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Abstract

Morphometric characterisation is particularly relevant in the study of geomorphological heritage. 3D modelling
techniques have been proven as very useful tools to recognise, characterise and valorise geomorphosites. Bedrock
rivers account for one of the most outstanding aspects within geomorphological heritage due to the amount of
distinctive and attractive geomorphological features associated to them and the high preservation of sculpted
forms. Digital elevation models (DEMs) have made it increasingly possible to establish accurate morphometric
indices and establish clearer connections between forms and processes. This paper reviews different methodologies
to obtain DEMs on bedrock rivers. This review goes from DEM analysis at multiple spatial scales to introduce optical
microrugosimeter as the latest technical development to facilitate micromorphometric analysis. Micromorphometric

SfM, Photogrammetry, Microroughness

analysis opens the scope for improving the knowledge we have on trans-scale issues in bedrock rivers.
Micromorphometric analysis also opens a new layer of information that enriches the public’s valuation of
geodiversity of geomorphosites by increasing its didactic and interpretative potential.
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Introduction: geomorphological heritage and
bedrock rivers

Geomorphological heritage is a very distinctive topic that is
receiving considerable interest in the last few years among
geoscientists involved in geoheritage studies (Coratza and
Hoblea 2018). The progress in remote sensing technologies
over the last 50 years has been central in the development
of geomorphology (Wohl et al. 2017) and promoted a tool
for increasingly detailed morphometric characterisation.
Morphometry is indeed particularly relevant in the study of
geomorphological heritage and, above all, 3D modelling
techniques have been proven as very useful tools to recog-
nise, characterise and valorise geomorphosites (Ravanel et
al. 2014, 2015). The term “geomorphosite” was suggested
by Panizza (2001) to refer to landforms that have acquired
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a scientific, cultural/historical, aesthetic and/or social/eco-
nomic value due to human perception or exploitation.
Morphometric characterisation at different scales is
crucial for a better knowledge and valorisation of geo-
morphological heritage. Cayla et al. (2012) introduced
the concept of “perceptive invisibility” as the lack of visi-
bility of a geomorphosite conditioned by the scale of ob-
servation. They associated this concept to large
geomorphological structures, but it could also be extrap-
olated to very small weathering forms whose perception
and interpretation might be difficult for the observer
and, at times, are essential for the understanding (and
therefore valorisation) of geomorphological processes
taking place at a particular location. Nonintrusive and
high-resolution spatial monitoring are, as Hoblea et al.
(2014) recognised, excellent tools for conservation and
promotion of “neglected” geomorphological features.
Bedrock rivers are a fine example of geomorphological
sites with forms of various scales. Bedrock rivers account
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for one of the most outstanding aspects within geomor-
phological heritage due to high preservation of sculpted
forms in bedrocks (Garzén-Heydt et al. 2012). Besides
playing a critical role in landscape evolution, these rivers
constitute important features in protected areas, due to
the amount of distinctive and attractive geomorpho-
logical features associated with them, from large-scale
canyons and gorges to small-scale grooves, flutes and
furrows. This is reflected, for example, in the myriad of
terms in many languages associated with bedrock rivers
which are not only part of scientific jargon but common-
place terms used in daily language, such as waterfall,
canyon, narrow, and rapids. Furthermore, some names
given to sculpted forms in bedrock rivers are rather sym-
bolic, as for example Spanish and Italian “Giant’s mar-
mites” for potholes or “pans” and “scallops” in English.
The importance of some bedrock river forms goes far
beyond scientific and natural values to have a place in
popular culture, as for example the large-scale Grand
Canyon (Colorado River), the number one tourist destin-
ation in the USA, but also smaller features, such as
Antelope Canyon, a narrow bedrock river managed by
Navajo Native Americans as a tourist attraction. Water-
falls associated with bedrock rivers are among the most
demanded tourist destinations, such as Iguazu waterfalls
in the Argentina-Brazilian border, one of the most vis-
ited waterfalls in the world (Hudson 2013) along with
Niagara Falls (USA-Canada), Victoria Falls (Zimbabwe)
and Salto del Angel (Venezuela). This interaction be-
tween geomorphological components of a territory and
cultural features frames in Panizza and Piacente’s (2008)
definition of cultural geomorphology and makes of bed-
rock rivers one of the most important features to be in-
cluded in this term. Bedrock rivers are among the most
valued features in some protected areas, such as
Sobrarbe Geopark in the Pyrenees (Ortega-Becerril et al.
2017a) because their high variety of features at different
scales is an added value when designing geotouristic
routes.

This paper aims to review different techniques to get
morphometric measurements at different scales. Building
on a review of commonly-used techniques, such as LIDAR
(Light Detection And Ranging) and photogrammetry, this
paper intends to show the value of innovative microphoto-
grammetric techniques (optical rugosimeter) in contributing
to the understanding and valorisation of trans-scale
flow-related geomorphological processes of bedrock rivers.
Bedrock rivers are a relatively poorly-understood environ-
ment in which the interpretation of features is very
dependent on the scale. To demonstrate the scope of these
techniques, a particularly relevant geosite within a bedrock
river in central Spain (upper Manzanares) will be used. In
addition, this paper shows the potential of high-resolution
micromorphometric techniques as a tool for visibilisation
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and valorisation of small-scale erosive features in this par-
ticular geomorphosite.

Bedrock rivers: morphometry and scale issues
Quantitative morphometric aspects of bedrock rivers are
of great importance. Morphometry, i.e. the measurement
of forms of the ground surface is consubstantial to the
birth of geomorphology as a preliminary step to inter-
pret processes. As early as 1899, Davis (p.481) stated “all
the varied forms of the lands are dependent upon (...)
structure, process and time”, showing that early in the
development of geomorphology as a science came the
realisation that only after understanding forms one can
interpret them as the result of processes.

In bedrock rivers, as in other environments, morphom-
etry is one of the main tools to discriminate forms. Yet,
some of those forms resemble, but are genetically different,
as for example in several features described by Richardson
and Carling (2005), e.g. compound parallel-side furrows
and runnels with alternating scour. Nevertheless, this vari-
ability and complexity in forms and processes is one of the
main scientific values of bedrock rivers (and therefore also
an asset for their geomorphological heritage status).

The relationship between morphometry and processes
in bedrock rivers is considered an under-researched
area, due to the patchiness and morphological discon-
tinuity of bedrock rivers and because, echoing J.W.N.
Sullivan’s famous quote, “it is much easier to make mea-
surements than to know exactly what you are measur-
ing”. Richardson and Carling (2005, p.1) stated, “the
morphology of surface bedrock channels is still a rela-
tively neglected area of research within the study of flu-
vial systems”. Anyhow, there has been a big evolution in
this research area from Wohls (1998) and Richardson
and Carling’s (2005) seminal attempts to describe bed-
rock river forms to more recent efforts by Lamb et al.
(2015), Beer et al. (2017), Veldzquez et al. (2016) to de-
rive processes from forms in this environment.

The formation and development of bedrock river fea-
tures at different spatial scales are the result of a com-
bination of extrinsic factors (such as stream hydraulics)
and intrinsic bedrock factors such as lithology and het-
erogeneities (Wohl 1998) in combination with surface
alteration processes, as for example wetting-drying cy-
cles (Inoue et al. 2017). As Hall et al. (2012) suggested,
“rock decay” encompasses energy transfer processes (a
term they prefer to weathering), the influence of rock
properties and product removal (erosion). As an ex-
ample, Ortega-Becerril et al. (2017b) demonstrated how
the balance between these factors led to variations in the
generation of potholes, a typical bedrock river feature.

Geomorphologists define bedrock rivers as patchy
reaches within a fluvial system (Whipple et al. 2013).
Therefore, scale issues are deeply related to bedrock
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rivers by definition, as large-scale processes are often in-
ferred from small-scale forms. A fluvial system to be
considered a bedrock river must have long-term capacity
to transport bedload vs. sediment supply and persistent
incision (Whipple et al. 2013), and it must do so at a
rate greater than sediment supply. Usually, the riverbed
must be clean of sediment and have a high ratio (> 50%)
of either exposed rock or a thin alluvial cover (Tinkler
and Wohl 1998). This means bedrock reaches are fre-
quently patchy and relatively short, and the incision
rates are deeply dependent on the interaction between
alluvial cover and erosive mobile grains (Sklar and Die-
trich 2004; Inoue et al. 2014).

Much work has been done regarding the use of multi-
scale techniques in bedrock rivers (e.g. Springer et al
2005; Ortega et al. 2014; Pelletier et al. 2014). Some of
these models like Pelletier’s et al. (2014) use the aspect
ratio of potholes to predict flood sizes that would gener-
ate their optimal growth. Hence, large-scale processes
are connected with small-scale measurements. Models
of river flow in bedrock rivers (e.g. Venditti et al. 2014)
are also a tool to understand processes at different
scales. This is shown for example in the studies by
Anton et al. (2015) describing how small-scale flooding
can generate large-scale erosion and Beer et al. (2017)
determining the importance of the spatial distribution of
moving and static sediment in determining small-scale
erosion, which in turn will result in gorge evolution at
the landscape scale.

The complex balance of factors leading to changes
in bedrock river forms counsels morphometrical char-
acterisation at different scales to understand the re-
sponse of different occurring lithologies to river flow
and the relationships between erosion and weathering
processes. Nonintrusive spatial monitoring can be also
performed at different times as a way, not only for
understanding processes, but also for assessing the in-
fluence of climatic and human impacts and conse-
quently planning conservation strategies, which are
especially relevant in bedrock rivers in protected
areas. Methods like LiDAR and increasingly affordable
photogrammetry are among other technical develop-
ments that have had a strong impact on the ability to
collect data in geomorphology (Viles 2016). Hence,
these techniques and how they have been used in re-
cent times to understand processes at different scales
in bedrock rivers are reviewed.

DEMs from LiDAR in bedrock fluvial
geomorphology and hydraulic modelling

Burrough (1986) defined DEMs as the representation of
the continuous variation of relief over space. DEMs have
made it increasingly possible to establish accurate mor-
phometric indices and establish clearer connections
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between forms and processes. The advancement in the
knowledge of interactions between surface forms and
geomorphological processes in rivers in the last decades
led to an increasing need of having more precise and
spatially continuous 3D topographical data (Lane et al.
1998).

LiDAR, which mainly includes ALS (Aerial Laser
Scanning) and TLS (Terrestrial Laser Scanning), is now-
adays one of the most precise systems to obtain data to
build large-scale DEMs (Cavalli et al. 2008; Marks and
Bates 2000). This technique is particularly useful in geo-
heritage, both in the phase of developing scientific
knowledge of a site as well as in the interpretation and
development of geotourism (Cayla 2014).

Hohenthal et al. (2011) classify LiDAR data in four
main groups: ALS, ALB (airborne LiDAR bathymetry),
TLS and MLS (mobile laser scanning), all of them with
different characteristics in terms of spatial resolution
and ability to penetrate water.

In addition to many other documented uses (Lohani
and Mason 2001; Thoma et al. 2005; Carey et al. 2006;
Milan et al. 2007; Alho et al. 2009a; Cook and Merwade
2009; Oguchi et al. 2013; Garrote et al. 2018), LiDAR
data has proven especially useful when representing bed-
rock river morphology, as for example Baggs Sargood et
al. (2015), Sweeney and Roering (2017) or Beer et al.
(2017) pointed out.

