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Abstract
Objectives This study aims to establish nomograms to accurately predict the overall survival (OS) and progression-
free survival (PFS) in patients with non-small cell lung cancer (NSCLC) who received chemotherapy alone as the first-
line treatment.

Materials and methods In a training cohort of 121 NSCLC patients, radiomic features were extracted, selected 
from intra- and peri-tumoral regions, and used to build signatures (S1 and S2) using a Cox regression model. Deep 
learning features were obtained from three convolutional neural networks and utilized to build signatures (S3, S4, 
and S5) that were stratified into over- and under-expression subgroups for survival risk using X-tile. After univariate 
and multivariate Cox regression analyses, a nomogram incorporating the tumor, node, and metastasis (TNM) stages, 
radiomic signature, and deep learning signature was established to predict OS and PFS, respectively. The performance 
was validated using an independent cohort (61 patients).

Results TNM stages, S2 and S3 were identified as the significant prognosis factors for both OS and PFS; S2 (OS: (HR 
(95%), 2.26 (1.40–3.67); PFS: (HR (95%), 2.23 (1.36–3.65)) demonstrated the best ability in discriminating patients with 
over- and under-expression. For the OS nomogram, the C-index (95% CI) was 0.74 (0.70–0.79) and 0.72 (0.67–0.78) 
in the training and validation cohorts, respectively; for the PFS nomogram, the C-index (95% CI) was 0.71 (0.68–0.81) 
and 0.72 (0.66–0.79). The calibration curves for the 3- and 5-year OS and PFS were in acceptable agreement between 
the predicted and observed survival. The established nomogram presented a higher overall net benefit than the TNM 
stage for predicting both OS and PFS.

Conclusion By integrating the TNM stage, CT radiomic signature, and deep learning signatures, the established 
nomograms can predict the individual prognosis of NSCLC patients who received chemotherapy. The integrated 
nomogram has the potential to improve the individualized treatment and precise management of NSCLC patients.

Highlights
 • Integrated nomograms aim to predict the chemotherapy prognosis of NSCLC patients.
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Introduction
Lung cancer presents the highest global mortality 
among cancer-related diseases in both men and women 
and remains one of the most common malignancies [1, 
2]. Non-small-cell lung cancer (NSCLC) accounts for 
approximately 85% of all lung cancer cases, and its preva-
lence continues to increase [3]. The 3-year survival rate of 
NSCLC patients is clinically less than 30%, with a median 
survival time of 8–9 months [4, 5].

Chemotherapy is the most widely used first-line of 
treatment (monotherapy or combined therapy) for 
NSCLC with various prognoses [6, 7], which are affected 
by clinical pathology factors such as age, sex, smoking 
status, metastatic, pathological and genotype [8]. Accu-
rately predicting the chemotherapy response for each 
patient with NSCLC may benefit the decision-making of 
the treatment plan and overall survival (OS).

The Tumor, Node, Metastasis (TNM) staging system 
is a standard of disease staging and prognosis prediction 
endorsed widely by the American Joint Committee on 
Cancer (AJCC) and the Union for International Cancer 
Control (UICC). It is important to note that we imple-
mented the seventh edition of this system. Introduced 
in 2010, this edition has been broadly adopted since. 
In the seventh edition of the TNM system, ‘T’ refers to 
the size and local invasiveness of the primary tumor, ‘N’ 
indicates whether the lymph nodes are involved, and 
‘M’ provides information on metastasis. Each category 
is further staged from 0 (none or minimum) up to the 
highest level (most severe or extensive). By considering 
these variables, the overall stage of a patient’s disease 
is determined, which is instrumental in estimating the 
recurrence and survival rates. [9]. However, the progno-
sis of patients with the same stage varies widely because 
this system only considers three anatomic features while 
overlooking several significant characteristics, such as 
smoking status and radiomic features [10, 11]. Ou et 
al. analyzed the smoking status of NSCLC patients and 
found that it was a favorable prognostic factor for OS 
[12]. Song et al. extracted the intensity, shape, and texture 
features of EGFR-mutated NSCLC patients and success-
fully predicted their progression-free survival (PFS).

