts to the global elec-
tron loss in the radiation belts, based on long-term data
from the SAMPEX satellite. Shirokov et al. (2017) and
Shirokov (2018) investigated receiving antenna charac-
teristics to measure quasi-static whistler-mode waves
including chorus emissions. An et al. (2019) investi-
gated three seemingly different nonlinear wave struc-
tures originated from the same nonlinear electron
trapping process by whistler-mode chorus waves and
pointed out that the ratio of the Landau resonant vel-
ocity to the electron thermal velocity controls the
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generated type of nonlinear wave structures. Pisa et al.
(2015, 2016) investigated Langmuir waves observed up-
stream of Saturn’s foreshock and bow shock observed
by Cassini, which also has some implications on high-
energy plasma acceleration in the inner magnetosphere.

For the magnetosphere-ionosphere coupling in the
inner magnetosphere and ionospheric processes,
Thomas et al. (2015, 2016, 2019) investigated magnetic
field variations associated with Pi* and ionospheric
current observed by the CHAMP and Swarm satellites
just above the ionosphere and on the ground to show
their characteristic in and near the ionosphere.

McGranaghan et al. (2015a, b, 2016a, b) extensively in-
vestigated high-latitude ionospheric conductivities based
on satellite observations and developed a model of the
high-latitude ionosphere to reconstruct its electro-
dynamic variations. Gokani et al. (2015) reported
lightning-associated whistlers at very low latitudes (L =
1.08), suggesting ducted mode of propagation of these
waves near the equator. McCormick et al. (2018) pro-
posed spatial and temporal monitoring of the D-region
ionosphere using lightning-induced broadband sferic
measurements. These ionospheric topics also have
strong relation with the ROSMIC project.
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3.4 Project ROSMIC: Role Of the Sun and the Middle
atmosphere/thermosphere/ionosphere In Climate

The goals and objectives of the Project “Role of the Sun
and the middle atmosphere/thermosphere/ionosphere in
Climate (ROSMIC)” was to understand the impact of
the Sun on the terrestrial middle atmosphere, lower
thermosphere, and ionosphere and Earth’s climate and
its importance relative to anthropogenic forcing over
various time scales from minutes to centuries. A com-
prehensive review on the achievements of this project is
provided by Ward et al. (2021). Here, we briefly review
the highlights of the scientific results obtained on this
topic during the VarSITI program.

The topic of ROSMIC can be divided to (1) coupling
from above, (2) coupling from below, and (3) observa-
tion of long-term trends. The coupling from above
comes from (la) solar radiation in various wavelengths
from X-ray, ultraviolet, and visible wavelengths, (1b)
solar energetic particles (SEP) or solar proton events
(SPE) and (1c) magnetospheric energetic particles
(MEP). The effects of (1a) are often divided into total
solar irradiance (TSI) and spectral solar irradiance (SSI).
SEP and MEP are called as energetic particle precipita-
tion (EPP).
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3.4.1 Coupling from above

Figure 14 shows an example of the EPP effect on the mid-
dle atmosphere observed by the three different satellites
for three different magnetic storms and in superposed
epoch analysis based on satellite-based measurements by
GOMOS, SABER, and MLS (Andersson et al. 2014). Both
the particular storm events in Fig. 14a—c as well as super-
posed epoch analysis in Fig. 14d—i, there are significant
ozone depletions at the middle atmosphere with the max-
imum loss of ozone from 10 to 30 % at altitudes between
70 and 78 km after the storms. This indicates a significant
effect of ozone loss by EPP in the middle atmosphere.
Funke et al. (2014) have shown intrusions of EPP-caused
nitric oxide (NOy) into the stratosphere with a time scale
of several months, based on measurements by Michelson
Interferometer for Passive Atmospheric Sounding (MIPA
S) on board the Envisat satellite. This gradual descent of
NOy from the mesosphere to the middle and lower strato-
sphere contributes to the catalytic destruction of ozone.
Efforts to quantify the total forcing of EPP to the atmos-
phere have also been made during the VarSITI interval.
Isono et al (2014) reported NO column density enhance-
ment 1-5 days after the commencement of geomagnetic
storms based on ground-based millimeter-wave
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spectroscopic radiometer at Syowa Station in
Antarctica.

Together with these new measurements of EPP effects
on the atmosphere, efforts to model the global effects
have also been made. Andersson et al. (2018) combined
the Whole Atmosphere Community Climate Model
(WACCM) together with the EPP forcing model devel-
oped by van de Kamp et al. (2016) for the 6th phase of
the Coupled Model Intercomparison Project (CMIP6)
(Matthes et al. 2017). They concluded that medium-
energy (30keV-1MeV) electrons (MEE) can enhance
the stratospheric ozone response to solar activity by a
factor of 2. Thus, the EPP forcing can be significant for
the long-term stratospheric ozone variation, implying
their effects on the thermal structure of the middle and
lower atmosphere.
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Not only the EPP effect but also understanding of the
effects of irradiance variation of the Sun (total solar
irradiance (TSI) and spectral solar irradiance (SSI)) on
the atmosphere has also been progressed during the
VarSITI interval. This part will be visited in the Sec-
tion 3.3.3 below.