LiDAR shows some advantages in relation to other
topographic techniques. For example, ALS offer quicker
data, with higher spatial density at a lower cost than
traditional methods, such as theodolites and total sta-
tions (Charlton et al. 2003; Gomes-Pereira and Wicher-
son 1999). LiDAR advantages in comparison to other
remote sensing techniques (such as aerial and satellite
images) include the ability to measure elevation in sur-
faces covered by vegetation (Charlton et al. 2003;
Gomes-Pereira and Wicherson 1999). In addition,
LiDAR does not depend upon illumination condition
(Baltsavias 1999a).

However, not everything is positive about LiDAR
data. The variability in the characteristics of the sedi-
ments and forms in bedrock rivers can produce errors
in the DEMs generated from LiDAR data (Hodgson
and Bresnahan 2004; Hodgson et al. 2003). Thus, Heri-
tage and Hetherington (2007) observed how the best
precisions in the elevation data are obtained in gently
sloped riverbeds, while the precision decreases signifi-
cantly on riverbeds covered by pebbles and blocks be-
cause of shadowing. Another source of precision
decrease is vegetation cover (Fig. 1), which has a posi-
tive correlation with errors in elevation of LiDAR data
(Charlton et al. 2003; Hodgson et al. 2003). Heritage
and Hetherington (2007) estimated in 0.07 m the error
between TLS data and data obtained with theodolites
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for areas with variable vegetation cover. Other works (e.g. Cartography and interpretation of fluvial forms
Hodgson and Bresnahan 2004; Baltsavias 1999b; Overton  from ALS data is limited by different factors. Mainly,
et al. 2009) have also analysed the effect on the accuracy  spatial density of data may limit the identification of
of LiDAR data of other types of vegetation cover, density ~ small-scale forms (i.e. when topographical variations
and height and its influence on laser pulses discrimination.  are very small in relation to the surrounding terrain)
Furthermore, as Jones et al. (2007) stated, the use of auto- on DEMs created from the interpolation of ALS data
matic techniques for filtering LiDAR data can affect sig- (Notebaert et al. 2009). Thus, the spatial resolution
nificantly the identification of fluvial forms (areas without and vertical error of ALS data determine the mini-
surface topographical data appear and need to be interpo- mum size of forms that could be identified. Note-
lated). In a bedrock environment like the strath terraces, baert et al. (2009) show an example of the
automatic filtering of LIDAR data may reduce the quality = abovementioned when comparing fluvial forms that
of resulting DEMs (Reusser and Bierman 2007). can be identified with two DEMs of different spatial
Spatial resolution of ALS data is adequate for visual resolution (5 and 1m), indicating how the use of
recognition of typical fluvial macro-forms, such as chan-  shading models derived from the ALS data helps in
nels, paleo-channels, pointbars, alluvial fans and levees both cases to the identification of fluvial forms
(Aggett and Wilson 2009; Jones et al. 2007; Notebaert et (Fig. 2).
al. 2009; Kasvi et al. 2012). Less work has been done in The use of LiDAR data has become widespread for hy-
bedrock channels, with some works of Reusser and Bier-  draulic modelling, because it improves the definition of
man (2007) and Finnegan and Dietrich (2011) mostly on  channel geometry, both in 1D studies (e.g. Aggett and
medium- and large-scale features such as strath terraces. ~ Wilson 2009; Omer et al. 2003; Casas et al. 2006) and in

~

A

T

Fig. 1 Effect of vegetation cover on ALS data (National Geographic Institute, Government of Spain) corresponding to the case study area in “La
Pedriza" (Madrid, Spain). a Elevation profile from ALS considering all the ALS points (up), only the points classified as terrain (middle), and only the
points classified as vegetation (bottom). The number of ALS points giving information on the terrain surface decreases in the areas with more
vegetation. Effect of vegetation on a DEM considering all the ALS points (b) and only the points classified as terrain surface (c). The red line
corresponds to topographic profiles in (a)
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Fig. 2 Hillshade DEM obtained from ALS data, with spatial
resolutions of 5m (@) and 1 m (b); detailed digital photogrammetry
(c) obtained from UAV image (resolution 0.25 m). a—c the case study
area in “La Pedriza” (Madrid, Spain). Panels b and ¢ are enlargements
from marked areas in a and b. d TLS data interpolated with a spatial
resolution of 0.05 m. Panel d is obtained from UNAVCO organisation
TLS free data of an area near Prescott (Arizona, USA, http://
opentopo.sdsc.edu/datasets?id=0T.122010.26912.1&host=0t). This
sequence shows how ALS resolution does not allow identifying
small-scale elements in the channel, something that can only be
achieved from TLS and detailed digital photogrammetry data

.

2D hydraulic models (e.g. French 2003; Marks and Bates
2000; Straatsma and Baptist 2008). These LiDAR data
have also been used to define terrain surface roughness,
as an improvement from other, more traditional, tech-
niques based on photo-interpretation or granulometric
studies of sediment samples (Mason et al. 2003; Heritage
and Milan 2009; Milan 2009). Milan (2009) shows that
one of the main advantages of using LiDAR data to de-
termine surface roughness is the ability of this data to
reproduce roughness spatial variability.

The use of LiDAR has allowed significant improve-
ment in DEM accuracy in bedrock rivers and therefore a
better representation of the highly-variable topography
of bed and banks in these rivers (mainly by using TLS
data, and both aerial and terrestrial detailed photogram-
metry). As the topography obtained in the DEM is more
detailed, the effect of even small-scale features on flow
diversion can be reflected in flow direction vector field
maps at most scales, which leads to a more realistic re-
construction of actual flows.

The availability of ALS data to cover large terrain areas
has been shown as an essential aspect for a correct map-
ping of flood areas on the floodplain, where topographic
variations in elevation are small but they affect the flow
of shallow water (French 2003). Thus, several authors
have investigated the potential for the use of ALS data
for flood mapping in recent years (e.g. Cook and Mer-
wade 2009; Overton et al. 2009). One of the main con-
clusions obtained by authors like Cobby et al. (2003) and
Cook and Merwade (2009) is that using ALS data gener-
ally implies a decrease in the extent of modelled flood
zones. This is due to the increment of vertical accuracy
of topographic data (which is now more capable of
representing small-scale topographic variations in the
floodplain). The use of a precise channel bathymetry fur-
ther enhances the reduction of the modelled flood inun-
dation area.

It is only now, when LiDAR results are more faithful
to real topography, that it is possible to locate and assess
fluvial process like cavitation and plucking, which are
decisive in the initiation and development of typical bed-
rock river morphologies like potholes and grooves. An-
other improvement from the use of these more realistic
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surfaces is related to flow direction pattern variations
and its relationship with peak flow values.

The use of TLS data meant a significant improve-
ment for the quantification of meso- and micro-scale
forms in relation to the use of traditional contact
profilers, such as erosion pins or microtopographic
profilers (Hodge et al. 2009a, 2009b; Wang et al.
2013), by improving spatial resolution of the data ob-
tained. It is also, as pointed out by Entwistle and
Fuller (2009), a much faster method for the character-
isation of the sediment than the taking of samples
and its granulometric analysis. To limit topographic
noise, Hodge et al. (2009a) recommended setting
spatial resolution of TLS data to centimetre scale
(even when these techniques are capable of producing
millimetre resolutions), with the aim that the varia-
tions in the topography are not masked by the noise
existing in the data. Associated with this limit in the
spatial resolution of TLS data, Alho et al. (2009b)
stated that even when sediment characteristics could
not allow their individual identification by TLS, it
would still be possible to map variables as important
as the height, length, volume and orientation of flu-
vial forms such as ripples and dunes.

Structure from motion: A cost-effective multiscale
technique

Rock weathering and erosion operate at different tem-
poral and spatial scales (Viles 2001). Therefore, morpho-
metric investigation needs to be able to accommodate to
different scales. As mentioned elsewhere, considering
small-scale sculpted forms can give evidence of
larger-scale morphological change in bedrock rivers,
both large-scale features and small-scale forms to be
assessed together to get the whole picture of how “en-
ergy transfer” (in the sense of Hall et al. 2012) interacts
with rock properties.

Chandler and Buckley (2016) state that SfM photo-
grammetry can be a good technique to overcome the
main challenges associated with TLS: cost, occlusions
and the lack of flexibility of scale. Structure form mo-
tion photogrammetry can use photographs taken with
a conventional camera, and processing may be ac-
complished through inexpensive (or even free) soft-
ware. This contributed to the extensive use of SfM
photogrammetry over TLS (Almagro 2010; Westoby
et al. 2012).

Photogrammetry is a long-used technique in geology
and geomorphology. Laussedat (1854) already noticed
that accurate measurements could be made from mul-
tiple images taken with slight offset. From then through
the increasing relevance of photogrammetry from the
1940s in mapping (e.g. Birdseye 1940; Eardley 1942) to
nowadays, structure from motion (SfM) methods used
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in the most advanced photogrammetry software, photo-
grammetry has consolidated as a very suitable tech-
nique for the generation of DEMs at low cost.

“Structure from motion” (or “multi-image photogram-
metry” as it is sometimes called) is the photogrammetric
technique in which datasets of overlapping digital im-
ages of a feature taken from different positions are
loaded into a software to obtain high-resolution 3D
models (McCarthy 2014). Currently, the speed of calcu-
lation of the computers and the great development of
digital cameras allows the immediate restitution of the
photographed object, getting some rectified images, with
actual measurements.

Multi-image photogrammetry has been used for the
last 20 years in geomorphological studies (e.g. Chandler
1999; Lane 2000; Westoby et al. 2012; Saito et al. 2018)
and in heritage applications, such as archaeology (e.g.
Bryan and Clowes 1997; De Reu et al. 2013, 2014), cul-
tural heritage (e.g. Lopez-Gonzalez et al. 2016; Fujii et al.
2018) and geoheritage (e.g. Ferndndez-Lozano and
Gutiérrez-Alonso 2017; Santos et al. 2018).

The development of cameras, inertial units, UAV and
smartphones in this same timespan now makes it
possible to find examples of multi-image photogram-
metry using large-scale images taken with UAV (e.g.
Dominguez Pérez et al. 2017), as well as close-range
photogrammetry (e.g. Fraser and Cronk 2009; Jordd et
al. 2011; McCarthy 2014) and even smartphones (e.g.
Micheletti et al. 2015).

The possibility of obtaining results with accessible
low-cost equipment makes photogrammetry one of the
most widespread methods to obtain DEM, especially at
close-range (Almagro 2010). Photogrammetry allows
obtaining DEMs of both large and small features with
the same equipment (camera and software), so it can be
used in its own right or as an inexpensive way of com-
plementing more expensive LiDAR.

As precision in SfM is dependent upon scale (the
closer the images are taken the more precise is the
model), for small-scale features, a SfM can generate a
high-accuracy point cloud at a significantly lower cost
than TLS. The use of targets allows scaling, orienta-
tion and geo-referencing, which can remain relative
or be made absolute through a GPS or total station.

Geo-referencing is particularly relevant when analyt-
ical data will be superimposed on the model, thus, creat-
ing a high-detail small-scale GIS (Gomez-Heras et al
2014; Lopez-Gonzalez et al. 2016). This also allows a 4D
approach, i.e. the addition of time to the three spatial di-
mensions X, Y and Z, by comparing and operating with a
series of surveys obtained through time (Lopez-Gonzalez
et al. 2016), as a step forward from the mere evalu-
ation of landform changes (e.g. Lin and Oguchi 2002;
Hayakawa et al. 2008).
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Contribution of micromorphometry to the study
of bedrock rivers and small-scale
geomorphodiversity

Up to this point, this paper has reviewed the evolution
of techniques, which have been commonly used in 3D
Modelling for the research and monitoring of fluvial en-
vironments (particularly bedrock rivers) and are also
amply used for visualisation and valorisation of geoheri-
tage (Cayla 2014; Ghiraldi et al. 2014; Ravanel et al.
2014, 2015).