A nomogram is a common tool for predicting the 
prognosis of patients [13] and can provide a numerical 
probability of clinical endpoints by creating an intuitive 
graph. Song et al. established a nomogram to predict PFS 
after EGFR tyrosine kinase inhibitor therapy in NSCLC 

patients to improve personalized management [14]. Deng 
et al. constructed a nomogram to predict the individual 
prognosis of NSCLC patients with distant metastasis 
and identified alternative several prognostic factors [15]. 
Liang et al. developed a nomogram to predict the sur-
vival of patients with resected NSCLC [16]. However, 
few studies have focused on predicting the prognosis of 
patients with NSCLC treated only with chemotherapy as 
the first-line treatment.

Moreover, the current studies on fitting survival curves 
with nomogram mainly applied clinical information 
combined with radiomic features or deep learning fea-
tures [17]. Yang et al. developed a radiomics nomogram 
by combining 2D and 3D radiomics features and clini-
cal predictors to assess the OS of NSCLC patients [18]. 
Tian et al. used a deep learning model to obtain PD-L1 
expression signature and combined it with clinical mod-
els to predict immunotherapy response [19]. Multimodal 
models can leverage the complementary information 
from various sources (such as CT imaging, pathological 
features, clinical data, etc.) and various feature extraction 
models (like radiomics, deep models, etc.) to enhance the 
comprehensive predictive capabilities of the model for 
tasks such as tissue segmentation, biomarker discovery, 
and clinical prognosis [17, 20]. This approach also better 
understands patient-specific characteristics, tissue het-
erogeneity, and disease progression in tumors, thereby 
providing more precise and comprehensive predictions 
[21–23].

This research aimed to combine information from dif-
ferent modalities (clinical information, radiomic features 
(intratumor and peritumor) [20]and deep learning fea-
tures) to fit the survival curves of patients. Furthermore, 
we developed nomograms for predicting OS and PFS 
after first-line chemotherapy in patients with NSCLC.

Materials and methods
Study design
A flowchart of the study is presented in Fig. 1. Clinical, 
radiomics, and deep learning features were first extracted 
to identify the characteristics of each pre-chemotherapy 
patient. Signatures for these features were then proposed 
using the least absolute shrinkage and selection operator 
(LASSO) Cox proportional hazards regression method 
to stratify the risk of prognosis in the training cohort. 
This was followed by analyzing the phenotypic signatures 
using univariate and multivariate Cox regression, and 

 • The 3- and 5-year overall survival and progression-free survival are predicted.
 • CT peritumoral radiomic signature has the highest hazard ratio for the prognosis.
 • Deep learning signature is a significant predictive factor of the prognosis.
 • The integrated nomograms are noninvasive, low cost, and phenotypic.
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nomograms were established for OS and PFS prediction. 
Finally, the results were validated using calibration blots 
and decision curve analysis (DCA) in an independent 
validation cohort.

Patients
The institutional review board of the Shengjing Hospital 
of China Medical University approved this retrospective 
study and waived the need for informed consent from 
patients. A total of 187 patients (from 605) with NSCLC 
were retrospectively enrolled from the Shengjing Hos-
pital of China Medical University between 2016 and 
2021 for this study. Only patients who were treated with 
first-line chemotherapy were included, and those with 
a history of surgical resection, radiology, and targeted 
medicine or immunity therapy were excluded. Patients 
who lacked CT images before and after chemotherapy, 
diagnostic reports, or follow-up records were excluded 
from the study.

We assessed the treatment response according to the 
response evaluation criteria in solid tumors 1.1 [24] stan-
dard and diagnosed reports every 12 weeks until disease 
progression, death, or withdrawal from this study. The 
endpoints of this study were OS and PFS; OS was defined 
as the time from the initiation of chemotherapy to the 
date of death, and live patients were censored at the last 
follow-up. PFS was defined as the time from the initia-
tion of chemotherapy to the date of recurrence (devel-
opment of a new lesion or progression of the primary 

lesion) or death. Patients alive without recurrence were 
censored at the last follow-up. Clinical characteris-
tics such as sex, age, histological type, pathologic stage, 
tumor location, and smoking history were recorded for 
all eligible patients. The pathological stage was charac-
terized according to the TNM staging system. Eligible 
patients were randomly divided into 2:1 training (n = 126) 
and validation (n = 61) groups.

Segmentation, radiomic feature extraction, selection, and 
signature building
All pre-chemotherapy CT image voxels were interpo-
lated to 1 × 1 × 1  mm to eliminate the influence of vary-
ing acquisition equipment. The primary tumors of all the 
patients were semi-automatically segmented by manu-
ally labeling the seed points and then applying the seed 
growth algorithm of the 3D slicer software [25] for seg-
mentation, which was then manually corrected under the 
guidance of two radiologists with more than 20 years of 
experience.