3.4.2 Coupling from below

During the CAWSES and CAWAES-II interval, penetra-
tion of sound waves, gravity waves, tides, and planetary
waves beyond the mesopause region into the thermo-
sphere and their interaction with the ionospheric plasma
had been newly recognized (e.g., Vadas and Crowley
2010; Goncharenko and Zhang 2008; Oberheide et al.
2015). During VarSITI interval, further studies on the
role of these waves in the thermosphere and ionosphere
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(b) Zonal wind (ms™) EXP2
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Fig. 15 a Height-latitude section of zonal and diurnal-mean zonal wind obtained by EXP1 (the application of the Lindzen’s gravity-wave
parameterization scheme (only below 100 km height)). Data are averaged from 1 to 30 June. Contour intervals of black lines are 10 ms™'. Negative
and positive values are eastward and westward winds, respectively. b As in a, except for the application of the Yigit et al. (2008)'s
parameterization scheme in the whole atmosphere (EXP2). ¢ Difference of the zonal wind between EXP1 and EXP2 (EXP2-EXP1). Contour
intervals are 5ms™" (taken from Miyoshi and Yigit 2019)
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have been made. Yigit et al. (2016) reviewed the effects
of these waves on the structure of atmosphere, moti-
vated by the IAGA/ICMA/SCOSTEP Workshop on Ver-
tical Coupling in the Atmosphere—Ionosphere System.
Figure 15 shows the height-latitude profiles of zonal
winds without gravity wave forcing above 100km
(Fig. 15a) and with the forcing modeled by Yigit et al.
(2008) (Fig. 15b) and their differences (Fig. 15c). The
gravity wave dissipation and their forcing to the mean
zonal wind can affect the magnitude of the zonal-mean
zonal wind and provide a deceleration mechanism in the
mesopause region and lower thermosphere.

New observations have been developed regarding con-
nection from lower to upper atmosphere during the Var-
SITI program. Gravity wave generation, propagation, and
dissipation impact to the atmospheric dynamics have been
reported in the special issue of “ACP (2017) sources,
propagation, dissipation and impact of gravity waves” in
the Atmospheric Chemistory and Phycis (https://acp.
copernicus.org/articles/special_issue899.html) in relation
to the German Role Of the Middle atmosphere In Climate
(ROMIC) project (2013-2017). For example, Baumgarten
et al. (2018) reported a 10-day continuous lidar sounding
of temporal variability of tidal and gravity waves, indicat-
ing the importance of such continuous high-resolution
measurements to detect interaction phenomena between
waves for improving parametrization schemes of gravity
waves in general circulation models. The ROMIC project
has extended in 2018 for additional 3—4 years in Germany.
New Program of the Antarctic Syowa MST/IS radar
(PANSY) has been operational (Sato et al. 2014), and In-
terhemispheric Coupling Study by Observations and Mod-
eling (ICSOM) campaigns (http://pansy.eps.s.u-tokyo.ac.
jp/icsom/) have been carried out in association with Var-
SITI to understand dynamical variation of the whole at-
mosphere during stratospheric sudden warming (SSW).
Liu (2016) have shown possible influences of ENSO and
QBO in the neutral density variations in the thermosphere
using a 46-year-long dataset of the thermospheric density
during 1967-2012.

Efforts of model extension to the thermosphere and
ionosphere have also been done. Liu et al. (2018) have
developed the NCAR Whole Atmosphere Community
Climate Model with thermosphere and ionosphere ex-
tension (WACCM-X). This new model reproduces ther-
mospheric composition, density, and temperature and
ionospheric plasma density and ExB drifts including pre-
reversal enhancement in the equatorial region. Pedatella
and Liu (2018) noted using the WACCM-X simulations
that the effects of lower atmosphere variability should be
included to accurately capture smaller-scale features of
the upper atmosphere response to geomagnetic storms.
Shinagawa et al. (2017, 2018) successfully reproduced
global distribution of sporadic E layers and daily and
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seasonal variation of equatorial spread F, respectively,
based on the Ground-to-topside model of Atmosphere
and Ionosphere for Aeronomy (GAIA) model (Jin et al.
2011).

3.4.3 Long-term trend

The long-term trend has been extensively studied under
the working group 3 of the ROSMIC project. Lastovicka
(2017) provided a review of recent progress in trends in
the upper atmosphere, together with the special issue of
the long-term changes and trends in the upper atmos-
phere (https://www.sciencedirect.com/journal/journal-
of-atmospheric-and-solar-terrestrial-physics/vol/163/
suppl/C). Figure 16 shows linear temperature trends
from the 25-year data set measured by a sodium lidar at
Fort Collins (41" N, 105 W) in the USA reported by She
et al. (2015). By removing strong warming effect by Mt.
Pinatubo eruption in 1991, they concluded a cooling
trend starting from an insignificant value of 0.64 + 0.99
K/decade at a 85-km altitude, increasing to a maximum
of 2.8 + 0.58 K/decade between 91 and 93 km, and then
decreasing to a warming trend above 103 km. Berger
and Liibken (2015) reported trends in the polar meso-
spheric clouds (PMCs) which respond to long-term
changes in mesospheric temperatures at northern high
latitudes for the summer in 1961-2013. They suggested
that the thermal conditions near 83 km height, with a
cooling of -0.58 + 0.32K/decade, mainly determine
trends in the PMCs, whereas cooling at lower heights,
induced by stratospheric ozone, controls to a large ex-
tent the long-term behavior of PMC altitudes. Liibken
et al. (2018) used model simulations over 138 years to
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study the impact of increasing CO, and H,O on the de-
velopment of noctilucent clouds (NLCs) on centennial
time scales. They concluded that NLC presumably
existed centuries earlier, but the chance to observe them
by the naked eye was extremely small before the twenti-
eth century, whereas it is likely to see several NLC per
season in the modern era.