Ortega-Becerril et al. (2017a) discussed how the as-
sessment of the geomorphodiversity of bedrock rivers
should include larger spatial scales rather than individual
river reaches. Likewise, the assessment of geomorphodi-
versity should also include microscale because of the
large variety of bedrock sculpted forms (some of them at
microscale) in this environment.

This is particularly true considering the definition of
geodiversity, which includes the features together with
the processes that form and alter them (e.g. Dudley
2008; Németh et al. 2017). As previously discussed, mi-
croforms are key for the understanding of geomorpho-
logical processes in bedrock rivers. However, these forms
remain “invisible” analogously to the sense in which
Cayla et al. (2012) used this term for large geomorpho-
logical structures.

The previously reviewed techniques may allow morpho-
logical analysis up to a centimetre accuracy, but their reso-
lution level usually does not permit morphometric
analysis of sculpted forms below this scale (Fig. 3). Par-
ticularly, the previous reviewed techniques would not be
practical to analyse large-scale forms at the same time
than microforms, which are relevant for the scientific
knowledge of geomorphological processes in bedrock riv-
ers and also for the public understanding (and therefore

Fig. 3 Millimetre-scale pits and grooves in a microdiorite dyke. Dark-
coloured area corresponds to moisture accumulated in and around
pits. This is likely to cause weathering through wetting-drying cycles
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valorisation) of geomorphosites. For this level of detailed
analysis, this paper reviews a novel application to geo-
morphology of a technique already used in cultural heri-
tage: the optical rugosimeter.

Surface microroughness is one of the main controls in
the initiation of weathering processes. The term “micro”
in roughness refers to variations in the relief in order of
magnitudes of ten of micrometres. The formation of
microrelief is controlled, much like the formation of re-
lief at larger scales, by a combination of lithological and
environmental factors. In igneous rocks, compositional
heterogeneity of the rocks at the mineral scale contrib-
utes to increasing surface roughness due to the different
resistance to deterioration agents of each mineral
(Gomez-Heras et al. 2008; Sousa and Gongalves 2013).
This is particularly relevant in coarse texture granites,
which tend to have a greater roughness (Aydin et al.
2011) that increases during the process of deterioration
of the rock.

Surface porosity, as a consequence of higher roughness,
favours water penetration into the rock and can trigger
deterioration by salt crystalisation, freezing-thawing and
wetting-drying cycles. Likewise, water or wind can gener-
ate microroughness due to microturbulence and impacts
of particles in suspension.

Surface microroughness can also favour surface de-
posits, which either can increase the deterioration
process or can form a crust on its surface becoming
more resistant to erosion, as is the case in the formation
of carbonate or iron oxide crusts. Microroughness is also
a contributing factor to the colonisation of endolithic
microorganisms, helping their adherence on the surface
of rocks (Etienne 2002; Bergey 2006; Prieto et al. 2006;
Viles 2012).

Igneous rock porosity is mainly fissural. Microcracks
develop both in the interface between rock minerals (in-
tercrystalline porosity) or inside minerals (intracrystal-
line porosity), such as along crystallographic planes in
biotite (Lopez-Arce et al. 2010) and twin planes in feld-
spars (Vazquez et al. 2013). Moropoulou et al. (2007) de-
fined a friability index, considering fracture density and
surface roughness. Friability increases (and therefore re-
sistance decreases) when increasing the roughness.
Therefore, when a rock has high roughness, it is more
prone to deterioration (Ribeiro et al. 2011). Roughness
difference in igneous rocks depends on fissural anisot-
ropy at outcrop (Lopez-Arce et al. 2010; Sousa and
Gongalves 2013; Freire-Lista and Fort 2017) and the ef-
fects of weathering agents, such as thermal fatigue, salt
crystallisation or frost action (Gomez-Heras et al. 2008;
Freire-Lista et al. 2015).

The study of microroughness not only allows us to
understand the process of deterioration of rocks but also
allows us to provide information on weathering/erosion
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rates by different deterioration agents being influenced
by the hardness of each mineralogical component of the
rock. They can indicate preferential directions of erosion
such as in the action of glacial polish (Dabski 2015), and
bedrock outcrops related to, fluvial water flow when
abrasion, plucking and cavitation processes are frequent
(Whipple et al. 2012) and recognised in the studied area
(Ortega-Becerril et al. 2017b).

There are different techniques to measure microrough-
ness: contact (profilometers) and non-contact rugosimeters
(optical rugosimeters) (Grissom et al. 2000). In addition to
these, it is possible to measure the roughness of the surface
of the materials by means of high-resolution microscopic
techniques, such as scanning electron microscopy (SEM),
atomic force microscopy (AFM) and tunnelling microscopy
(STM). Profilometers and optical rugosimeters have the
advantage of being non-destructive and portable,
while techniques such as AFM, SEM and STM have a
higher resolution but they are destructive, and mea-
sures must be carried out in a laboratory at a much
higher cost (Fort et al. 2013).

Profilometers have been the most common technique
so far for microroughness determination in geomorph-
ology (e.g. McCarroll 1992; Hubbard and Glasser 2005;
Dabski 2015). A fine tip crosses the surface of the object
in these contact rugosimeters. Height variations of the
tip moving at a controlled speed are transformed into
electrical impulses that result in a profile showing sur-
face topography.

Optical rugosimeters have been amply used in cultural
heritage science (e.g. Fort et al. 2012; Vazquez-Calvo et
al. 2012) and only more recently on geological heritage
(e.g. Esteve et al. 2018). However, to this day, they have
not been used in geomorphological analysis nor in the
valorisation of geoheritage.

Optical rugosimeters (Fig. 4) share principles with
multi-image photogrammetry. Three collimated white
light sources incise angularly (70°) to the surface and
three images are taken at 0°, 120° and 240°. These im-
ages are integrated automatically with photogrammetric
techniques offering a 3D image of the surface. This
equipment marketed as TracelT (Fig. 5) allows measur-
ing the surface roughness of a 5x5mm area with a
resolution in the three directions of the 2.5um space.
The topography (roughness) of the analysed surface (25
mm?) is obtained by processing the results from between
500 and 1500 profiles for each of the X and Y-axes of
the measured plane. The whole illumination and image
acquisition system is integrated in a hand-held portable
measuring unit. A fixed array of illumination and sen-
sors facilitates repeatability, diminishing errors caused
by these factors in subsequent measurements. Other
sources of variability between subsequent measurements
or operators would be comparable to other surveying
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Fig. 4 Innowep TracelT optical rugosimeter. The acquisition unit
(centre) contains the three collimated light beams and cameras that
allow a photogrammetric reconstruction of a 5x 5 mm area. North is
on the right of the image

methods and negligible, as suggested by Scott et al.
(2016).

There is a great variety of parameters to quantify the
roughness of a surface or its roughness profiles. McCar-
roll (1992) establishes roughness parameters that deter-
mine the standard deviation of the slope between the
two adjacent measurement points on the surface of the
rock (index A), and the absolute difference between the
adjacent slope values (index B), but at this time other
parameters are used that allow a more visual interpret-
ation of the results (Santos and Jalio 2013). Currently,
the following parameters (see Fig. 5 for the elements in a
profile) are used:

— Average roughness—Ra: average of the absolute
values of deviations from the base line of the profile.

— Root-mean-squared roughness—Rq: root mean
square of deviations from the base line of the profile.

— Total roughness—Rt: height between the highest
and lowest point in the profile.

— Mean peak-to-valley height—Rz: sum of the five
highest peaks and five lowest valleys in the profile.

— Among these parameters, Rz is considered the best
discriminating profiles (Dabski and Tittenbrun
2013).

Case study: the upper Manzanares river as an
example of multiscale geomorphosite

A landform to be defined as a geomorphosite needs to
have scientific, cultural/historical, aesthetic and/or so-
cial/economic value (Panizza 2001). The upper Manza-
nares river is one of the most outstanding bedrock rivers
in Spain, and probably in Europe, for its relevant scien-
tific value (particularly, due to the variety of features at
different scales contributing to the understanding of
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/max

Rt

> Ra

/min

Fig. 5 Schematic view of a topographic profile showing the elements to define Ra and Rt roughness parameters. Blue dotted line: base line of
the profile; Zp: height of the highest peak; Zv: deepest valley; Zmax: parallel line of the baseline that marks; Zmin: line parallel to the baseline that
marks the deepest valley; brown arrows: the five highest peaks; green arrows: the five deepest valleys

bedrock river geomorphology) in addition to numerous
cultural/historical values.

The upper Manzanares river is a bedrock reach located
in “La Pedriza” (Fig. 6) within the Sierra de Guadarrama
National Park (Madrid, Spain). La Pedriza constitutes the
largest granitic outcrop in Europe, and its importance, to-
gether with the rest of the national park, is seminal for the
development of geology in Spain and granite geomorph-
ology worldwide. For example, several granite weathering
forms were illustrated for the first time in this area, such
as tafoni (De Prado 1864). Geomorphological studies in
this area extend to nowadays (e.g. Pedraza et al. 2014), be-
ing particularly relevant to those associated with gnammas
formation (e.g. Dominguez-Villar et al. 2008), weathering
processes (e.g. Garcfa-Rodriguez et al. 2015, 2017) and
bedrock river features (Ortega et al. 2014; Ortega-Becerril
et al,, 2017b).

This area is also outstanding in terms of the cultural
values associated with it. La Pedriza has been part of
paintings throughout history (Bernaldo de Quiros 1923;

Pena 2016) and is also important in the development in
Spain of fieldwork as an educational tool in the late nine-
teenth century (Otero 2004). The Sierra de Guadarrama
was therefore listed as a national park in 2013 because of
its outstanding natural, scientific and cultural values.
Under the light of its exceptional heritage status, the
upper Manzanares river will be used as a case study to
show the potential of an optical rugosimeter. Specifically,
an area listed as a geosite (Code TMP126 in the Spanish
Inventory of Places of Geological Interest—IELIG) where
a series of microdioritic dikes intrude a coarse-grained Va-
riscan leucogranite (Fig. 7).

The upper Manzanares river is a perennial river which
drains an area of around 50 km? The selected area con-
sists of a mixed bedrock alluvial channel (10—15 m wide)
that contains large boulder obstacles in-channel, a knick-
point, potholes, step-pool sections and some smooth
rock platforms. The reach-scale channel gradient is 0.12
m/m. The sediment cover at the site is very scarce.
Floods occur mainly in winter caused by frontal systems.

| 4°45°'W

N
| 3954'W

@ Madrid

IBERIAN
PENINSULA

40°46'N—|

40°15'N

LA PEDRIZA

Fig. 6 Location map of La Pedriza in the Spanish Central System mountain range
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Fig. 7 Test area at the upper Manzanares river in La Pedriza

Other flood events are related to snowmelt during late
spring and intense convective storms during autumn.
The flood-peak discharge with a 500 year recurrence
(Qs00 = 145 m®s™!) exceeds around six times the annual
peak discharge (Q, = 24 m>s™"') at the study site (Ortega
et al. 2014).

The outcropping microdioritic dikes generate a variety
of large-scale sculpted features, such as waterfalls, pools,
potholes and furrows. Figure 8 shows a 2D hydraulic
modelling at the study site including results of principal
variables like flow depth and velocity, and flow direction.
This model was obtained using Iber, a free 2D hydro-
dynamic modelling software (Bladé et al. 2014). Surface
topography was obtained with a 3D mesh from a DEM
(0.25 m pixel size), which was created by interpolation of
UAV digital photogrammetry point cloud data (0.05m
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pixel size). This model shows the complex macro-scale
flow patterns generated by a highly-variable topography.

