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Abstract

The importance of deep ocean observations has been recognized with regard to changes in the deep ocean such
as global bottom-water warming. Therefore, sustainable deep ocean monitoring networks that use autonomous
profiling floats have been widely proposed, and a number of deep-float deployment initiatives have begun around
the world. Deployed floats promise to provide unprecedented deep ocean information. However, present deep-
float data are known to have biases. In particular, a depth-dependent bias in salinity data is a major issue that
prevents us from constructing global deep ocean monitoring networks. This paper proposes a new approach to
utilize ongoing deep-float salinity data to reduce the bias in estimates of the global full-depth ocean state. It
reports results from comparative experiments with and without deep-float data by using the proposed approach to
examine the impact of data from currently operating deep floats on ocean state estimates. The results demonstrate
that available float data possibly contribute local corrections to the modeled climate ocean state. Furthermore, we
clarify how interannual basin-scale estimations are controlled by available deep-float salinity data in two specific
regions of the Southern and Indian Oceans.

Introduction
The deep ocean has gained attention from climate re-
searchers since Fukasawa et al. (2004) documented
bottom-water warming in the abyssal North Pacific
Ocean. The warming was detected by repeated
high-accuracy ship-based observations by the World
Ocean Circulation Experiment (WOCE) Hydrographic
Program on its P1 survey line across the subarctic Pa-
cific along 47° N, and Johnson et al. (2008) reported
similar bottom-water warming in the Indian basin, also
from revisit cruises. Subsequent researchers have de-
tected global bottom-water warming (e.g., Purkey and
Johnson 2010, Kouketsu et al. 2011).
Recent observational studies have indicated that Ant-

arctic Bottom Water (AABW) has been freshening in
some observational sections (e.g., Aoki et al. 2005, Rin-
toul 2007, Jacobs and Giulivi 2010). Purkey and Johnson
(2013) quantified the freshening of AABW around Ant-
arctica in a straightforward way. Nevertheless, deep
ocean observations remain too sparse to resolve the
temporal evolution of the deep ocean state.

At the beginning of the 2000s, dramatic progress was
made in ocean observations with the introduction of
Argo profiling floats capable of continuously monitoring
ocean properties in the upper 2000 m (e.g., Argo Science
Team, 2001). The success of the monitoring network for
the upper ocean (e.g., Riser et al. 2016) motivates the
construction of a similar global monitoring network for
the deep ocean.
Recently, several types of deep floats have been devel-

oped or released. Among these, Deep NINJA is a reliable
deep float that can continuously monitor depths to
4000 m as an extension of the conventional Argo float
(Kobayashi et al. 2013). Deep NINJAs have been de-
ployed in the North Pacific, South Indian, and Southern
Oceans. Although interesting information about the
deep ocean state has been obtained, it is known that the
salinity measurements are sometimes biased by O(0.01)
mainly because of the conductivity sensor measure-
ments, which makes it difficult to exploit them (Kobaya-
shi 2016). Such bias is also found in measurements of
other types of deep floats (e.g., Zilberman and Maze
2015).
In this paper, we propose a practical technique to

blend these problematic but scientifically valuable data
into full-depth ocean state estimates (e.g., Osafune et al.
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2015) by reducing their bias through a dynamical ap-
proach. Then, we examine the impact of available Deep
NINJA data on deep ocean state estimation by compar-
ing two data sets from a set of comparative experiments
with and without the deep-float data.

Methods experimental
Data and assimilated system
The deep-float data that we used were 316 profiles ob-
tained from available Deep NINJA floats collected and
released by the Japan Agency of Marine-Earth Science
and Technology (JAMSTEC: http://www.jamstec.go.jp/
ARGO/deepninja/). Figure 1 shows the 17 Deep NINJA
trajectories that were used in this study, covering the
Southern (11 floats), North Pacific (4), and South Indian
(2) Oceans (Table 1), each profile including temperature,
salinity, and pressure. The equipped sensor accuracy was
0.002 °C for temperature and 0.005 for salinity. The data
were processed through basic quality control in the same
way as for a conventional Argo float (Wong et al., 2018).
Deep NINJA salinity data are known to have a bias that