The above studies of long-term trends are motivated
to identify the anthropogenic effects, i.e., the effect of in-
creasing greenhouse gases, on the mesosphere and
thermosphere. On the other hand, solar cycle effects on
the upper atmosphere have also been evaluated during
the VarSITI interval. Yeo et al. (2017) developed a new
empirical reconstruction model of total and spectral
solar irradiance (TSI and SSI) variability based on the
linear combination of solar activity indices. Mitchell
et al. (2015) used historical simulations of the CMIP-5
model to evaluate tropospheric signatures of solar cycle
variations through the stratosphere. Thiéblemont et al.
(2015) reported synchronization of solar forcing with
decadal variability in North Atlantic climate, based on
two 145-year experiments of the fully coupled ocean-
atmosphere model CESM-WACCM3.5 (Marsh et al
2013) up to a 140-km altitude with interactive chemistry.
Cullens et al. (2016) reported the influence of the 11-
year solar cycle on gravity waves and the wave-driven
circulation, using the Whole Atmospheric Community
Climate Model (WACCM). The changes in gravity wave
dragged during the solar maximum modify the wave-
induced residual circulation and contribute to the warm-
ing of ~1-4K in the mesosphere and lower thermo-
sphere. Amorim et al. (2011), Takeo et al. (2017) and
Tsuchiya et al. (2019a, 2019b) reported clear anti-
correlation between 11-year solar activity and nighttime
medium-scale traveling ionospheric disturbances (MSTI
Ds) at middle and subauroral latitudes. This anti-
correlation can be explained by the linear growth rate of
ionospheric Perkins instability, responding to the solar-
cycle variation of neutral-plasma collision frequency in
the bottom-side ionosphere. This negative correlation of
nighttime MSTIDs at middle latitudes to solar cycle is a
clear contrast to the positive correlation of post-sunset
plasma bubbles in the equatorial ionosphere (e.g.,
Nishioka et al. 2008).

3.4.4 Highlights of contribution from young scientists to the
ROSMIC project

Many young scientists have been newly joined in the
field of the upper atmosphere during the VarSITI inter-
val and contributed to the ROSMIC project. From space
to the atmosphere, Misios et al. (2015) investigate the
troposphere response to the 11-year solar cycle based on
the ensemble simulations of the twentieth century cli-
mate performed in the fifth phase of the Coupled Model
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Inter-Comparison Project (CMIP5). Wenzel et al. (2016)
reported development of global ionospheric flare detec-
tion system (GIFDS) using very low frequency (VLEF)
radio transmissions in the northern hemisphere. Yadav
et al. (2016) reported the impact of the St. Patrick’s Day
storm on March 15, 2017, on the evolutionary pattern of
equatorial ionization anomaly over the Indian longitudes
using high-resolution TEC maps. Karan et al. (2016),
Karan and Pallamraju (2017) reported electrodynamic
influence on the diurnal behavior of oxygen dayglow and
longitudinal variations of equatorial thermospheric
waves seen in the dayglow observed from the ground.

rom low to upper atmosphere, Laskar et al. (2014) and
Laskar and Pallamraju (2014) investigated responses of
equatorial electrojet (EEJ) strength, total electron con-
tent (TEC), and oxygen dayglow in the Indian sector to
the sudden stratospheric warming and solar activity.
Trinh et al. (2015, 2016, 2018) reported a comprehensive
global observation of gravity waves in the middle atmos-
phere and thermosphere using several low-altitude satel-
lites, providing evidences of strong vertical coupling
from lower to middle and upper atmosphere through
gravity waves on global scale. Gao et al. (2015) reported
double-layer structure in hydroxyl (OH) dayglow mea-
sured by the Thermosphere-Ionosphere-Mesosphere En-
ergetics and Dynamics (TIMED) satellite. Stober et al.
(2014, 2018), Stober and Chau (2015) investigated neu-
tral density variation using meteor radar echoes in the
mesosphere and developed novel technique to improve
wind measurements in the mesosphere and lower
thermosphere using a multi-static multi-frequency me-
teor radar.

Fig. 17 VarSITl logo designed by Ms. Kadowaki of STEL,
Nagoya University
.
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For the use of GNSS positioning, Macalalad et al.
(2014) evaluated performance of different ionospheric
models in single-frequency code-based differential GPS
positioning. Seif et al. (2015, 2017, 2018) investigated
daytime ionospheric scintillations at equatorial latitudes
and their relationship with the sporadic E layer and the
gradient-drift instability.

4 Implementation of the VarSITI program
The VarSITI program officially started on January 13,
2014. It was announced in a press release by the SCO-
STEP’s Bureau and in information for media in various
countries provided by members of the SCOSTEP com-
munity. A video was prepared highlighting the scientific
objectives of VarSITI (https://www.youtube.com/
watch?v=couR4MyxNPY).

A competition was announced for the VarSITI pro-
gram’s logo. The logo, selected by the voting during the
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Panel 3 of CAWSES-II Symposium in Nagoya, Japan
(November 18-22, 2013), was made by Ms. Kadowaki of
STEL, Nagoya University (Fig. 17).

In the following subsections, we describe various im-
plementation activities of VarSITI. Table 1 summarizes
some representative numbers of these activities.

4.1 Website

The program’s website (http://varsiti.org/) contains in-
formation about VarSITI's projects and members,
VarSITI-related meetings with lots of freely available
presentations, journal articles and books, and links to
numerous resources including real time data, data bases
of space-borne and ground-based measurements,
models, visualization, and forecasting tools. After the
end of the VarSITI program, the website remains oper-
ational. It is maintained by Dimitar Danov from the

Table 1 Some representative numbers of the VarSITl implementation activities

VarSITI website (http://varsiti.org/)
number of website visits in 2014-2018 ~180,000

VarSITI mailing list

category

VarSITl_all 1116
SEE 635
ISEST/Minimax24 744
SPeCIMEN 620
ROSMIC 824

VarSITI Newsletter (total 21 issues)

category

articles 60
highlight of young scientists 49
meeting reports 85
short news 24

VarSITl finantial support

meetings 64
database construction 16
campaign 1
intedisciplinary project 1

VarSITl-related special issues in journals

number of regsitered addresses

number of articles

number of countries
72
63
67
60
67

number of countries
41

more than 8 special issues in Journal of Geophysical Research, Earth Planets and Space, Journal of Atmospheric and Solar-Terrestrial Physics, Solar

Physics, and Progress in Earth and Planetary Science
VarSITl-related databases (http://varsiti.org/ — Resources — Databases)
databases 124

data analysis & visualization tools 10
Capacity Building Schools during the VarSITl interval
Schools organized by the VarSITI co-chairs

schools organized by SCOSTEP

5 schools at Nigeria (x2), Indonesia (x2), and Russia

3 schools at Peru, India, and Azerbaijan
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Space Research and Technology Institute at the Bulgar-
ian Academy of Sciences (Fig. 18).