Small-scale SfM was also carried out at the site from
64 photographs of a 2.47 m> (1.58 x 1.56 m) area where
reference axes were determined using six coded targets.
Then, a point cloud of 6,612,543 points was generated
with Agisoft Photoscan Edition (1.1.6) software, which
translated into a 1,333,581 faces model, with a size be-
tween 1 and 0.1 mm. Software manipulation of the 3D
mesh was be used to obtain profiles of the model
(Fig. 9).

In addition to this, small-scale crests, troughs, submil-
limetre pits and scratch marks were observed at the out-
cropping microdioritic dikes (Fig. 10). A TracelT optical
rugosimeter was therefore used to obtain a 3D model
and roughness parameters of these surface marks.

Both the stoss slope and the lee slope were measured
keeping Y-axis oriented towards the north. Two oriented
surface scans were therefore obtained (Fig. 11). The scan
on the stoss slope (Fig. 11a) shows asymmetrical impact
scratches elongated in a northeast-southwest direction.
On the lee slope (Fig. 11b), round pits with diameters
less than 0.9 mm and depth less than 0.38 mm that could
be related to cavitation are observed. Roughness param-
eters calculated on these surfaces (Table 1) show, there
is much more variability on roughness indices between
E-W and N-S axis on the stoss slope than on the lee
slope, because of the more isotropic shape of cavitation
pits. The dominant E-W component of the impact
scratches on the stoss slope results in a higher roughness

-

Low: 0

could be correlated to occurrence of the abovementioned forms

High : 9.65 &

Fig. 8 Results of the 2D hydraulic model developed in the area of La Pedriza. This model refers to the variables flow depth (left) and velocity
(centre). Noticeable variations observed in both variables are the result of large-scale roughness of bedrock and may be responsible for the
development of large-scale bedrock forms, such as pools, potholes and grooves. The image on the right represents flow directions vectors, which

N

=0
* VectorMapv\: |
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\

Fig. 9 Textured point cloud 3D model (a). Polygonal mesh model of the same area with profile line I-I" marked (b). I-I" profile where Leucogranite
(LG) and Microdiorite (MD) areas are marked (c). Detail of mesh in the area of the profile marked with an arrow (d). Microdiorite dykes run east

to west

Fig. 10 Microdiorite dyke with a series of crests and troughs.
Scratches are superimposed to stoss slopes and steep, concave, lee
slopes show pits. North is on the top right of the image

in the N-S direction than in the E-W direction and than
in the lee slope.

These preliminary results will be discussed in relation
to the information obtained from previously discussed
techniques to obtain DEM and on the basis of its poten-
tial to be used to obtain information on flow directions
as well as from cavitation, abrasion or plucking pro-
cesses in bedrock rivers. In addition, based on how this
technique reveals these, otherwise invisible, microforms,
it will be discussed how a new layer of microscale infor-
mation enriches the geomorphological heritage values of
this site. Either establishing it as a model of trans-scale
geomorphological processes or as an educational re-
source, by giving to the public new tools to understand
the geomorphological processes behind landscape at sev-
eral scales.

Discussion: integrating high-resolution and ultra-
detailed topographic data in a bedrock river
Bedrock rivers are a fine example to demonstrate the
interconnection between small-scale features and
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formed by the action of the secondary flow forming crests and troughs

Fig. 11 Surface scans of a 5x 5 mm area on crest slopes. The stoss slopes (a) show elongated scratches corresponding to the main northeast-
southwest flow direction, which superimposes to the secondary flow forming the crests and troughs. Pits of various sizes on lee slopes (b) are

0-

large-scale behaviour in natural complex systems.
Erosional processes dominate the morphology of most
bedrock channels and to be able to understand
erosion fully, the scale factor needs to be taken into
account. Erosion ranges from small spatial scale (mi-
cro-scale, millimetre to centimetre) with erosional
characteristics as abrasion, flacking or plucking (small
size grains), meso-scale (centimetre to metre) with se-
lective erosion that produce potholes, grooves, knick-
points, inner-channels and other meso-features and
finally macro-scale (metre to kilometre) with morph-
ologies at reach, basin-scale (Wohl 1998).

Several studies have dealt with the influence of
small-scale features and processes on large-scale ones as
previously cited Anton et al. (2015) and Beer et al.
(2017), as well as more recent works by Ortega-Becerril
et al. (2017b) and the synthesis work of Scott and Wohl
(2018). However, the level of sub-millimetre detail ob-
tained by means of a microrugosimeter is unprecedented
in bedrock river geomorphology.

Large-scale techniques, such as ALS or airborne
photogrammetry are useful for the understanding of
large sections of bedrock rivers. An example of this in
the upper Manzanares river area is shown in Fig. 8. In
this model, the interaction of the river system with its
surroundings and the impact of discharge on how flow
directions may change can be ascertained. Each flow
stage, or “shaping flow”, will be related to different ero-
sional levels, from small-scale processes, such as

Table 1 Roughness parameters for both N-S and E-W axes
obtained from surface scans of stoss and lee slopes

E-W axis N-S axis

Ra (um) Rg (um) Rz (um) Ra(um) Rq (um) Rz (um)
Stossslope 61 8+2 26+ 5 9+2 12+£2 36+7
Lee slope 9+2 11+£3 33+8 8+2 10£3 28+ 6

cavitation or micro-abrasion through medium-scale
plucking or, if flow increases, large-scale erosional tool
removal, highlighting the interconnection of scales in
erosion. ALS LiDAR models may be used to assert the
influence of large-scale lithological changes; however,
this technique is not detailed enough to understand
small-scale flow diversions and the influence of localised
lithological changes on river dynamics.

The shaping flow could imply erosion at various
flow levels instead of dominant discharge that imply
that general river landscape is controlled by a certain
flow level. Some studies have examined the idea of a
dominant discharge that might shape bedrock chan-
nels. Although literature on this topic in alluvial
channels is extensive (e.g. Lamb and Fonstad 2010;
Venditti et al. 2014; Beer et al. 2017), we still are in
the early stages of understanding whether the concept
of a dominant discharge/shaping flows could be ap-
plied to bedrock channels. This is particularly import-
ant, as small-scale flows (and therefore small-scale
erosion) should be considered an agent in bedrock
river evolution. One of the keys to understand the
channel morphology in bedrock rivers is to use new
tools to measure channel erosion rates by ordinary
flows instead the classic idea of larger flows generat-
ing catastrophic changes. These flows have a lot of
energy and potential for geomorphic change, but the
recurrence period is also large. Further detailed stud-
ies should be carried out to test this hypothesis be-
cause abrasion of hard bedrock might not be
significantly effective until flow depths and sediment
loads are quite high, although abrasion generates ex-
tremely small-scale features. On the contrary, the ob-
served pitting in the lee side of pseudo-ripples seems
to be due to the cavitation process that has been
formed during low water flows and has been able to
develop bedrock erosion. This is inferred from the
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observed direction divergence between low (N186E)
and high flow (N125E) under flood conditions, as well
as the location of pitting, just downstream from
pseudo-ripples crests. This observation diverges from
general knowledge (e.g. Hancock et al. 1998) that in-
dicated high flows and speeds as necessary for the ex-
istence of cavitation. In using the microrugosimeter,
one of the key findings is indeed the occurrence of
pitting related to low flow levels that lightly cover the
pseudo-ripples. Nevertheless, this process is still
under-researched according to Hancock et al. (1998)
and this point should still be considered a hypothesis.

A higher level of detail is obtained with SfM models in
the example area (Fig. 6). This digital model shows the
surface effects of localised lithological changes, such as
the occurrence of microdiorite dykes. This technique
has proved useful for the observation of mesoscale forms
and surface differences between two adjacent lithologies:
hard, apparently smooth, microdiorite standing slightly
proud from host leucogranite, which shows block re-
moval. At this scale, it is noticeable the existence of local
flow diversions, which in turn establish themselves as
different “shaping flows”, indicated by centimetre-scale
surface marks.

Figure 12 summarises the transition between DEM
scales from ALS LiDAR to the microrugosimeter. While
the flow model obtained from a large-scale DEM
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indicates a dominant northwest-southeast flow for this
area, the DEM obtained with SfM reveals a series of
crests and troughs at small scale that means flow separ-
ation and cavitation (identified by small-scale pits).
These features are smaller and different in origin than
upstream facing convex surfaces (UFCS defined by Rich-
ardson and Carling 2005; Beer et al. 2017) and indicate a
secondary north-south local flow direction. Crests and
troughs operate at two different scales (Fig. 6C): deci-
metric crests that extend throughout leucogranite and
microdiorite, and centimetric crests confined to micro-
diorite dykes.

Optical microrugosimeter confirms the trans-scale
complexity allowing a more detailed observation of the
surface of microdiorite centimetric crests and troughs.
Stoss slopes show millimetric scratch marks (Figs. 11A
and 12C), which reflect small-scale predominant
large-scale northwest-southeast flow, while lee slopes
show a totally different pattern that could be related to
cavitation associated with the lower intensity north-south
secondary “shaping flow”. These marks, invisible to the
naked eye, highlight once more the complex patterns of
flow found in bedrock rivers. The variability of small-scale
features (Fig. 13) in these crests and troughs (sharp--
crested hummocky forms in the classification of Richard-
son and Carling (2005)) reflect what could be called
“fluvial micro-systems” within the large-scale system.

-

Fig. 12 An example of how different morphometric techniques operate indicating flow directions (red arrows, white arrows in ¢) at different scales. Macro-
scale DEM (a) and mesoscale DEM (b) from SfM and 5 x 5 mm microscan obtained with optical microrugosimeter on the stoss slope of a microdiorite crest
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AR
N} cavit.
flow separation

Fig. 13 An interpretation of the image shown in Fig. 10. Crests and
troughs in a microdiorite dyke. Scratch marks superimposed on
gentle convex stoss slopes form following the direction of the main
flow. Pseudo-ripples crests develop perpendicularly to a secondary
flow. The secondary flow could generate cavitation on steep
concave lee slopes, forming pits as a consequence of the small
crystal size and higher weatherability of microdiorite

scratch marks

Meso-scale SfM images showed microdiorite dykes stand-
ing slightly proud of host granite with an apparently
smoother surface as a result of higher resistance to ero-
sion (Schmidt hammer values of 62 for microdiorite vs. 55
for granite, according to previous works (Ortega et al.
2014, 2017b)). However, small-scale surface scans with op-
tical rugosimeter show a rough surface (indeed rougher in
microdiorite (Rz values from 15 to 35 um) than in granite
(Rz values ranging from 5 to 20 pm)), which may be a re-
flection of its higher weatherability. This is a fine example
of how variations of lithology and “energy transfer”, in the
above-discussed sense given by Hall et al. (2012), may in-
fluence sculpted forms even in an area of a few centi-
metres as it does at larger scales (Ortega-Becerril et al.
2017b).

The highly detailed observation scale offered by the
microrugosimeter has also direct and indirect implications
for considerations on geodiversity. For example, the case
study used to demonstrate this technique is listed as a geo-
site mainly on petrological and geochemical criteria because
of the intruding microdiorite dykes. However, the impact
these dykes generate on meso- and particularly micro-scale
erosion processes, and therefore its richness in relation to
geomorphological values, could go unnoticed (in the sense
of Cayla et al. 2012) without the advancement on DEM ac-
quisition offered by the microrugosimeter.
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Brilha (2016) proposed the assessment of scientific,
educational and touristic values for the inventory of geo-
sites. Scientific knowledge, didactic and interpretative
potential are three of the items in these categories. De-
tailed DEMs, such as those presented for rugosimeter,
not only increase an improvement of scientific know-
ledge and trans-scale issues, but also open up new possi-
bilities in terms of the didactic and interpretative
potential of the site, enrichening its value and the per-
ception of its geodiversity by the public.