Both radiologists were blinded for the entire segmenta-
tion procedure. The Dice coefficient and over- and under-
lesion segmentation errors were calculated to determine 
the inter-observer agreement. Based on the segmented 
intra-region of the tumor, a 3D morphological dilation 
operation was performed with three pixels. After sub-
tracting the intratumoral region, a 0–3 mm peritumoral 
region was obtained (We used the same segmentation 

Fig. 1 Flowchart of the study
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procedure as our previous study [26], but the data was 
different).

A total of 1688 radiomic features, including first-order, 
shape, and texture features, were extracted from the 
tumor region using the open-source PyRadiomics Python 
package [27]. All features extracted from original and 
derived images (LoG with 5 sigma levels, 1 level of Wave-
let decomposistions yielding 8 derived images and images 
derived using Square, Square Root, Logarithm and Expo-
nential filters). We used the LASSO [28] penalized Cox 
proportional hazards regression to screen the significant 
features and calculate their corresponding weights for a 
treatment response from all the extracted features in the 
training cohort.

Signatures of the intratumoral (S1) and peri-tumoral 
(S2) regions were built for each patient using the 
weighted linear combination of all the significant fea-
tures. Using the X-tile plot based on the Kaplan-Meier 
survival analyses and log-rank test [29], the signature 
was applied to stratify the training cohort into over- and 
under-expression progression subgroups of the chemo-
therapy response. The X-tile [30] provides the optimal 
binary threshold of the signature for risk stratification to 
enable the comparison of different prognostic factors in 
stratified subgroups.

Deep learning features extraction and signature building
A 64 × 64 × 32 cuboid containing an entire tumor was 
cropped from pre-chemotherapy CT images for each 
patient by two experienced radiologists. Each slice was 
resized to adapt to different models and converted to an 
RGB format (make three copies of each slice and overlay 
them to simulate RGB data in 3D format). We extracted 
the features using three pre-trained backbone modules 
(AlexNet, VGG16, and ResNet34). The backbone net-
work in this study was pre-trained using images from 
ImageNet [31] and fine-tuned using CT slices. The out-
put of the three backbone networks was a vector with the 
following dimensions: 32 × 7 × 7 × 256, 32 × 7 × 7 × 512, and 
32 × 7 × 7 × 512. Subsequently, a global average pooling 
layer (7 × 7) and a maximum pooling layer (32) were used 
to obtain a 256/512-dimensional vector (Supplemental 
Fig. S1). For nomogram construction and clinical utility, 
we transformed the deep learning features arithmeti-
cally into a quantifiable measure, allowing us to conduct 
survival curve analysis on patients. The result was then 
employed to stratify patients into high-risk and low-risk 
cohorts, enabling a visual representation of patient risk 
in clinical settings. The signature was built by passing the 
vector through a fully connected layer to a neuron with 
a linear activation function. We used X-tile to obtain the 
optimal cut-off threshold to stratify the training cohort 
into over- and under-expression subgroups following 
chemotherapy.

Statistical analysis
We applied nomograms to fit the survival curves of the 
patients in three steps: (1) The prognostic risks of OS 
and PFS in the training cohort were identified using the 
unadjusted univariable Cox regression analysis. (2) Vari-
ables that reached a statistical significance (p < 0.05) were 
included in the Cox proportional hazards multivariable 
regression [32] by calculating the hazard ratios (HRs) and 
95% CIs. (3) According to the results of the Cox propor-
tional hazards model, variables that remained statistically 
significant (p < 0.05) were incorporated to construct the 
nomogram. In this study, the input includes six clinical 
characteristics, two radiomics features (S1, S2) and three 
deep learning features (S3, S4 and S5). After statistical 
analysis, the nomogram models integrated all predictive 
features to fit survival curves.

We used the Kaplan-Meier (KM) method to generate 
survival curves to represent OS and PFS and evaluated 
between-group comparisons using a log-rank test that 
was stratified for the signatures of significant features.

The nomogram adopted the 3- and 5-year OS and PFS 
rates as the endpoints. We used Harrell’s concordance 
index (C-index) with a 95% CI to evaluate the discrimi-
native ability of the nomogram using 1,000 bootstrap 
resamples for the internal validation in the training and 
validation cohorts, respectively. Calibration blots in 
the two sets were developed to visualize the agreement 
between the predicted and observed 3- and 5-year OS 
and PFS rates to assess the predictive accuracy of the 
nomogram. Finally, the performance of our model was 
compared with that of the TNM staging system using 
DCA. All statistical analyses were performed using R 
software (version 3.3.3, http://www.Rproject.org).