For the duration of the program, the website had been
visited more than 180 thousand times, as shown in
Fig. 19.

4.2 Mailing lists

Five mailing lists were compiled and regularly updated:
for each of the four projects and an integrated list for all
projects. They contained the names and e-mail addresses
of the scientists who have expressed their interest to
participate in the program and to whom announcements
were sent related to activities of VarSITI and its
projects. The statistics by the end of the program is
as follows:

SEE: 635 members from 63 countries

ISEST MiniMax24: 744 members from 67 countries
SPeCIMEN: 620 members from 60 countries
ROSMIC: 824 members from 67 countries

The whole VarSITI program: 1116 members from
72 countries.

S

4.3 VarSITI newsletter

VarSITI newsletter (Fig. 20) had been published with 4
issues per year: a total of 21 issues until May 2019. The
newsletter had four categories of the articles:

1. Articles on new projects, campaigns, ground
observations, satellite observations, modeling,
workshop/conference/symposium reports, etc.;
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2. Highlights on young scientists based on the young
scientist’s own work related to VarSITI;

3. Short news: announcements of campaigns,
workshops, etc.;

4. Meeting schedules.

Since the start of the VarSITI program in January
2014, 60 articles, 49 highlights of young scientists, 85
meeting reports, and 24 short news from 41 countries
were published in these 21 newsletter volumes.

The newsletter was distributed online and in printed
form at international meetings. The full archive is avail-
able on VarSITI web site (http://varsiti.org/).

4.4 Financial support
An important tool for implementing VarSITI program was
the SCOSTEP’s financial support provided annually for the
organization of meetings, creation of databases, and cam-
paigns. The grants were distributed by the VarSITI co-chair
following recommendations and endorsements by the Var-
SITI projects’ co-leaders. The grants were associated with
the condition links to materials to be added to the VarSITI
website and to be then freely available to all in the VarSITI
community (e.g., presentations, virtual observatories, press
releases, publications, etc.).

For the 5-year duration of the VarSITI program, we
have organized or supported the following:

1. 64 meetings or sessions, including the three
VarSITI General Symposia: VarSITI2016,
VarSITI12017, and VarSITI2019

2. 16 databases

3. 1 campaign

4. 1 interdisciplinary project

4.5 VarSITl-related special issues in journals

Related to the above meetings organized for VarSITI
and its projects, several topical/special issues have been
published in international journals. The representative
issues are listed as follows.

(1) Special section on “Variability of the Sun and Its
Terrestrial Impact—VarSITI” in Journal of
Geophysical Research—Space Physics (preface: Hu
2015): https://agupubs.onlinelibrary.wiley.com/doi/
toc/10.1002/(ISSN)2169-9402.VarSITI1

(2) Special issue on “Global Data Systems for the Study
of Solar-Terrestrial Variability (from SCOSTEP-
WDS workshop)” in Earth Planets and Space (pref-
ace: Watanabe et al. 2017): https://www.
springeropen.com/collections/gdsys

(3) Special issue on “Long-term changes and trends in
the upper atmosphere” in Journal of Atmospheric
and Solar-Terrestrial Physics (preface: Lastovicka
and Liibken 2017): https://www.sciencedirect.com/
journal/journal-of-atmospheric-and-solar-
terrestrial-physics/vol/163/suppl/C

(4) Special issue on “Expected Evolution of Solar Activity in
the Following Decades” in Journal of Atmospheric and
Solar-Terrestrial Physics (introductory paper: Obridko
and Georgieva 2018): https://www.sciencedirect.com/
journal/journal-of-atmospheric-and-solar-terrestrial-
physics/vol/176/suppl/C

(5) Special collection and book on “Earth-affecting
solar transients in Solar Physics” (editorial: Zhang
et al. 2018): Journal:https://link.springer.com/
journal/11207/topicalCollection/AC_74be62d9d035
€23cal63bf5434bd2877

Book: https://www.springer.com/gp/book/9789402415698
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(6) Special issue of the “VarSITI-2017 symposium” in
Journal of Atmospheric and Solar-Terrestrial Physics
(preface: Georgieva and Shiokawa 2018): https://
www.sciencedirect.com/journal/journal-of-
atmospheric-and-solar-terrestrial-physics/vol/180/
suppl/C

(7) Special issue of the “VarSITI closing symposium
2019” in Journal of Atmospheric and Solar-
Terrestrial Physics (under preparation)

(8) Special issue of the “VarSITI summarizing
workshop” in Progress in Earth and Planetary
Science (this issue)

4.6 Database collection

The effort to collect VarSITI-related database was initi-
ated after the SCOSTEP - World Data System (WDS)
workshop “Global Data Activities for the Study of Solar-
Terrestrial Variability” held during 28-30 September
2015 in Tokyo, Japan. VarSITI strives for the inter-
national collaboration in data analysis, modelling, and
theory to understand how solar variability affects the
Earth’s environment. The provision and long-term pres-
ervation of quality-assessed data are common objectives
for SCOSTEP and the WDS. The development of ad-
vanced data systems to enable scientists to perform
multidisciplinary data-analysis are another common tar-
get. This workshop marked the beginning of collabora-
tions between SCOSTEP and WDS, and a Letter of
Agreement was signed by both organizations

The principal objective of the workshop was to stimu-
late interaction among data providers (WDS members,
data centers, data networks, etc.), data scientists, and
data-oriented researchers of the SCOSTEP community.
Data analysis of selected solar-terrestrial events was an
important component of the workshop also, not only to
develop the study of solar-terrestrial variability but also
to establish a mutual feedback loop between “data users”
and data providers.