Conclusions

This paper highlights the importance of bedrock rivers
as an outstanding feature within geodiversity and how
the evolution of methods for downscaling morphological
analysis adds new layers to their value. As Ferrer et al.
(2017) state, spatial scales introduce complexity into
geomorphology, but one also can say it introduces rich-
ness. Bedrock rivers epitomise the relationship between
scales in geomorphological research and their richness
because the diversity of small-scale features illustrates
how the complex relation of energy transfer processes at
the small-scale impacts on landscapes. The technology
improvements for obtaining DEMs has allowed quantify-
ing topography at an improved range of scales “to see
which was formerly invisible” (Viles 2016).

While the value of LiDAR (mainly ALS) and airborne
photogrammetry cannot be diminished in understanding
the large-scale components of bedrock rivers systems,
SfM offered easy and cheap solutions to obtain DEMs for
meso-scale analysis. Although technically possible using
LiDAR, SfM’s lower cost facilitates adding time to the
three spatial dimensions X, Y and Z by generating several
DEMs over time, creating then a four-dimensional (4D)
space.

The use of optical microrugosimeters in geomor-
phological research represents a big development as it
facilitates drastically micromorphometric analysis and
offers the possibility of 3D analysis of microforms in
a way a series of profiles obtained through contact
profilometers could not allow. All of this means the
use of microrugosimeters are particularly useful to
study bedrock rivers as they allow us to detect
changes in bedrock incision rates, which usually oper-
ate in very small-scale from 0.01 mm/yr. Microrugosi-
meters also allow a detailed water flow direction
assessment from morphological analysis, a key point
in steep and complex bedrock rivers.

In addition to this, microrugosimeter reveal micro-
forms, otherwise invisible in the concept Cayla et al.
(2012) introduced for large geomorphological structures.
This tool, therefore, opens the scope for improving the
knowledge we have on trans-scale issues in bedrock riv-
ers as well as it opens a new layer of information to
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enrich the geomorphological heritage values of a site by
increasing its didactic and interpretative potential and
the perception of geodiversity by the public.

All this said, the multiscale understanding of complex
systems is of great importance not only to interpret the
evolution of a natural system, but also to manage the
human-nature interactions and the sense of value of
geodiversity.

Abbreviations

ALB: Airbone LIDAR bathymetry; ALS: Airborne laser scanner; DEM: Digital
elevation model; LIDAR: Light detection and ranging; MLS: Mobile laser
scanner; SfM: Structure from motion; TLS: Terrestrial laser scanner;

UAV: Unmanned aerial vehicle (drone)

Acknowledgements

We thank Geohazards INSAR Modelling group for assistance on airborne scan
used on large-scale DEM models. MG wishes to thank Japan Geosciences
Union for support on presenting this research in session M-IS07 “Conserva-
tion of natural geosites and cultural heritage: weathering process and dam-
age assessment” at the JpGU general meeting 2017 held at Tokyo, Japan. In
addition, MG is indebted to Dr. Chiaki Oguchi for facilitating the attendance
to the JpGU general meeting and her ongoing professional and personal
support. Finally, the authors would like to thank M Hogan, DN Scott and
other, anonymous reviewer whose comments helped to improve the
manuscript.

Funding

This work was supported by Geomateriales 2 (S2013/MIT-2914) and Top
Heritage (P2018/NMT-4372) programmes from the Regional Government of
Madrid (Spain).

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated
or analysed during the current study.

Authors’ contributions

MG and JAO conceived, designed and supervised the study. JG carried out
and interpreted LIDAR models, LL did so with SfM analysis and RF with
microroughness. JAO and MG undertook the general parts of the overview
and interpretation. All authors contributed to drafting the manuscript. Al
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Geology and Geochemistry, Universidad Auténoma de
Madrid, 28049 Madrid, Spain. “Department of Geodynamics, Stratigraphy and
Palaeontology, Universidad Complutense de Madrid, 28040 Madrid, Spain.
JInstituto de Geociencias (CSIC, UCM), 28040 Madrid, Spain. *Artfabrik, 28029
Madrid, Spain.

Received: 28 March 2018 Accepted: 1 March 2019
Published online: 25 March 2019

References

Aggett GR, Wilson JP (2009) Creating and coupling a high-resolution DTM with a
1-D hydraulic model in a GIS for scenario-based assessment of avulsion
hazard in a gravel-bed river. Geomorphology 113:21-34. https.//doi.org/10.
1016/j.geomorph.2009.06.034

Alho P, Hyyppa H, Hyyppd J (2009a) Consequence of DTM precision for flood
hazard mapping: a case study in SW Finland. Nordic J Surveying Real Estate
Res 6(1):21-39

(2019) 6:29

Page 15 of 18

Alho P, Kukko A, Hyyppa H, Kaartinen H, Hyyppa J, Jaakkola A (2009b) Application
of boat-based laser scanning for river survey. Earth Surf Process Landf 34:
1831-1838. https.//doi.org/10.1002/esp.1879

Almagro A (2010) Veintidds anos de experiencia de fotogrametria arquitectonica
en la Escuela de Estudios Arabes, CSIC IPCE 2010. Ministry of Culture, Spain.
pp 26-45

Anton L, Mather AE, Stokes M, Mufioz-Martin A, De Vicente G (2015) Exceptional
river gorge formation from unexceptional floods. Nat Commun 6:7963.
https://doi.org/10.1038/ncomms8963

Aydin G, Karakurt I, Aydiner K (2011) An investigation on surface roughness of
granite machined by abrasive waterjet. Bull Mater Sci 34(4):985-992. https.//
doi.org/10.1007/512034-011-0226-x

Baggs Sargood M, Cohen TJ, Thompson CJ, Croke J (2015) Hitting rock bottom:
morphological responses of bedrock-confined streams to a catastrophic
flood. Earth Surf Dynam 3:265-279. https.//doi.org/10.5194/esurf-3-265-2015

Baltsavias E (1999a) A comparison between photogrammetry and laser scanning.
ISPRS J Photogramm Remote Sens 54:83-94. https://doi.org/10.1016/50924-
2716(99)00014-3

Baltsavias E (1999b) Airborne laser scanning: basic relations and formulas. ISPRS J
Photogramm Remote Sens 54:199-214. https.//doi.org/10.1016/50924-
2716(99)00015-5

Beer AR, Turowski JM, Kirchner JW (2017) Spatial patterns of erosion in a bedrock
gorge. JGeophys Res Earth Surf 122:1-24. https://doi.org/10.1002/
2016JF003850

Bergey EA (2006) Measuring the surface roughness of stream stones. Hydrobiologia
(2006) 563:247-252. doi: https//doi.org/10.1007/510750-006-0016-4

Bernaldo de Quiros C (1923) La Pedriza del Real de Manzanares. Comisaria Regia
del Turismo y Cultura Artistica, Madrid

Birdseye CH (1940) Stereoscopic phototopographic mapping. Ann Assoc Am
Geogr 30:1-24

Bladé E, Cea L, Corestein G, Escolano E, Puertas J, Vazquez-Cendén E, Dolz J, Coll
A (2014) Iber: herramienta de simulacion numérica del flujo en rios. Revista
Internacional de Métodos Numéricos para Célculo y Disefio en Ingenieria
30(1):1-10

Brilha J (2016) Inventory and quantitative assessment of geosites and
geodiversity sites: a review. Geoheritage 8(2):119-134. https://doi.org/10.
1007/512371-014-0139-3

Bryan PG, Clowes M (1997) Surveying Stonehenge by photogrammetry.
Photogramm Rec 15(89):739-751. https://doi.org/10.1111/0031-868X.00082

Burrough PA (1986) Methods of interpolation. In: Principles of geographical
information systems for land resources assessment. OUP, Oxford, pp 147-166

Carey CJ, Brown TG, Challis KC, Howard AJ, Cooper L (2006) Predictive modelling
of multiperiod geoarchaeological resources at a river confluence: a case
study from the Trent-Soar, UK. Archaeol Prospect 13:241-250. https.//doi.org/
10.1002/arp.295

Casas A, Benito G, Thorndycraft VR, Rico M (2006) The topographic data source of
digital terrain models as a key element in the accuracy of hydraulic flood
modelling. Earth Surf Process Landf 31(4):444-456. https://doi.org/10.1002/
esp.1278

Cavalli M, Tarolli P, Marchi L, Fontana GD (2008) The effectiveness of airborne
LiDAR data in the recognition of channel-bed morphology. Catena 73(3):
249-260. https://doi.org/10.1016/j.catena.2007.11.001

Cayla N (2014) An overview of new technologies applied to the management of
geoheritage. Geoheritage 6(2):91-102. https//doi.org/10.1007/512371-014-0113-0

Cayla N, Hoblea F, Biot V, Delamette M, Guyomard A (2012) De l'invisibilite des
geomorphosites a la revelation geopatrimoniale. Geocarrefour 87(3-4):171-186.
https://doi.org/104000/geocarrefour.8817

Chandler J (1999) Effective application of automated digital photogrammetry for
geomorphological research. Earth Surf Process Landf 24:51-63. https://doi.
0rg/10.1002/(SIC1)1096-9837(199901)24:1<51:AID-ESP948>3.0.CO;2-H

Chandler JH, Buckley S (2016) Structure from motion (SFM) photogrammetry vs
terrestrial laser scanning. In: Carpenter MB, Keane CM (eds) Geoscience
Handbook 2016: AGI data sheets, 5th edn. American Geosciences Institute,
Alexandria Section 20.1

Charlton ME, Large ARG, Fuller IC (2003) Application of airborne LiDAR in river
environments: the river coquet, Northhumberland, UK. Earth Surf Process
Landf 28(3):299-306. https://doi.org/10.1002/esp.482

Cobby DM, Mason DC, Horritt MS, Bates PD (2003) Two dimensional hydraulic
flood modelling using a finite-element mesh decomposed according to
vegetation and topographic features derived from airborne scanning laser
altimetry. Hydrol Process 17(10):1979-2000. https://doi.org/10.1002/hyp.1201


https://doi.org/10.1016/j.geomorph.2009.06.034
https://doi.org/10.1016/j.geomorph.2009.06.034
https://doi.org/10.1002/esp.1879
https://doi.org/10.1038/ncomms8963
https://doi.org/10.1007/s12034-011-0226-x
https://doi.org/10.1007/s12034-011-0226-x
https://doi.org/10.5194/esurf-3-265-2015
https://doi.org/10.1016/S0924-2716(99)00014-3
https://doi.org/10.1016/S0924-2716(99)00014-3
https://doi.org/10.1016/S0924-2716(99)00015-5
https://doi.org/10.1016/S0924-2716(99)00015-5
https://doi.org/10.1002/2016JF003850
https://doi.org/10.1002/2016JF003850
https://doi.org/10.1007/s10750-006-0016-4
https://doi.org/10.1007/s12371-014-0139-3
https://doi.org/10.1007/s12371-014-0139-3
https://doi.org/10.1111/0031-868X.00082
https://doi.org/10.1002/arp.295
https://doi.org/10.1002/arp.295
https://doi.org/10.1002/esp.1278
https://doi.org/10.1002/esp.1278
https://doi.org/10.1016/j.catena.2007.11.001
https://doi.org/10.1007/s12371-014-0113-0
https://doi.org/10.4000/geocarrefour.8817
https://doi.org/10.1002/(SICI)1096-9837(199901)24:1<51::AID-ESP948>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1096-9837(199901)24:1<51::AID-ESP948>3.0.CO;2-H
https://doi.org/10.1002/esp.482
https://doi.org/10.1002/hyp.1201