depends on pressure. Kobayashi (2018) thoroughly exam-
ined the bias in Appendix B of his paper. The problem is
that the bias is different for each float; the values range
from − 0.005 to − 0.02 at depths of 3500–4000m based on
analysis of float data for which there are also comparable
ship-based Conductivity Temperature Depth profiler
(CTD) data obtained at the same time as the float deploy-
ments (Fig. 2; Kobayashi 2016). We assume the bias value
to be time independent since float lifetime is relatively
short with a maximum of approximately 2 years (Table 1).
This assumption may be premature since it has not yet
been validated, so there could be some kind of
time-dependent bias. Nevertheless, here, we assume there

is not as a first step toward improved deep ocean state
estimation.
The data synthesis system is based on the work of Osa-

fune et al. (2015). It generates a dynamically self-consistent
long-term ocean state estimation, “Estimated STate of glo-
bal Ocean for Climate research” (ESTOC), by applying a
four-dimensional variational (4D-VAR) adjoint approach
(e.g., Sasaki 1970, Stammer et al., 2002, Wunsch and
Heimbach 2007). The ocean general circulation model we
used has a horizontal resolution of 1° in both latitude and
longitude, and it includes 46 vertical levels for the global
ocean basin. The control variables are surface forcing data
and initial conditions for three-dimensional temperature
and salinity distributions.
The ESTOC system is quite suitable for data synthesis

of relatively sparse observations because the 4D-VAR ad-
joint method can generate a dynamically self-consistent
state estimation through backward tracking of adjoint
sensitivity (e.g., Köhl and Stammer 2004, Masuda et al.
2010), which takes advantage of both statistical and dy-
namical connections between the model and observa-
tions (e.g., Wunsch and Heimbach 2013). Thus, we used
this system to examine the impact of available and lo-
cally distributed deep-float salinity data on deep ocean
state estimation through a comparative twin experiment.
The other observations that were synthesized are simi-

lar to those in Osafune et al. (2015): subsurface
temperature and salinity from the ENSEMBLES (EN4)
dataset compiled by the Hadley Centre of the UK Me-
teorological Office (Good et al. 2013), sea surface
temperature (SST) from historical 10-day datasets com-
piled from the Optimally Interpolated SST (OISST)
dataset (Reynolds et al. 2002), and the historical 10-day
sea surface dynamic height anomaly (SSDHA) derived

Fig. 1 Trajectories of the Deep NINJA floats listed in Table 1. Red rectangles show the analytical areas for Figs. 4 and 5 (see the text for more details)
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from sea surface height data in the Copernicus Marine
Environment Monitoring Service (CMEMS) dataset. In
addition, we used a global mean sea level reconstructed
through the method of Church and White (2011), which
is updated and provided by the Commonwealth Scien-
tific and Industrial Research Organisation (CSIRO). The

EN4 dataset includes some Deep NINJA data only for
water temperature.

Dynamical approach to bias reduction of salinity data
There are many studies on observation bias correction
(e.g., Eyre 1992, Zhu et al. 2014, Eyre 2016). Here, we
propose a pre-process for biased Deep NINJA salinity
data. This is a kind of “static scheme” in which the sta-
tistics of the differences between observations and model
background equivalents are evaluated to remove biases
(Eyre 2016). The advantage of our method is the use of
time-dependent ocean states based on an archived ocean
observation dataset to calculate the statistics.
First, the Deep NINJA data were compiled as monthly

gridded data averaged over each model grid volume.
Then, we compared the salinity profiles from each grid-
ded Deep NINJA with the observation-based back-
ground ocean state of a time-varying (monthly)
reference field. The state was made by a conventional
optimal interpolation of a monthly gridded EN4 dataset
based on the World Ocean Atlas 2013 (WOA13) pro-
duced by the National Oceanographic Data Center. The
EN4 dataset included Argo float data together with
quality-controlled available observations. In particular,
the number of profiles in the Southern Ocean greatly in-
creased after 2008 (not shown).
Since deep floats drift freely with the ocean currents,

the reference ocean state should be determined
region-by-region, depth-by-depth, and month-by-month.
The depth-dependent salinity bias value b can thus be

Table 1 Inventory of Deep NINJA floats used in this study including information on the deployment and total number of observed
profiles

Serial no. Date of deployment Date of the last observation Area of deployment Position of deployment No. of profiles

1 2012/8/29 2012/8/30 Subarctic, North Pacific 40° 40.00′ N, 114° 46.18′ E 1

2 2012/8/29 2012/8/29 Subarctic, North Pacific 40° 40.00′ N, 114° 46.18′ E 16

3 2012/12/19 2013/5/31 Off the Adélie Coast, Antarctica 60° 00.62′ S, 139° 56.12′E 9