Results
Patients and clinicopathologic features
A total of 187 patients with NSCLC were enrolled in 
this study according to the inclusion and exclusion cri-
teria. The demographic and histopathological character-
istics of the enrolled patients are shown in Table  1. All 
patients were randomly allocated into two parts: 126 
patients (mean (SD) age, 62.43 (12.15) years; median age, 
55 years; 67 (53.2%) female) in the training cohort, and 
61 patients (mean (SD) age, 60.74 (13.25) years; median 
age, 50 years; 35 (57.4%) female) in the validation cohort. 
The median follow-up period was 28.3 (0–60.0) and 25.6 
(5.8–55.0) months in the training and validation cohorts, 
respectively. No significant survival difference in OS and 
PFS was found among the training cohort (OS: median, 
36.7 months; PFS: median, 24.2 months) and the valida-
tion cohort (OS: median, 32.5 months; PFS: median, 21.8 
months). In addition, no significant statistical differences 
(p > 0.05) were found in the demographic characteristics 

http://www.Rproject.org


Page 5 of 12Chang et al. Cancer Imaging          (2023) 23:101 

(sex, age, smoking status, histopathology, tumor location, 
and TNM stage) among the two cohorts.

Radiomic features and signatures
Phenotypic features were extracted from the intra- and 
peritumoral regions of the CT images of each patient 
acquired before chemotherapy. For the inter-observer 
reproducibility of segmentation by the two radiologists, 
the Dice coefficient was 0.86 ± 0.04, and the over- and 
under-segmentation errors of the segmented tumor vol-
ume were 0.19 ± 0.11, 0.26 ± 0.11, respectively.

In the training cohort, 1688 radiomic features were 
obtained from the intra- and peritumoral regions of each 
patient. Subsequently, 12 (intratumoral) and 9 (peri-
tumoral) significant features were screened using the 
LASSO Cox proportional hazards regression model. The 
weights of the 12 selected features were used to build the 
signature (S1) of the intratumoral region, and the weights 
of the nine selected features were used to build the sig-
nature (S2) of the peritumoral region. Based on S1 and 
S2, a cutoff threshold of 0.27 and 0.70 were respectively 
obtained by X-tile with the maximum Chi-squared log-
rank value to stratify the NSCLC patients into over-
expression and under-expression groups.

Deep learning features and signatures
Deep learning features were extracted from each pre-
trained model (AlexNet, VGG16, and ResNet34) in the 
training cohort. Following the backbone module, a global 
average pooling layer, max pooling layer, and fully con-
nected layer were used to obtain the signatures (S3, S4, 
and S5). Each signature was then calculated using X-tile 
to stratify the NSCLC patients into over-expression and 
under-expression groups; the cutoff values of S3, S4, and 
S5 were − 0.83, 0.33, and 0.62, respectively.

Independent prognostic factors in the training set
For both OS and PFS, a univariable unadjusted Cox anal-
ysis was performed for the following factors: sex, age, 
smoking status, histopathology, tumor location, TNM 
stage, S1, S2, S3, S4, and S5 in the training cohort. In 
OS, TNM stage (HR (95%): III, 1.49 (1.03–2.21), p < 0.05; 
IV, 2.28 (1.19–4.36), p < 0.05), S1 (HR (95%), 0.56 (0.33–
0.95); p < 0.05), S2 (HR (95%), 2.48 (1.56–3.94); p < 0.001), 
and S3 (HR (95%), 0.43 (0.26–0.69) p < 0.001), were iden-
tified as statistically significant prognostic features. In 
PFS, TNM stage (HR (95%): III, 1.45 (1.03–2.38), p = 0.14; 
IV, 2.15 (1.13–4.13), p < 0.05), S1 (HR (95%), 0.58 (0.34–
0.99), p < 0.05), S2 (HR (95%), 2.45 (1.53–3.94), p < 0.001), 
and S3 (HR (95%), 0.45 (0.28–0.74), p < 0.05), were identi-
fied as statistically significant prognostic features.