Gomez-Heras et al. Progress in Earth and Planetary Science

Cook A, Merwade V (2009) Effect of topographic data, geometric configuration
and modeling approach on flood inundation mapping. J Hydrol 377:131-
142. https;//doi.org/10.1016/jjhydrol.2009.08.015

Coratza P, Hoblea F (2018) The specifities of geomorphological heritage. In:
Reynard E, Brilha J (eds) Geoheritage assessment, protection and
management. Elsevier, pp 87-106. https://doi.org/10.1016/B978-0-12-809531-
7.00005-8

Dabski M (2015) Application of the Handysurf E-35B electronic profilometer for
the study of weathering micro-relief in glacier forelands in SE Iceland. Acta
Geol Pol 65(3):389-401. https://doi.org/10.1515/agp-2015-0018

Dabski M, Tittenbrun A (2013) Time-dependant surface deterioration of glacially
abraded basaltic boulders deposited by Flaajokull, SE Iceland. Jokull 63:55-70

Davis WM (1899) The geographical cycle. Geogr J 14:481-504

De Prado, C. (1864) Descripcion fisica y geolégica de la provincia de Madrid.
1975 facsimile edition of the original published in 1864. Publicaciones
especiales Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid

De Reu J, De Smedt P, Herremans D, Van Meirvenne M, Laloo P, De Clercq W
(2014) On introducing an image-based 3D reconstruction method in
archaeological excavation practice. J Archaeol Sci 41:251-262

De Reu J, Plets G, Verhoeven G, De Smedt P, Bats M, Cherretté B, De Maeyer W,
Deconynck J, Herremans D, Laloo P, Van Meirvenne M, De Clercq W (2013)
Towards a three-dimensional cost-effective registration of the archaeological
heritage. J Archaeol Sci 40(2):1108-1121. https//doi.org/10.1016/jjas.2012.08.040

Dominguez Pérez C, Martinez Gonzélez J, Castaneda Cerecero L, Mena Cruz A
(2017) Drones, fotogrametria y arqueologia en México. Principios y ejemplos
Arqueologfa 52:187-215

Dominguez-Villar D, Arteaga C, Garcia-Giménez R, Smith EA, de Pedraza J (2008)
Diurnal and seasonal water variations of temperature, pH, redox potential
and conductivity in gnammas (weathering pits): implications for chemical
weathering. Catena 72:37-48. https://doi.org/10.1016/j.catena.2007.03.018

Dudley N (ed) (2008) Guidelines for applying protected area management
categories. IUCN, Gland

Eardley AJ (1942) Aerial photographs: their use and interpretation. Harper and
Brothers, New York

Entwistle NS, Fuller IC (2009) Terrestrial laser scanning to derive the surface grain
size facies character of gravel bars. In: Heritage GL, Large ARG (eds) Laser
scanning for the environmental sciences. Wiley, Chichester, pp 102-114

Esteve J, Zhao YL, Maté-Gonzélez MA, Gomez-Heras M, Peng J (2018) A new
high-resolution 3-D quantitative method for analysing small morphological
features: an example using a Cambrian trilobite. Scientific Reports 12(8(1)):
2868. https://doi.org/10.1038/541598-018-21088-4

Etienne S (2002) The role of biological weathering in periglacial areas: a study of
weathering rinds in south Iceland. Geomorphology 47(1):75-86. https://doi.
0rg/10.1016/S0169-555X(02)00142-3

Ferndndez-Lozano J, Gutiérrez-Alonso G (2017) The Alejico carboniferous forest: a
3D-terrestrial and UAV-assisted photogrammetric model for geologic
heritage preservation. Geoheritage 9(2):163-173. https://doi.org/10.1007/
$12371-016-0193-0

Ferrer V, Errea P, Alonso E, Gomez-Gutierrez A, Nadal-Romero E (2017) A
multiscale approach to assess geomorphological processes in a semiarid
badland area (Ebro Depression, Spain). Cuadernos de Investigacion
Geogréfica 43(1):41-62

Finnegan NJ, Dietrich WE (2011) Episodic bedrock strath terrace formation due to
meander migration and cutoff. Geology 39(2):143-146 https.//doi.org/10.
1130/G31716.1

Fort R, Alvarez de Buergo M, Vazquez-Calvo C, Gdmez-Villalba LS (2013) Anélisis
de la microrugosidad mediante técnicas portatiles: aplicaciones y casos de
estudio en patrimonio. Ciencia y Arte V. Ministerio de Educacién y Cultura,
Madrid. 198-216

Fort R, Vazquez-Calvo C, Chapa T, Martinez-Navarrete MI, Belén M (2012) An
analytical study of Iberian Iron Age stone sculptures and their surface marks.
Archaeometry 55(3):391-406. https.//doi.org/10.1111/].1475-4754.2012.00686.x

Fraser CS, Cronk S (2009) A hybrid measurement approach for close-range
photogrammetry. ISPRS J Photogramm Remote Sens 64(3):328-333. https//
doi.org/10.1016/j.isprsjprs.2008.09.009

Freire-Lista DM, Fort R (2017) Exfoliation microcracks in building granite.
Implications for anisotropy. Eng Geol 220:85-93. https://doi.org/10.1016/j.
enggeo.2017.01.027

Freire-Lista DM, Gomez-Villalba LS, Fort R (2015) Microcracking of granite feldspar
during thermal artificial processes. Periodico di Mineralogia 84:519-537.
https://doi.org/10.2451/2015PM0029

(2019) 6:29

Page 16 of 18

French JR (2003) Airborne LIDAR in support of geomorphological and hydraulic
modelling. Earth Surf Process Landf 28(3):321-335. https://doi.org/10.1002/
esp.484

Fuijii Y, Shogakib T, Miyakawa M (2018) Photogrammetric documentation and
non-invasive investigation of a stone dry dock, the Yokosuka arsenal dry
dock no. 1, Japan. Eng Geol 234:122-131. https://doi.org/10.1016/j.enggeo.
2017.12.022

Garcia-Rodriguez M, Gémez-Heras M, Alvarez de Buergo M, Fort R, Aroztegui J
(2015) Polygonal cracking associated to vertical and subvertical fracture
surfaces in granite (La Pedriza del Manzanares, Spain): considerations for a
morphological classification. J Iber Geol 41(3):365-383. https://doi.org/10.
5209/rev_JIGE.2015.v41.n3.48860

Garcia-Rodriguez M, Sdnchez-Jiménez A, Murciano A, Pérez-Uz B, Martin-
Cereceda M (2017) Influencia de la temperatura sobre la asimetria de
pilancones en ambiente granitico. Aplicacién de un modelo de regresién
lineal. BOL Bol Soc Geol Mex 69(2):479-494

Garrote J, Diez-Herrero A, Bodoque JM, Perucha MA, Mayer PL, and Génova M
(2018) Flood hazard management in public mountain recreation areas vs.
ungauged fluvial basins. Case study of the Caldera de Taburiente National
Park, Canary Islands (Spain). Geosciences 8(1): 6. doi:https://doi.org/10.3390/
geosciences8010006

Garzon-Heydt G, Ortega-Becerril JA, Duran-Valsero JJ (2012) Los rios en roca de la
peninsula ibérica. Un ejemplo de elevada geodiversidad. In: Gonzélez Diez A.
(Coord.) Avances de la geomorfologia en Espafa (2010-2012). PUbliCan,
Santander, pp 39-42

Ghiraldi L, Giordano E, Perotti L, Giardino M (2014) Digital tools for collection,
promotion and visualisation of geoscientific data: case study of Seguret
valley (Piemonte, NW ltaly). Geoheritage 6: 103-112. https://doi.org/10.1007/
$12371-014-0115-y

Gomes-Pereira LM, Wicherson RJ (1999) Suitability of laser data for deriving
geographical information: a case study in the context of management of
fluvial zones. ISPRS J Photogramm Remote Sens 54(2-3):105-114. https.//doi.
0rg/10.1016/50924-2716(99)00007-6

Gomez-Heras M, Lopez-Gonzalez L, Garcfa-Morales S, Fort R, Alvarez de Buergo M
(2014) Integrating non-destructive techniques with photogrammetry 3D
models for the development of geographic information systems in heritage
structures. In: Rogerio-Candelera MA (ed) Science, technology and cultural
heritage. Taylor & Francis Group, London, pp 429-434

Gomez-Heras M, Smith BJ, Fort R (2008) Influence of surface heterogeneities of
building granite on its thermal response and its potential for the generation
of thermoclasty. Environ Geol 56(3-4):547-560. https://doi.org/10.1007/
500254-008-1356-3

Grissom CA, Charola AE, Washowiak MJ (2000) Measuring surface roughness on
stone; back to basics. Stud Conserv 45:73-84. https://doi.org/10.2307/1506665

Hall K, Thorn C, Sumner P (2012) On the persistence of ‘weathering'.
Geomorphology 149-150:1-10. https.//doi.org/10.1016/jgeomorph.2011.12.024

Hancock GS, Anderson RS, Whipple KX (1998) Beyond power: bedrock river
incision process and form. Geophysical Monograph Series 107:35-60. https://
doi.org/10.1029/GM107p0035

Hayakawa YS, Oguchi T, Lin Z (2008) Comparison of new and existing global
digital elevation models: ASTER G-DEM and SRTM-3. Geophys Res Lett 35(17):
L17404. https://doi.org/10.1029/2008GL035036

Heritage G, Hetherington D (2007) Towards a protocol for laser scanning in
fluvial geomorphology. Earth Surf Process Landf 32(1):66-74. https://doi.org/
10.1002/esp.1375

Heritage GL, Milan DJ (2009) Terrestrial laser scanning of grain roughness in a
gravel-bed river. Geomorphology 113(1-2):4-11. https;//doi.org/10.1016/].
geomorph.2009.03.021

Hoblea F, Delannoy J-J, Jaillet S, Ployon E, Sadier B (2014) Digital tools for
managing and promoting karst geosites in southeast France. Geoheritage 6:
113-127. https://doi.org/10.1007/512371-014-0112-1

Hodge R, Brasington J, Richards K (2009a) Analysing laser-scanned digital terrain
models of gravel bed surfaces: linking morphology to sediment transport
processes and hydraulics. Sedimentology 56(7):2024-2043. https://doi.org/10.
1111/).1365-3091.2009.01068.x

Hodge R, Brasington J, Richards K (2009b) In situ characterization of grain-scale
fluvial morphology using terrestrial laser scanning. Earth Surf Process Landf
34(7):954-968. https;//doi.org/10.1002/esp.1780