As an outcome of the discussions during the work-
shop, it was recommended to have a unified metadata
system that enables users to search for VarSITI data
holdings from a single entry point, for example, a “Var-
SITI Data Portal.” After the VarSITI co-chairs asked via
the VarSITI mailing list the members to provide links to
their resources, a prototype of such a system has been
realized in the VarSITI webpage under the title of “Var-
SITI-related Database Resources” (http://varsiti.org/ —
Resources — Databases). It comprises 124 different da-
tabases plus 10 data analysis and visualization tools. This
database list can be used for students and young scien-
tists for their easy access to the solar-terrestrial physics
data, allowing interdisciplinary data analysis over the
wide area from the Sun to the earth.
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5 Capacity building of SCOSTEP/VarSITI

One of the major tasks of SCOSTEP is the capacity
building of solar-terrestrial physics for students and
young scientists. During the VarSITI interval in 2014—
2018, SCOSTEP has made three large schools in collab-
oration with International Space Weather Initiative
(ISWI) at Lima, Peru, on September 15-24, 2014, at
Sangli Maharashtra, India, on November 7-17, 2016,
and at Baku, Azerbaijan, in October 8-12, 2018.

In addition to these SCOSTEP/ISWI schools, the Var-
SITI co-chairs organized five schools in Indonesia,
Nigeria, and Russia. The two schools in Nigeria were
named as the International School on Equatorial and
Low-Latitude Ionosphere (ISELLI) and ISELLI-2. ISELLI
was held at Abuja, Nigeria, on September 14-18, 2015,
and 65 students joined from 7 African countries. ISEL
LI-2 was held at Ota, Nigeria, on September 11-15,
2017, and 38 students joined from 7 African countries.
The two schools in Indonesia were named as the Inter-
national School on Equatorial and Low-Latitude Iono-
sphere (ISELION) and ISELION2018. ISELION was held
at Bandung, Indonesia, on March 16-20, 2015, and 39
students joined from 9 Asian countries. ISELION2018
was also held at Bandung, Indonesia, on March 5-9,
2018, and 40 students joined from 7 Asian countries.
The school in Russia was held on July 9-12, 2017, in Ir-
kutsk, Russia, in association with the VarSITI 2017 Gen-
eral Symposium (July 10-15, 2017) at the same venue.
Thirty-five students joined in this school from 5 coun-
tries. The database list developed by VarSITI was intro-
duced in these schools to make it available to access
novel data from latest missions for young scientists and
students in developing countries (Fig. 21).

6 Future topic for predictability of solar-terrestrial
coupling

As addressed above, there has been great progress dur-
ing the 5-year VarSITI program on 2014-2018. These
progresses of understanding solar-terrestrial coupling
mechanisms make it possible to consider predictability
of the variable coupling processes more quantitatively.
The expansion of space use for better human life, such
as GNSS positioning and broadcast satellites, requires
more accurate prediction of space weather and hazard-
ous events in space. In addition, threats to Earth’s cli-
mate change also requests study of predictability on the
effect of solar variability on Earth’s climate. Under these
circumstances the SCOSTEP decided to have the next
program as PRESTO—Predictability of variable solar-
terrestrial coupling for 2020-2024 (http://www.issibj.ac.
cn/Publications/Forum_Reports/201404/W% 0201906205
92906717714.pdf). The mission of PRESTO is to identify
predictability of the variable solar-terrestrial coupling
performance metrics through modeling, measurements,
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Fig. 21 Photo of a VarSITI School on July 2017 at Irkutsk, Russia, with 35 students from 5 countries

and data analysis and to strengthen the communication
between scientists and users. The details of the PRESTO
definition are provided by Daglis et al. (2020).

Figure 22 summarizes challenging scientific topics in
the solar-terrestrial coupling processes that have been
investigated during the VarSITI program, but still need
further investigation during the PRESTO program. For
short-term variabilities, which are shown in the leftside
of Fig. 22, the following topics will stand even after the
VarSITI interval.

6.1 Short-term variability from Sun to earth

6.1.1 Evolution of sunspot from solar interior to solar
surface

The sunspot evolution in the solar active region is one
of the key processes to understand and predict the solar
flare eruption (e.g., Toriumi and Takasao 2017 and ref-
erences therein). It is still a difficult part to realistically
model this procedure from the solar interior to solar
surface and to use it for prediction of sunspot evolution.
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Fig. 22 Black: challenging scientific topics in the solar-terrestrial coupling during and after the VarSITI program. Red: their consequences on
human life. Short and long-term variabilities are shown in the left and right side of the figure, respectively. CIR corotating interaction region, CME
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6.1.2 Flare/CME prediction at the solar surface

Many progresses and proposals of new models have
been made for the flare and CME prediction during the
VarSITI program, as summarized by Zhang et al. (2021)
and as shown by e.g, Bamba and Kusano (2018) and
Kusano et al. (2020). However, this topic is still a challen-
ging key topic during the PRESTO interval.