4 2012/12/5 2012/12/5 South of NZ, Southern Ocean 56° 59.87′ S, 173° 59.42′ E 25

5 2012/12/17 2013/7/14 Off the Adélie Coast, Antarctica 62° 00.38′ S, 137° 00.42′ E 10

6 2012/12/16 2014/8/22 Off the Adélie Coast, Antarctica 62°45.73′ S, 143° 36.05′ E 23

7 2013/7/17 2013/7/17 Subtropical, North Pacific 30° 03.91′ N, 144° 58.09′ E 33

8 2014/3/6 2014/3/27 Off the Adélie Coast, Antarctica 63° 40.55′ S, 148° 35.65′ E 3

9 2014/3/7 2014/3/7 Off the Adélie Coast, Antarctica 59° 14.34′ S, 150° 08.85′ E 23

11 2014/1/19 2014/1/19 Off the Budd Coast, Antarctica 60° 03.50′ S, 109° 53.32′ E 10

12 2014/1/22 2014/1/22 Off the Budd Coast, Antarctica 62° 00.42′ S, 110° 00.19′ E 5

13 2014/1/27 2014/1/27 Off the Budd Coast, Antarctica 64° 15.90′ S, 107° 42.00′ E 24

14 2014/1/24 2014/1/24 Off the Budd Coast, Antarctica 64° 05.36′ S, 109° 51.01′ E 40

15 2014/12/6 2014/12/6 Off the Budd Coast, Antarctica 59° 59.96′ S, 109° 51.92′ E 43

16 2016/1/31 2016/1/31 Western Indian Ocean 29° 59.98′ S, 52° 32.01′ E 18

17 2016/2/2 2016/2/2 Western Indian Ocean 40° 41.49′ S, 45° 54.43′ E 20

18 2016/3/2 2016/3/2 Subtropical, North Pacific 29° 56.31′ N, 147° 27.26′ E 12

Fig. 2 Depth profiles of the deviation of float salinity from shipboard
reference CTD observations cited from Kobayashi (2016). The colors
identify the Deep NINJA floats with serial numbers 2, 3, 4, 7, and 11
listed in Table 1
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defined as a function dependent only on depth (z) for
each float as

b zð Þ ¼ y t; r tð Þð Þ−yref mon tð Þ; r tð Þð Þ;

where y is the salinity profile value of the float obser-
vation, t the time, r(t) the three-dimensional float
position, yref the monthly background ocean state,
and mon(t) the month relevant to the observation
time t. The overbar denotes the time-mean procedure
for the period during which each float operates. The
procedure means we calculate the average value of
the differences between the reference ocean state and
float observation along the float trajectory for each
depth from the surface to 4000 m under the assump-
tion that both observational mean values match each
other.
The depth-dependent salinity bias was determined by

the above approach for each float. The values at 4000 m
depth range from − 0.044 to 0.003 (Fig. 3 a, b) shows the
estimated mean bias profile with standard deviations.
The values at depths of 3500 and 4000 m are − 0.015
and − 0.017, respectively. The standard deviation values
are 0.008 and 0.009, respectively for each depth. The
magnitude of the bias increases as the depth increases
beyond 2000 m.
Besides bias, there are other factors that could con-

tribute to the differences between the reference ocean
states and float observations, for example, sampling
error and representativeness error. Although we can-
not evaluate either of them, the gross features of
Fig. 3a are largely consistent with those of Fig. 2 (and
Kobayashi 2018) where negative biases of order 0.01
with standard deviations of order 0.005 were detected
at 3500–4000 m depth when compared with shipboard