Hodgson E and Bresnahan P (2004) Accuracy of airborne lidar-derived elevation:
empirical assessment and error budget. Photogramm Eng Rem S 70(3): 331-
339. doi: https://doi.org/10.14358/PERS.70.3.331


https://doi.org/10.1016/j.jhydrol.2009.08.015
https://doi.org/10.1016/B978-0-12-809531-7.00005-8
https://doi.org/10.1016/B978-0-12-809531-7.00005-8
https://doi.org/10.1515/agp-2015-0018
https://doi.org/10.1016/j.jas.2012.08.040
https://doi.org/10.1016/j.catena.2007.03.018
https://doi.org/10.1038/s41598-018-21088-4
https://doi.org/10.1016/S0169-555X(02)00142-3
https://doi.org/10.1016/S0169-555X(02)00142-3
https://doi.org/10.1007/s12371-016-0193-0
https://doi.org/10.1007/s12371-016-0193-0
https://doi.org/10.1130/G31716.1
https://doi.org/10.1130/G31716.1
https://doi.org/10.1111/j.1475-4754.2012.00686.x
https://doi.org/10.1016/j.isprsjprs.2008.09.009
https://doi.org/10.1016/j.isprsjprs.2008.09.009
https://doi.org/10.1016/j.enggeo.2017.01.027
https://doi.org/10.1016/j.enggeo.2017.01.027
https://doi.org/10.2451/2015PM0029
https://doi.org/10.1002/esp.484
https://doi.org/10.1002/esp.484
https://doi.org/10.1016/j.enggeo.2017.12.022
https://doi.org/10.1016/j.enggeo.2017.12.022
https://doi.org/10.5209/rev_JIGE.2015.v41.n3.48860
https://doi.org/10.5209/rev_JIGE.2015.v41.n3.48860
https://doi.org/10.3390/geosciences8010006
https://doi.org/10.3390/geosciences8010006
https://doi.org/10.1007/s12371-014-0115-y
https://doi.org/10.1007/s12371-014-0115-y
https://doi.org/10.1016/S0924-2716(99)00007-6
https://doi.org/10.1016/S0924-2716(99)00007-6
https://doi.org/10.1007/s00254-008-1356-3
https://doi.org/10.1007/s00254-008-1356-3
https://doi.org/10.2307/1506665
https://doi.org/10.1016/j.geomorph.2011.12.024
https://doi.org/10.1029/GM107p0035
https://doi.org/10.1029/GM107p0035
https://doi.org/10.1029/2008GL035036
https://doi.org/10.1002/esp.1375
https://doi.org/10.1002/esp.1375
https://doi.org/10.1016/j.geomorph.2009.03.021
https://doi.org/10.1016/j.geomorph.2009.03.021
https://doi.org/10.1007/s12371-014-0112-1
https://doi.org/10.1111/j.1365-3091.2009.01068.x
https://doi.org/10.1111/j.1365-3091.2009.01068.x
https://doi.org/10.1002/esp.1780
https://doi.org/10.14358/PERS.70.3.331

Gomez-Heras et al. Progress in Earth and Planetary Science

Hodgson ME, Jensen JR, Schmidt L, Schill S, Davis B (2003) An evaluation of lidar-
and IFSAR-derived digital elevation models in leaf-on conditions with USGS
level 1 and level 2 DEMs. Remote Sens Environ 84(2):295-308. https://doi.
0rg/10.1016/50034-4257(02)00114-1

Hohenthal J, Alho P, Hyyppd J, Hyyppd H (2011) Laser scanning applications in fluvial
studies. Prog Phys Geogr 35(6):782-809. https//doiorg/10.1177/0309133311414605

Hubbard B, Glasser NF (2005) Field techniques in glaciolology and glacial
geomorphology. Wiley, Chichester

Hudson BJ (2013) Waterfalls, science and aesthetics. J Cult Geog 30(3):356-379.
https://doi.org/10.1080/08873631.2013.828482

Inoue T, lzumi N, Shimizu Y, Parker G (2014) Interaction among alluvial cover, bed
roughness, and incision rate in purely bedrock and alluvial-bedrock channel. J
Geophys Res-Earth 119(10):2123-2146. https//doi.org/10.1002/2014JF003133

Inoue T, Yamaguchi S, Nelson JM (2017) The effect of wet-dry weathering on the
rate of bedrock river channel erosion by saltating gravel. Geomorphology
285:152-161. https://doi.org/10.1016/j.geomorph.2017.02.018

Jones A, Brewer PA, Johnstone E, Macklin MG (2007) High-resolution interpretative
geomorphological mapping of river valley environments using airborne LIDAR
data. Earth Surf Process Landf 32(10):1574-1592. https//doi.org/10.1002/esp.1505

Jordd F, Navarro S, Pérez A, Cachero R, Lopez D, Lerma JL (2011) Close range
photogrammetry and terrestrial laser scanning: high resolution texturized 3D
model of the Chapel of The Kings in the Palencia Cathedral as a case study.
In: Pavelka K (ed) Proceedings of the XXllird International CIPA Symposium.
CTU-CIPA, Prague

Kasvi E, Vaaja M, Alho P, Hyyppd H, Hyyppa J, Kaartinen H, Kukko A (2012)
Morphological changes on meander point bars associated with flow
structure at different discharges. Earth Surf Process Landf 38(6):577-590.
https://doi.org/10.1002/esp.3303

Lamb MP, Finnegan NJ, Scheingross JS, Sklar LS (2015) New insights into the
mechanics of fluvial bedrock erosion through flume experiments and theory.
Geomorphology 244:33-55. https://doi.org/10.1016/j.geomorph.2015.03.003

Lamb MP, Fonstad MA (2010) Rapid formation of a modern bedrock canyon by a
single flood event. Nat Geosci 3(7):477. https://doi.org/10.1038/ngeo894

Lane SN (2000) The measurement of river channel morphology using digital
photogrammetry. Photogramm Rec 16(96):937-961. https://doi.org/10.1111/
0031-868X.00159

Lane SN, Chandler JH, Richards KS (1998) Landform monitoring, modelling and
analysis: landform in geomorphological research. In: Lane SN, Richards KS,
Chandler JH (eds) Landform monitoring. Modelling and Analysis. Wiley,
Chichester, pp 1-18

Laussedat A (1854) Mémoire sur I'emploi de la chamber Claire dans les
reconnaissances topographiques. Mémorial de I'Officier du Génie. 16. Mallet-
Bachelier, Paris

Lin Z, Oguchi T (2002) Applications of photogrammetry in geomorphology: a
review. Journal of Geography (Chigaku Zasshi) 111(1):1-15. https://doi.org/10.
5026/jgeography.111.1

Lohani B, Mason DC (2001) Application of airborne scanning laser altimetry to
the study of tidal channel geomorphology. ISPRS J Photogramm Remote
Sens 56(2):100-120. https://doi.org/10.1016/50924-2716(01)00041-7

Lépez-Arce P, Varas-Muriel MJ, Fernandez-Revuelta B, Alvarez de Buergo M, Fort
R, Pérez-Soba C (2010) Artificial weathering of Spanish granites subjected to
salt crystallization tests: surface roughness quantification. Catena 83(2-3):170-
185. https;//doi.org/10.1016/j.catena.2010.08.009

Lopez-Gonzalez L, Otero-Ortiz de Cosca R, Gomez-Heras M, Garcia-Morales S
(2016) A 4D GIS methodology to study variations in evaporation points on a
heritage building. Environ Earth Sci 75(14):1113. https;//doi.org/10.1007/
$12665-016-5907-8

Marks K, Bates P (2000) Integration of high-resolution topographic data with
floodplain flow models. Hydrol Process 14(11-12):2109-2122. https://doi.org/
10.1002/1099-1085(20000815/30)14:11/12<2109:AID-HYP58>3.0.CO;2-1

Mason DC, Cobby DM, Horritt MS, Bates PD (2003) Floodplain friction
parameterization in two-dimensional river flood models using vegetation
heights derived from airborne scanning laser altimetry. Hydrol Process 17(9):
1711-1732. https;//doi.org/10.1002/hyp.1270

McCarroll D (1992) A new instrument and techniques for the field measurement
of rock surface roughness. Z Geomorphol 36:69-79

McCarthy J (2014) Multi-image photogrammetry as a practical tool for cultural
heritage survey and community engagement. J Archaeol Sci 43:175-185.
https://doi.org/10.1016/jjas.2014.01.010

Micheletti N, Chandler JH, Lane SN (2015) Investigating the geomorphological
potential of freely available and accessible structure-from-motion

(2019) 6:29

Page 17 of 18

photogrammetry using a smartphone. Earth Surf Process Landf 40(4):473-
486. https.//doi.org/10.1002/esp.3648

Milan DJ (2009) Terrestrial laser scan-derived topographic and roughness data for
hydraulic modelling of gravelbed rivers. In: Heritage GL, Large ARG (eds)
Laser scanning for the environmental sciences. Wiley, Chichester, pp 133-146

Milan DJ, Heritage GL, Hetherington D (2007) Application of a 3D laser scanner in
the assessment of erosion and deposition volumes and channel change in a
proglacial river. Earth Surf Process Landf 32(11):1657-1674. https://doi.org/10.
1002/esp.1592

Moropoulou A, Delegou ET, Vlahakis V, Karaviti E (2007) Digital processing of SEM
images for the assessment of cleaning interventions on Pentelic marble
surfaces. Mater Character 58(11-12):1063-1069. https://doi.org/10.1016/j.
matchar.2007.04.021

Németh K, Casadevall T, Moufti MR, Marti J (2017) Volcanic geoheritage.
Geoheritage 9: 251-254. doi: https;//doi.org/10.1007/512371-017-0257-9

Notebaert B, Verstraeten G, Govers G, Poesen J (2009) Qualitative and
quantitative applications of LiDAR imagery in fluvial geomorphology. Earth
Surf Process Landf 34(2):217-231. https://doi.org/10.1002/esp.1705

Oguchi T, Wasklewicz T, Hayakawa YS (2013) Remote data in fluvial
geomorphology: characteristics and applications. In: Shroder JF (ed) Treatise
on geomorphology, vol 9. Academic Press, San Diego, pp 711-729

Omer CR, Nelson J, Zundel AK (2003) Impact of varied data resolution on
hydraulic modeling and floodplain delineation. J Am Water Resour As 39(2):
467-475. https//doi.org/10.1111/j.1752-1688.2003.tb04399.x

Ortega JA, Gomez-Heras M, Perez-Lépez R, Wohl E (2014) Multiscale structural
and lithologic controls in the development of stream potholes on granite
bedrock rivers. Geomorphology 204:588-598. https://doi.org/10.1016/j.
geomorph.2013.09.005

Ortega-Becerril JA, Jorge-Coronado A, Garzén G, Wohl E (2017a) Sobrarbe
Geopark: an example of highly diverse bedrock rivers. Geoheritage 9(4):533-
548. https://doi.org/10.1007/512371-016-0207-y

Ortega-Becerril J, Gomez-Heras M, Fort R, Wohl E (2017b) How does anisotropy in
bedrock river granitic outcrops influence pothole genesis and development.
Earth Surf Process Landf 42(6):956-968. https://doi.org/10.1002/esp.4054

Otero EM (2004) Giner y Cossio en el verano de 1883. Memoria de una excursion
inolvidable. Boletin de la Institucion Libre de Ensefianza 55:9-38

Overton IC, Siggins A, Gallant JC, Penton D, Byrne G (2009) Flood modelling and
vegetation mapping in large river systems. In: Heritage GL, Large ARG (eds)
Laser scanning for the environmental sciences. Wiley, Chichester, pp 220-244

Panizza M (2001) Geomorphosites: concepts, methods and example of
geomorphological survey. Chin Sci Bull 46(Suppl 1):4-6. https://doi.org/10.
1007/BF03187227

Panizza M, Piacente S (2008) Geomorphology and cultural heritage in coastal
environments. Geogr Fis Dinam Quat 31:205-210

Pedraza J, Carrasco MR, Dominguez-Villar D (2014) Geomorphology of La Pedriza
granitic massif, Guadarrama range. In: Gutiérrez F, Gutiérrez M (eds)
Landscapes and landforms of Spain. Springer, Amsterdam, pp 71-81