6.1.3 Accurate measurements and prediction of flare UV
and X-ray spectra to understand ionospheric consequences
In order to understand the effect of solar flares on the
ionosphere, the spectral information of the solar flare is
essential, because the UV and X-ray spectral distribution
provides height distribution of ionization in the iono-
sphere. In other words, UV and X-ray emissions at
shorter (longer) wavelengths cause ionization at lower
(higher) altitudes in the ionosphere. The flare spectra
can be different for different flares, even if the flare class
defined by the X-ray intensity is comparable. Recently,
Flare Irradiance Spectral Model (FISM) (Chamberlin
et al. 2008) has been widely used to model the flare ef-
fects on the ionosphere. The model provides flare UV
spectra from 0.1 to 190 nm with 1 nm resolution with a
time resolution of 60s, based on the satellite measure-
ments. However, this model does not provide real time
data. Efforts to measure these spectra have been made
during the VarSITI program (e.g., Woods et al. 2017).
Prediction of the spectra is a further challenging issue.

6.1.4 Measurement and prediction of spectra of Solar
Energetic Particles (SEP)

Similarly to the flare UV/X-ray spectra, the energy distri-
bution of SEP determines the height variation of the
ionization in the middle atmosphere (e.g., Turunen et al.
2009). Thus, measurement and prediction of the spectral
information of SEP are an essential part to understand
SEP effect on the atmosphere.

6.1.5 Accurate IMF-Bz modeling and prediction in the CME
During the VarSITI program, IMF-Bz modeling and pre-
diction in the CME were the topic in a working group of
ISEST/Minimax24 (see Zhang et al. 2021 in details). But
it is still a challenging issue to make accurate prediction
of IMF-Bz direction and intensity in the CME, which es-
sentially controls intensity of geomagnetic disturbances
in the Earth’s magnetosphere. For example, Cho et al.
(2017) inspected two abnormal CME-Storm events and
suggested the importance of 3D magnetic field geometry
of interplanetary Flux Ropes.

6.1.6 Modeling and prediction of IMF-Bz, speed, and dy-
namic pressure in the CIR

Another solar wind structure that causes strong geomag-
netic disturbances is the CIR, which comes mainly from
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solar coronal holes during solar quiet time (e.g., Zhang
et al. 2007). Similarly to the CME, modeling and predic-
tion of IMF-Bz, speed, and dynamic pressure in the CIR
is necessary to predict geomagnetic disturbances in the
Earth’s magnetosphere and ionosphere.

6.1.7 Connection between the outer magnetosphere and the
inner magnetosphere

During the VarSITI program, the plasma dynamics in
the inner magnetosphere and acceleration and dissipa-
tion of plasma through wave-particle interaction have
been extensively studied by the SPeCIMEN project
(Kanekal and Miyoshi 2021). The connection between
the outer magnetosphere and the inner magneto-
sphere during storms and substorms provides bound-
ary condition of global energy inputs from dayside
magnetopause and nightside magnetotail to the inner
magnetosphere. One issue is that the modeling using
MHD approximation is applicable in the outer mag-
netosphere, while it is not in the inner magnetosphere
due to significant magnetic gradient and curvature
and strong coupling with the non-MHD ionosphere.
This situation causes a gap of simulation codes used
to describe the outer magnetosphere (MHD simula-
tion) and inner magnetosphere (test particles and
magnetosphere-ionosphere-thermosphere coupling
codes). Several attempts have been made to connect
these different models smoothly and self-consistently
(e.g., Fok et al. 2014; Seki et al. 2018). However, the
connection of these different models is still a challen-
ging issue in the PRESTO program.

6.1.8 Connection between the magnetosphere and the
ionosphere/thermosphere

Another challenging issue of MHD-non-MHD modeling
connection is the magnetosphere-ionosphere coupling,
which is a key process for the energy input from geo-
space to the Earth’s atmosphere (e.g., Wiltberger et al.
2017; Ebihara and Tanaka 2017). The self-consistent
connection of the magnetosphere and ionosphere in-
cluding neutral atmosphere is still a challenging issue in
the PRESTO program.

6.1.9 Connection from the high-latitude energy input to the
thermospheric dynamics and to the plasma bubble
generation

The plasma convection driven by MHD processes in the
magnetosphere can cause associated neutral wind in the
thermosphere through ion-neutral collision (e.g., Conde
et al. 2001; Xu et al. 2019). The auroral particles and as-
sociated Joule heating also cause disturbances in the
high-latitude thermosphere (e.g., Lu et al. 2016). The re-
sultant neutral wind in the thermosphere further propa-
gates to lower latitudes (e.g., Shiokawa et al. 2007) and
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causes westward neutral wind by the disturbance dy-
namo (Blanc and Richmond 1980), which may suppress
ionospheric instabilities (plasma bubbles) in the equator-
ial evening terminator (e.g., Carter et al. 2014; Shinagawa
et al. 2018). The prompt penetrating electric field (PPEF)
from the magnetosphere to the equatorial ionosphere is
another major force to control equatorial plasma bub-
bles during magnetic disturbances (storms and sub-
storms) (e.g., Tulasi Ram et al. 2015). During the
VarSITI program, these global processes have been ex-
tensively studied. However, further modeling and obser-
vation efforts should be made for accurate prediction of
plasma bubbles, particularly for their day-to-day variabil-
ity. The equatorial plasma bubbles are one of the most
intense ionospheric disturbances on the Earth that sig-
nificantly affect GNSS positioning and radio-
communication with satellites.

6.1.10 Connection from the high-latitude energy input to
the composition and dynamics of the atmosphere

During the VarSITI program, growing interest and sig-
nificant studies have been made on the solar energetic
particles (SEP) and magnetospheric energetic particles
(MEP) (Ward et al. 2021 and references therein). These
high-energy (keV-MeV) electrons and protons can cause
significant ozone depletion in the middle atmosphere
(e.g., Andersson et al. 2018) which propagates downward
with a seasonal time scale. The challenging part is how
these ozone depletion and associate temperature change
in the middle atmosphere can change the dynamical
coupling between the middle atmosphere and
troposphere.