CTD observations performed when several Deep
NINJAs were deployed. This partly validates our
methodology. Further examination by using more in
situ data will be required to test and improve our ap-
proach. In addition, our scheme has some limitations
due to the fact that the statistics depend only on a
priori available information. Some update of the bias
correction scheme, for instance, by using a variational
scheme which are adaptive rather than static ones
(e.g., Derber and Wu, 1998; Zhu et al. 2014), should
lead to further refinement.
We used the salinity values for each float, with the in-

dividual depth-dependent bias values removed, as ob-
servational values in the ESTOC system. The ESTOC
system is based on an anomaly data assimilation
method that automatically determines the weight of ob-
servational mean values to observational time-varying
components by using the statistical values of model var-
iables (Eq. (2) of Osafune et al. 2015). We assume that
corrected Deep NINJA data are reliable with regard to
variability. Then, the assimilation approach of Osafune
et al. (2015) reduces to conventional anomaly assimila-
tion for the compiled Deep NINJA dataset. In addition,
we place weight on synthesizing the Deep NINJA data
by taking into consideration the observational number
included in each profile and the accuracy of the obser-
vation. We assume 80 observation levels are included
in one deep-ocean grid whose height is approximately
400 m. Deep NINJA sensors have about 2.5 times
greater accuracy than gridded EN4 salinity data, which
we estimate from averaged EN4 standard deviation
values from 2012 to 2016 in the world’s oceans at a
depth of 4000 m. The total weight may be somewhat
overestimated due to differences in the statistics be-
tween EN4 and Deep NINJA data. We discuss this
point below.

a b

Fig. 3 a Estimated salinity bias at 4000m depth for each float in Fig. 1. b Depth profile of the estimated mean salinity bias for all 17 Deep NINJA
floats. The error area is defined by one standard deviation (gray lines) calculated from the 17 profiles
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Comparative state estimations to examine deep-float impact
We carried out two data synthesis experiments on the
Earth Simulator parallel supercomputer of JAMSTEC to
obtain ocean state estimations with and without
deep-float data. The case without deep-float data, here-
after called the reference case, is the same as in Osafune
et al. (2015), except for the length of the assimilation
window (2000–2016) and implementation of global
mean sea-level data assimilation. The deep-float case
(hereafter, DN case) is the same as the reference case
but includes Deep NINJA salinity data for the period
2012–2016 (Table 1), synthesized through the proposed
data process and anomaly assimilation described in the
“Dynamical approach to bias reduction on salinity data”
section. The ocean state estimation was obtained after
50 iterations. The period of analysis in this paper is from

2007 to 2016 to focus on the impact of deep float
observations.

Results and discussion
Local impact of deep-float salinity data
To examine the temporal development of the estimated
subsurface ocean state, we focus on two areas of 50° lon-
gitude by 10° latitude (Fig. 1): the Southern Ocean area
off Antarctica’s Wilkes Land (100–150° E, 60–70° S) and
the South Indian Ocean area (40–90° E, 40–50° S). The
former is an area of concentrated monitoring over
5 years (Table 1), while the latter is an area covered by
only two floats for a 1-year period.
Figure 4 shows the temporal development of salinity at

3500 m depth for the period 2012–2016. The area

a

b

Fig. 4 Temporal development of area-mean salinity at 3500m depth for a the Southern Ocean area (100–150° E, 60–70° S) and b the South
Indian Ocean area (40–90° E, 40–50° S), outlined in Fig. 1. The black lines indicate deep-float observations, and the blue and red lines denote the
reference and DN cases, respectively, averaging only where deep-float observations exist (see the text for more details). Crosses denote monthly
values and dots denote 6-month running mean values
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average is determined for the grid points and times
where deep-float observations exist. For the Southern
Ocean, the results for the DN case tend to follow the
deep-float data closely. The root mean square difference
values are reduced to 0.0013 compared to 0.003 for the
reference case values for the 6-month running mean
(black dots in Fig. 4a). The raw values of the deep-float
observations (crosses in Fig. 4a) generally have larger
variances than the state estimations. This is mainly be-
cause these include variability at a scale smaller than the
model grid size of 1°. For the Indian Ocean, the root
mean square difference is reduced to 0.0033 compared
to 0.0075 for the reference case values (crosses in
Fig. 4b). Although the differences between the results for
the DN case and deep-float observations are less than
the initial sensor accuracy of 0.005, these corrections
can be meaningful since data synthesis reduces errors
through integration of other information. These subtle

but systematic reductions of the differences demonstrate
the potential importance of deep-float observations for
estimating the tempo-spatially “local” deep ocean state.
That is, available deep-float salinity data can contribute
to local ocean state estimation by providing a control
variable, although our approach is an empirical one that
includes some assumptions.