Pelletier JD, Sweeney KE, Roering JJ, Finnegan NJ (2014) Controls on the
geometry of potholes in bedrock channels. Geophys Res Lett 42(3):797-803.
https://doi.org/10.1002/2014GL062900

Pena C (2016) Sorolla tierra adentro (cat. de la exposicion). Fundacién Museo
Sorolla-Palacios y Museos, Madrid

Prieto B, Silva B, Aira N, Alvarez L (2006) Toward a definition of a bioreceptivity index
for granitic rocks: perception of the change in appearance of the rock. Int
Biodeterior Biodegrad 58(3-4):150-154. https//doi.org/10.1016/jibiod.2006.06.015

Ravanel L, Bodin X, Deline P (2014) Using terrestrial laser scanning for the
recognition and promotion of high-alpine geomorphosites. Geoheritage 6(2):
129-140. https://doi.org/10.1007/512371-014-0104-1

Ravanel L, Deline P, Bodin X (2015) LIDAR-helped recognition and promotion of
high-alpine geomorphosites. In: Lollino G, Giordan D, Marunteanu C,
Christaras B, Yoshinori |, Margottini C (eds) Engineering geology for society
and territory, Preservation of cultural heritage, vol 8. Springer, Cham, pp 249-
252. https//doi.org/10.1007/978-3-319-09408-3_42

Reusser L, Bierman P (2007) Accuracy assessment of LiDAR-derived DEMs of
bedrock river channels: Holtwood Gorge, Susquehanna River. Geophys Res
Lett 34(23): L23S06. doi: https://doi.org/10.1029/2007GL031329

Ribeiro RP, Paraguassi AB, Moreiras STF (2011) Factors affecting slab surface
roughness of siliceous dimension stones. Bull Eng Geol Environ 70:625-631.
https.//doi.org/10.1007/510064-010-0345-4

Richardson K, Carling P (2005) A typology of sculpted forms in open bedrock
channels (Vol. 392). Geological Society of America


https://doi.org/10.1016/S0034-4257(02)00114-1
https://doi.org/10.1016/S0034-4257(02)00114-1
https://doi.org/10.1177/0309133311414605
https://doi.org/10.1080/08873631.2013.828482
https://doi.org/10.1002/2014JF003133
https://doi.org/10.1016/j.geomorph.2017.02.018
https://doi.org/10.1002/esp.1505
https://doi.org/10.1002/esp.3303
https://doi.org/10.1016/j.geomorph.2015.03.003
https://doi.org/10.1038/ngeo894
https://doi.org/10.1111/0031-868X.00159
https://doi.org/10.1111/0031-868X.00159
https://doi.org/10.5026/jgeography.111.1
https://doi.org/10.5026/jgeography.111.1
https://doi.org/10.1016/S0924-2716(01)00041-7
https://doi.org/10.1016/j.catena.2010.08.009
https://doi.org/10.1007/s12665-016-5907-8
https://doi.org/10.1007/s12665-016-5907-8
https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2109::AID-HYP58>3.0.CO;2-1
https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2109::AID-HYP58>3.0.CO;2-1
https://doi.org/10.1002/hyp.1270
https://doi.org/10.1016/j.jas.2014.01.010
https://doi.org/10.1002/esp.3648
https://doi.org/10.1002/esp.1592
https://doi.org/10.1002/esp.1592
https://doi.org/10.1016/j.matchar.2007.04.021
https://doi.org/10.1016/j.matchar.2007.04.021
https://doi.org/10.1007/s12371-017-0257-9
https://doi.org/10.1002/esp.1705
https://doi.org/10.1111/j.1752-1688.2003.tb04399.x
https://doi.org/10.1016/j.geomorph.2013.09.005
https://doi.org/10.1016/j.geomorph.2013.09.005
https://doi.org/10.1007/s12371-016-0207-y
https://doi.org/10.1002/esp.4054
https://doi.org/10.1007/BF03187227
https://doi.org/10.1007/BF03187227
https://doi.org/10.1002/2014GL062900
https://doi.org/10.1016/j.ibiod.2006.06.015
https://doi.org/10.1007/s12371-014-0104-1
https://doi.org/10.1007/978-3-319-09408-3_42
https://doi.org/10.1029/2007GL031329
https://doi.org/10.1007/s10064-010-0345-4

Gomez-Heras et al. Progress in Earth and Planetary Science (2019) 6:29

Saito H, Uchiyama S, Hayakawa YS, Obanawa H (2018) Landslides triggered by an
earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and
SfM-MVS photogrammetry. Progress in Earth and Planetary Science 5:15.
https.//doi.org/10.1186/540645-018-0169-6

Santos |, Henriques R, Mariano G, Pereira DI (2018) Methodologies to represent
and promote the geoheritage using unmanned aerial vehicles, multimedia
technologies, and augmented reality. Geoheritage 10(2):143-155. https://doi.
0rg/10.1007/512371-018-0305-0

Santos PMD, Julio ENBS (2013) A state-of-the-art review on roughness
quantification methods for concrete surfaces. Constr Build Mater 38:912-923.
https://doi.org/10.1016/j.conbuildmat.2012.09.045

Scott DN, Brogan DJ, Lininger KB, Schook DM, Daugherty EE, Sparacino MS, Patton
Al (2016) Evaluating survey instruments and methods in a steep channel.
Geomorphology 273:236-243. https//doi.org/10.1016/j.geomorph.2016.08.020

Scott DN, Wohl EE (2018) Bedrock fracture influences on geomorphic process
and form across process, domains and scales. Earth Surf Process Landf.
https://doi.org/10.1002/esp.4473

Sklar LS, Dietrich WE (2004) A mechanistic model for river incision into bedrock
by saltating bed load. Water Resour Res 40(6)

Sousa LMO, Gongalves BMM (2013) Differences in the quality of polishing
between sound and weathered granites. Environ Earth Sci 69:1347-1359.
https://doi.org/10.1007/512665-012-2035-y

Springer GS, Tooth S, Wohl EE (2005) Dynamics of pothole growth as defined by
field data and geometrical description. J Geophys Res-Earth 110:F04010.
https://doi.org/10.1029/2005JF000321

Straatsma MW, Baptist M (2008) Floodplain roughness parameterization using
airborne laser scanning and spectral remote sensing. Remote Sens Environ
112(3):1062-1080. https://doi.org/10.1016/j.rse.2007.07.012

Sweeney KE, Roering JJ (2017) Rapid fluvial incision of a late Holocene lava flow:
insights from LiDAR, alluvial stratigraphy, and numerical modeling. GSA Bull
129(3-4):500-512. https://doi.org/10.1130/B31537.1

Thoma DP, Gupta SC, Bauer ME, Kirchoff CE (2005) Airborne laser scanning for
riverbank erosion assessment. Remote Sens Environ 95(4):493-501. https://
doi.org/10.1016/j.rs€.2005.01.012

Tinkler K, Wohl E (1998). A primer on bedrock channels. In: Rivers over rock (K.
Tinkler and E. Wohl, eds.). AGU monograph, 107, 1-18

Vézquez P, Lugue A, Alonso FJ, Grossi CM (2013) Surface changes on crystalline
stones due to salt crystallisation. Environ Earth Sci 69:1237-1248. https://doi.
0rg/10.1007/512665-012-2003-6

Vazquez-Calvo C, Alvarez de Buergo M, Fort R, Varas MJ (2012) The measurement of
surface roughness to determine the suitability of different methods for stone
cleaning. J Geophys Eng 9:108-117. https://doi.org/10.1088/1742-2132/9/4/5108

Veldzquez VF, Portela VDA, Sobrinho JMA, Guedes ACM, Letsch MAJSP (2016) Fluvial
erosion characterisation in the Juqueriqueré River channel, Caraguatatuba,
Brazil. Earth Science Research 5:105 https//doi.org/10.5539/esr.v5n2p105

Venditti JG, Rennie CD, Bomhof J, Bradley RW, Little M, Church M (2014) Flow in
bedrock canyons. Nature 513(7519):534 https://doi.org/10.1038/nature13779

Viles HA (2001) Scale issues in weathering studies. Geomorphology 41(1):63-72.
https://doi.org/10.1016/50169-555X(01)00104-0

Viles HA (2012) Microbial geomorphology: a neglected link between life and
landscape. Geomorphology 157-158:6-16. https://doi.org/10.1016/j.
geomorph.2011.03.021

Viles HA (2016) Technology and geomorphology: are improvements in data
collection techniques transforming geomorphic science? Geomorphology
270:121-133. https://doi.org/10.1016/j.geomorph.2016.07.011

Wang Y, Liang X, Flener C, Kukko A, Kaartinen H, Kurkela M, Vaaja M, Hyyppa H,
Alho P (2013) 3D modeling of coarse fluvial sediments based on mobile laser
scanning data. Remote Sens 5(9):4571-4592. https://doi.org/10.3390/
155094571

Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012)
‘Structure-from-motion’ photogrammetry: a low-cost, effective tool for
geoscience applications. Geomorphology 179:300-314. https://doi.org/10.
1016/j.geomorph.2012.08.021

Whipple KX, DiBiase RA, Crosby BT (2013) Bedrock rivers. In: J. Shroder (Ed).
Treatise on geomorphology 2: 550-573. Academic Press, San Diego

Wohl E, Bierman PR, Montgomery DR (2017) Earth’s dynamic surface: a
perspective on the past 50 years in geomorphology. The web of geological
sciences: advances, impacts, and interactions Il. Geological Society of
America Special Paper 523. doi: https://doi.org/10.1130/2016.2523(01)

Wohl EE (1998) Bedrock channel morphology in relation to erosional processes.
Geophysical Monograph Series 107:133-151

Page 18 of 18

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://doi.org/10.1186/s40645-018-0169-6
https://doi.org/10.1007/s12371-018-0305-0
https://doi.org/10.1007/s12371-018-0305-0
https://doi.org/10.1016/j.conbuildmat.2012.09.045
https://doi.org/10.1016/j.geomorph.2016.08.020
https://doi.org/10.1002/esp.4473
https://doi.org/10.1007/s12665-012-2035-y
https://doi.org/10.1029/2005JF000321
https://doi.org/10.1016/j.rse.2007.07.012
https://doi.org/10.1130/B31537.1
https://doi.org/10.1016/j.rse.2005.01.012
https://doi.org/10.1016/j.rse.2005.01.012
https://doi.org/10.1007/s12665-012-2003-6
https://doi.org/10.1007/s12665-012-2003-6
https://doi.org/10.1088/1742-2132/9/4/S108
https://doi.org/10.5539/esr.v5n2p105
https://doi.org/10.1038/nature13779
https://doi.org/10.1016/S0169-555X(01)00104-0
https://doi.org/10.1016/j.geomorph.2011.03.021
https://doi.org/10.1016/j.geomorph.2011.03.021
https://doi.org/10.1016/j.geomorph.2016.07.011
https://doi.org/10.3390/rs5094571
https://doi.org/10.3390/rs5094571
https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.1130/2016.2523(01

	Abstract
	Introduction: geomorphological heritage and bedrock rivers
	Bedrock rivers: morphometry and scale issues
	DEMs from LiDAR in bedrock fluvial geomorphology and hydraulic modelling
	Structure from motion: A cost-effective multiscale technique
	Contribution of micromorphometry to the study of bedrock rivers and small-scale geomorphodiversity
	Case study: the upper Manzanares river as an example of multiscale geomorphosite
	Discussion: integrating high-resolution and ultra-detailed topographic data in a bedrock river
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