6.2 Short-term variability from the earth to geospace
From the Earth’s lower atmosphere to the thermosphere
and ionosphere, significant dynamical effect can be
caused by penetration of acoustic sound waves (periods:
less than minutes), gravity waves (several minutes to
hours), tides (6h to 1 day), and planetary waves (days).
Below are some outstanding topics that will stand even
after the VarSITI program.

6.2.1 Gravity wave penetration to the thermosphere and its
consequences to the thermospheric dynamics and
circulation

During the CAWSES-II and the VarSITI program, a
great progress has been made on the penetration of
gravity waves into the thermosphere (e.g., Oberheide
et al. 2015; Yigit 2018). It has been well known that the
gravity waves control global circulation of the middle at-
mosphere through their dissipation in the mesopause re-
gion. However, the role of the primary and secondary
gravity waves that penetrate into the thermosphere on
global circulation is still not fully understood. Several
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papers during the VarSITI program have suggested that
the role can be significant (e.g., Miyoshi and Yigit 2019;
Vadas and Becker 2019). However, more comparison
with global observation of the thermosphere and iono-
sphere will be needed to fully understand the gravity
wave role in the thermospheric dynamics and
circulation.

6.2.2 Gravity wave penetration to the thermosphere and its
consequences to the ionospheric disturbances

Not only the global dynamics, the gravity waves pene-
trated into the thermosphere can also generate iono-
spheric disturbances both directly and by seeding
ionospheric plasma instabilities (e.g., Otsuka 2018; Moral
et al. 2019; Vadas et al. 2019). Thus, the gravity wave in the
thermosphere is one of the key parameters to understand
and predict the ionospheric disturbances that can cause
degradation of GNSS positioning accuracy (e.g., Tsugawa
et al. 2018). Further investigation of both modeling and
ground and satellite measurements should be done.

6.2.3 Variability of pre-reversal enhancement and gener-
ation of equatorial plasma bubbles

Pre-reversal enhancement in the evening solar termin-
ator of the ionosphere is another key process that con-
trols the generation of equatorial plasma bubbles. The
equatorial plasma bubble is the strongest disturbance in
the Earth’s ionosphere and significantly affects the GNSS
positioning. Recent global modeling such as by TIEGCM
and GAIA successfully reproduces seasonal variability of
pre-reversal enhancement, and thus, plasma bubbles
(e.g., Carter et al. 2014; Shinagawa et al. 2018). However,
prediction of day-to-day variability of plasma bubbles is
still a challenging issue. The day-to-day variability of
pre-reversal enhancement can be one of the causes of
this plasma bubble variability (e.g., Ghosh et al. 2020).

6.2.4 GW/Tide/Planetary wave penetration to the
thermosphere and ionosphere and its consequences in the
plasmasphere

As cited above, the penetration of these waves with dif-
ferent periods can cause significant effects on the
thermosphere (neutral atmosphere) and the iono-
sphere (plasma). However, their effect to the mag-
netosphere has not well been understood. For
example, storm enhanced density (SED) in the high-
latitude ionosphere corresponds to a plume structure
in the plasmasphere around the Earth (Foster et al.
2005). The clear conjugacy of nighttime traveling
ionospheric disturbances between the northern and
southern hemispheres (e.g., Otsuka et al. 2004; Nar-
ayanan et al. 2018) indicates that these ionospheric
disturbances are mapped between the hemispheres
along geomagnetic field line, including the equatorial
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plane of the near-Earth magnetosphere. The mapped
density structures in the plasmasphere can contrib-
ute ducting and cross-field localization of ULF/ELF/
VLF waves in the magnetosphere that are respon-
sible for acceleration and dissipation of high-energy
(radiation belt) plasma particles. Conjugate measure-
ments with satellites in the inner magnetosphere and
ground instruments will be necessary to see these
possible connections between the ionosphere and the
magnetosphere.

6.3 Long-term variability

6.3.1 Solar dynamo evolution and axial dipole moment to
predict variability of the 11-year solar cycle

As cited in the above section on Solar Evolution and Ex-
trema, the solar dynamo evolution to predict variability
of the 11-year solar cycle is still a challenging issue even
after the great efforts during the VarSITI program. The
solar axial dipole moment during the solar cycle mini-
mum can be an indicator of the activity of next solar
cycle (e.g., lijima et al. 2017; Jiang et al. 2018). The pre-
diction of the 11-year solar cycle intensity is important
for long-term prediction of the space weather condition
that directly affects spacecraft operation in geospace
(Bhowmik and Nandy 2018; Gopalswamy et al. 2018).

6.3.2 Long-term variation of solar total and spectral
irradiance for atmospheric consequences

The long-term variation of solar total and spectral irradi-
ance (TSI and SSI) can be a key parameter to affect the
Earth’s climate change. Various modeling efforts have
been made during the VarSITI program (e.g., Matthes
et al. 2017). However, quantitative assessment of TSI
and SSI effects on the atmosphere and long-term climate
change is not fully obtained yet. These irradiances also
cause significant variation in atmospheric density in the
thermosphere where most of the low-earth orbiting sat-
ellites are flying (e.g., Liu et al. 2018). The thermospheric
density variation controls the lifetime of these satellites
through atmospheric drag.

6.3.3 High-energy plasma effect on the atmospheric
variability, i.e., composition change and its dynamical effect
via ozone concentration

The energetic particle precipitation (EPP) on the atmos-
phere and subsequent ozone depletion have been ob-
served and modeled in a seasonal time scale during the
VarSITI program (e.g., Funke et al. 2014; Turunen et al.
2016; Andersson et al. 2018). However, their conse-
quences on climate change are the difficult part to ap-
proach. As cited before, the key issue is the effect of the
ozone depletion on the temperature variation in the
middle atmosphere and their connection to the tropo-
sphere through various types of atmospheric waves.
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Long-term data analysis and modeling efforts should be
done further during the PRESTO program.