Representativeness of float observations
We further investigated the tempo-spatial representa-
tiveness of float observations for most of the above areas
and time-windows by using estimated states. Figure 5 is
the same as Fig. 4, but the area average of the reference
and DN cases is shown for all grid points included in
the area, resulting in temporally continuous curves.
For the Southern Ocean, the estimated deep ocean

state shows a salinity trend of 0.002 per decade (red line
in Fig. 5a), which appears consistent with bias-corrected

a

b

Fig. 5 The same as Fig. 4a and b for a and b, except that the area averages of the reference and DN cases are determined for all the grid points
within each analytical area
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deep-float observations (black dots). This result suggests
that monthly mean gridded salinity values from sparse
deep-float data can represent the salinity in the entire
target area to some extent, which demonstrates that it is
possible for ongoing deep-float observation to control
the modeled deep ocean state even for a relatively large
area. Note that the well-known freshening in this region
(e.g., Purkey and Johnson 2013; Kobayashi 2018) is vis-
ible when the time series are replotted with a neutral
density coordinate as in Kobayashi (2018; Fig. 6), al-
though our anomaly data assimilation makes neutral
density values of the mean state shift to lighter ones.
For the Indian Ocean, the impact of deep-float data is

limited to the past 2 years, before which only the base-
line is shifted. This result implies that two deep-float de-
ployments during 1-year periods for this area can
contribute only one more year of correction by adjoint
retro-chronic temporal development. Longer-term deep
ocean climate state estimation requires more data even
for short periods of 1-year monitoring since the adjoint
signal itself can be traced back for a period of 50 years
(e.g., Masuda et al. 2010).
It should be noted that this observational density

(number of deep floats and monitoring periods: ten de-
ployments during 5 years for the Southern Ocean and
two deployments during 1 year for the Indian Ocean)
does not provide precise indices for a global monitoring
scheme for some ocean state estimations. This is be-
cause the obtained quantitative impacts can depend
highly on the local ocean state, period, model represen-
tativeness of each region, data assimilation schemes, and
other factors. In addition, some issues remain to be
solved in the data processing. For example, the monthly
background ocean state used as a reference field in the
data processing basically works to exclude the detection
of long-term trends.

Another problem is that of weight validation in data
synthesis. We made another state estimation in which
the weight of the Deep NINJA data synthesis was re-
duced by 95%. The root mean square difference values
for the Southern Ocean area, discussed in the “Local im-
pact of deep-float salinity data” section, change to
0.0018 from 0.0013 for the case of Fig. 4a, consistently
reducing compared to 0.003 for the reference case values
for the 6-month running mean (not shown). For the In-
dian Ocean, the root mean square difference changes to
0.0059 from 0.0033 for the case of Fig. 4b, also reducing
compared to 0.0075 for the reference ones (not shown).
This shows that a relatively small weight can still result
in certain corrections and may suggest that further iter-
ation possibly leads to a closer solution. Nevertheless,
how we should determine the weight remains to be
solved.
Our estimation is a practical first step toward a better

deep-float observation scheme by using the present
deep floats. Further research along these lines will pro-
vide indispensable information for the construction of
future deep-ocean monitoring systems and, in addition,
the improvement of the deep floats themselves inclu-
sive of equipped sensors as well as data assimilation
systems.

Conclusions
We have proposed a practical technique of deep-float
salinity data processing for deep ocean state estimation
to explore deep ocean climate change. The method con-
sists of preprocessing for reduction of bias with a dy-
namical approach suitable for anomaly data assimilation
under some assumptions.
We examined the impact of deep-float salinity data on

ocean state estimation by using a 4D-VAR data synthesis
system and proposed data processing in target regions in
the Southern Ocean and Indian Ocean. The results show
that corrected deep-float data can help constrain the
modeled ocean state around the specific localities of
float profiles. Regarding basin-scale climate change, in
the case of the Southern Ocean, where we made concen-
trated observations with ten floats over 5 years, a slight
salinization trend was estimated for the entire 50° longi-
tude by 10° latitude area, basically in agreement with
bias-corrected deep-float data. In the case of the South
Indian Ocean where only two floats were available for a
1-year period, no significant change in time development
was found until 1 year before data input.
Although these results do not provide concrete indices

for either the required float number or the deployment
period due to the limited sampling, they can contribute
to global deep-float network planning in the near future
by demonstrating the controllability of the modeled deep
ocean state.

Fig. 6 Temporal development of area-mean salinity at the 28.32
neutral density surface for the Southern Ocean area (100–150° E,
60–70° S) for the DN case. The curve is smoothed out through a 6-
month running mean procedure
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