We analyzed the over- and under-expression subgroups 
of OS and PFS using Kaplan-Meier curves; Fig. 2A and B 
confirm the significant differences in both OS and PFS of 
S2 between the two groups. In OS, the subgroups with 
the under-expression (median, 29.2 months) signatures 
tend to have a lower survival probability than those with 
over-expression (median, 45.7 months) (p < 0.001). Simi-
lar to PFS, the subgroups with under-expression (median, 
20.3 months) signatures tend to have a lower survival 
probability than over-expression (median, 36.7 months) 
(p < 0.001). The KM curves for TNM, S1, and S3 are 
shown in Supplemental Fig. S2, Fig. S3 and Fig. S4.

These prognostic features were included in the Cox 
multivariate analysis; the results are shown in Table  2. 
Apparently, TNM stage (HR (95%): III, 1.48 (1.04–2.47), 
p = 0.13; IV, 2.10(1.09–4.04), p < 0.05), S2 (HR (95%), 2.26 
(1.40–3.67), p < 0.001), and S3 (HR (95%), 0.48 (0.29–
0.79), p < 0.05) remained significantly associated with OS. 
Similarly, TNM stage (HR (95%): III, 1.42 (1.06–2.34), 
p = 0.17; IV, 1.98(1.02–3.84), p < 0.05), S2 (HR (95%), 2.23 
(1.36–3.65); p < 0.05), and S3 (HR (95%), 0.55 (0.33–0.90); 
p < 0.05) were independently associated with PFS.

All significant factors were then incorporated into the 
prognostic model to develop individualized nomograms 
of OS at 3 and 5 years, and PFS at 3- and 5-years.

As shown in the nomogram of OS (Fig.  3A), S2 pre-
sented the largest contribution to the prognosis, followed 
by TNM stages S1 and S3. Similarly, in the nomogram of 

Table 1 Demographic and histopathologic characteristics of 
study patients
Characteristic Patients, No. (%)

Training 
cohort

P* Valida-
tion 
cohort

P*

Sex 1.05 1.24
 Male 59 (46.8) 26 (42.6)
 Female 67 (53.2) 35 (57.4)
Age, median (range), y 55 (32–83) 1.36 50 (37–87) 1.02
Smoking status 0.95 0.84
 Ever 71 (56.3) 33 (54.1)
 Never 55 (43.7) 28 (45.9)
Histopathology 0.16 0.08
 ADC 108 (85.7) 51 (83.6)
 SCC 18 (14.3) 10 (16.4)
Tumor location 0.23 0.34
 Left 67 (53.2) 34 (55.7)
 Right 46 (36.5) 21 (34.4)
 Others 13 (10.3) 6 (9.9)
TNM stage < 0.001 < 0.001
 II 16 (12.7) 9 (14.8)
 III 78 (61.9) 39 (63.9)
 IV 32 (25.4) 13 (21.3)
Adenocarcinoma (ADC), squamous cell carcinoma (SCC).

*P-value: it is calculated by two-sample t-test for the comparison between two 
groups categorized by high or low risk of S2
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PFS (Fig. 3B), S2 presented the largest contribution to the 
prognosis, followed by S1 and S3.

The calibration curves (Fig.  4A and B) obtained from 
the individualized nomogram demonstrated a good con-
sistency between the prediction and actual observation 

for both the 3-year and 5-year OS in the training and 
independent validation cohorts. Performances of the 
training and validation cohorts are shown on the plot 
relative to the 45-degree line, which represents a satis-
fied prediction. The mean absolute value for the 3-year 

Fig. 2 Kaplan-Meier curves of S2 for over- and under-expression subgroups: (A) Kaplan-Meier curves in OS; (B) Kaplan-Meier curves in PFS.
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and 5-year OS were 0.068 and 0.072 in the training 
cohorts, and 0.054 and 0.052 in the independent valida-
tion cohorts. The mean absolute value for the 3-year and 
5-year PFS were 0.081 and 0.077 in the training cohorts, 

and 0.046 and 0.041 in the independent validation 
cohorts. The Harrell C-index (95% CI) of the nomogram 
was 0.74 (0.70–0.79) for the training cohort, and 0.72 
(0.67–0.78) for the validation cohorts. For PFS in Fig. 4 C 

Table 2 Results of multiple cox regression
Subgroup Patients, No. OS PFS

HR (95% CI) P HR (95% CI) P
TNM stage
 II 65 Reference Reference
 III 42 1.48 (1.04–2.47) 0.13 1.42 (1.06–2.34) 0.17
 IV 19 2.10 (1.09–4.04) < 0.05 1.98 (1.02–3.84)
S2 < 0.001
 Over-expression 79 Reference Reference
 Under-expression 47 2.26 (1.40–3.67) 2.23 (1.36–3.65)
S3 < 0.05
 Over-expression 92 Reference Reference
 Under-expression 34 0.48 (0.29–0.79) 0.55 (0.33–0.90)
Overall survival (OS), progression-free survival (PFS), hazard ratio (HR).