6.3.4 Solar dependence of tropospheric parameters and
their connecting mechanisms

It is well known that the atmospheric density and
temperature in the thermosphere significantly vary dur-
ing the 11-year solar cycle. This is clearly due to the
variation of the solar UV emission. We also see solar
variation in the tropospheric parameters, such as a 27-
day solar rotation in lightning activity (Miyahara et al.
2018) and 11-year solar cycle in Pacific Walker Circula-
tion (Misios et al. 2019). The physical mechanisms that
create these solar variations in the troposphere have not
been quantitatively explained. The variation of solar ir-
radiance in the visible wavelength that reaches the
troposphere seems to be too small (~0.1%) to explain
the observed variations. However, the amplitude of vari-
ation in solar UV emission is much larger than that in
visible wavelength, though the UV emission cannot
reach the troposphere due to absorption in the thermo-
sphere and in the ozone layer in the middle atmosphere.
This reads the idea of atmospheric wave coupling to
cause global circulation and tropospheric climate change
(e.g., Kodera and Kuroda 2002) as below.

6.3.5 Atmospheric wave coupling to cause global
circulation and tropospheric climate change

The atmospheric waves, i.e., gravity waves, tides, and
planetary waves, can connect the middle atmosphere
and the troposphere through dynamical coupling with
global circulation, resulting in climate change in the
troposphere driven by middle atmosphere variation (e.g.,
Kodera and Kuroda 2002; Lu et al. 2017). This process is
one of the key issues to understand possible connection
between the solar variabilities and the Earth’s climate,
because the solar UV emission and energetic particles
can cause significant ozone depletion and associated
temperature variation in the middle atmosphere.

6.3.6 Separation of anthropogenic effect and solar
variability effect

The global warming of the troposphere due to anthropo-
genic effect, such as CO, and methane, is more quantita-
tively understood than that of the solar forcing effect.
However, the actual observation of climate change con-
tains both effects in several different time scales. Model-
ing efforts have been made to separate these two
mechanisms (e.g., Egorova et al. 2018; Solomon et al.
2019). Comparison of these modeling efforts with long-
term observation becomes increasingly important to
identify the mechanisms on solar forcing to climate
change.
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6.4 Consequences on human life

The red characters in Fig. 22 indicate the consequences
on human life, which are (a) plasma damage to space/air
vehicles and astronauts by energetic particles from the
Sun and the magnetosphere; (b) degradation of radio
communication and GNSS positioning by equatorial
plasma instabilities (plasma bubbles), auroras, and travel-
ing ionospheric disturbances; (c) geomagnetically induced
currents (GIC) caused by auroral electrojet currents and
flowing through electric supply network and pipelines; (d)
satellite orbital change due to atmospheric drag that is
controlled by solar UV emission and auroral plasma; and
(e) climate change possibly caused by energetic particles
and solar UV radiation that changes dynamics of the mid-
dle atmosphere through ozone depletion. When we con-
sider these consequences, the parameters used in scientific
research, such as the sunspot number and the Kp and Dst
indices, may not be useful, and more appropriate parame-
ters, such as temporal and spatial scales and amplitudes of
ionospheric plasma variation, radiation dose and its tem-
poral variation, and atmospheric temperature variation,
will be necessary for space users and climate scientists.
Close communication with space users and climate scien-
tists will be necessary for solar-terrestrial physics for space
weather and space climate applications.

7 Summary

To understand variability of the Sun and its consequence
on Earth, communication of different fields and interdis-
ciplinary researches are essential. During the 5-year pro-
gram of VarSITI, major efforts have been made to
encourage more communication between solar and
interplanetary scientists and magnetosphere, ionosphere,
and atmosphere scientists. The efforts were made by
developing mailing lists and websites; by distributing
VarSITI newsletters; by supporting interdisciplinary
meetings, databases, and campaigns; and by creating
database list. More than 1000 scientists in solar-
terrestrial physics have joined in this program.

Although it is still challenging to predict the intensity
of the next solar maximum, several key procedures of
solar dynamo have been understood during the VarSTII
interval under the SEE project. The interplanetary con-
nection from the solar surface to the Earth’s magneto-
pause has been investigated in detail by combining
several in situ and remote-sensing satellites and ground
instruments under the ISEST/Minimax24 project. Study
of the inner magnetosphere was in the golden era by the
THEMIS, Van Allen Probes, and ERG satellites as well
as multi-point ground measurements and the global
modeling efforts that connect outer and inner magneto-
sphere and ionosphere. Coordination efforts have been
done for these inner-magnetosphere data under the SPe-
CIMEN project. The high-energy plasma input to the
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atmosphere and its connection to the climate change in
the middle and lower atmosphere have been extensively
studied, as well as short-term effects from the lower at-
mosphere to the thermosphere and the ionosphere,
under the ROSMIC project. All these scientific achieve-
ments obtained during the VarSITI program allow direc-
tion to the quantitative assessment of predictability of
short- and long-term variation of solar-terrestrial coup-
ling system. However, there are still many challenging is-
sues in all regions from the solar interior to the Earth’s
atmosphere to make prediction of their variability. In-
creasing the use of space by human beings, such as
GNSS positioning and broadcast satellites, and increas-
ing threat to the Earth’s climate change, are resulting in
increasing requirements for reliable prediction of the
variability of the Sun—Earth system. Under these circum-
stances, it is quite natural to have the next SCOSTEP
program, PRESTO, to focus on the predictability of vari-
able solar-terrestrial coupling.
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