Fig. 3 Nomograms for predicting survival analysis: (A) probability with 3- and 5-year OS; (B) probability with 3 and 5-year PFS.
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and 4D, the Harrell C-index (95% CI) of the nomogram 
was 0.71 (0.68–0.81) for the training cohort, and 0.72 
(0.66–0.79) for the validation cohorts.

As shown in Fig.  5, we compared the performance of 
the aforementioned models with that of the TNM stage 
using DCA. Our model provided the largest overall net 
benefit in predicting both OS and PFS compared to the 
TNM stage with (C-index (95% CI), OS:0.64 (0.58–0.69); 
PFS:0.62 (0.54–0.67)).

Discussion
In this study, nomograms were established to predict 
the prognosis of NSCLC patients treated with chemo-
therapy as the first-line treatment. A total of 187 cases 
were included, and five significant prognostic factors 
representing histopathologic, radiomic, and deep learn-
ing features were identified by conducting univariate 

and multivariate analyses in the training cohort and then 
integrated to construct the nomogram. Integrated nomo-
grams with three factors including the TNM stage, peri-
tumoral radiomic signature, and tumoral cuboid-based 
deep learning signature were built according to the afore-
mentioned factors.

To the best of our knowledge, this is the first study 
to combine clinical, radiomic, and deep learning fea-
tures for predicting the survival of NSCLC patients 
treated with chemotherapy alone as the first-line treat-
ment. Through this clinical calculator, both physicians 
and patients can easily predict individualized survival 
and inform patients regarding the individual benefits of 
chemotherapy. Patients can simultaneously be stratified 
into different risk subgroups to guide clinical decision-
making. Among all the NSCLC patients, according to 
our nomograms, we should perform a more personalized 

Fig. 4 Calibration plots of the nomograms: (A) OS in the training cohort, (B) OS in the validation cohort, (C) PFS in the training cohort, (D) PFS in the 
validation cohort
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plan of chemotherapy regimens and shorten the follow-
up period for the high-risk subgroup.

For OS, the TNM stage, S2 and S3 remained as the sig-
nificant prognostic factors, and S2 (HR (95%), 2.26 (1.40–
3.67), p < 0.001)) outperformed the other three. This 
indicates that the hazard of under-repression in S2 was 
2.26 times that of over-repression. The hazard of TNM 
stage III and IV was 1.48 and 2.10 times that of TNM 
stage II, respectively. The hazard of under-expression in 

S3 was 0.48 times that of over-expression. For PFS, TNM, 
S2 and S3 remained as the significant prognostic factors, 
and S2 (HR (95%), 2.23 (1.36–3.65); p < 0.05) outper-
formed the other two. The hazard of the underexpression 
subgroup was 2.23 times that of the over-expression in 
S2. The hazard of TNM stage III and IV was 1.42 and 1.98 
times that of TNM stage II, respectively. The hazard of 
the under-expression subgroup in S3 was 0.55 times that 
of the over-expression.

Fig. 5 Decision curve analysis of nomogram and TNM stage in the validation cohort: (A) Decision curve analysis of OS; (B) Decision curve analysis of PFS.
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For radiomics features, the peritumoral region per-
formed better than the intratumoral region in terms 
of both OS and PFS. Patients with a high survival rate 
tended to have an overexpression signature in the peri-
tumoral region, opposite to the intratumoral region (S1, 
Supplementary Fig. S2). This is likely because the homo-
geneity and heterogeneity of the two regions are opposite, 
and the heterogeneity both in and around the tumor is a 
significant predictor of survival in patients with NSCLC 
[33–36]. The prognosis of NSCLC is reflected in both 
the lesion and surrounding tissues [37–39]. Lymphatic 
canals present in peritumoral regions have a significantly 
higher overall survival rate in NSCLC [40]. A combina-
tion of peri- and intratumoral radiomic features can pre-
dict the treatment response in lung adenocarcinoma [41]. 
For deep-learning features, S3 had a significant prognosis 
for both OS and PFS. A flexible number of convolution 
kernels in AlexNet and fewer layers may be better for the 
small datasets used in this study.

Our results demonstrated that the nomograms repre-
sent a more precise prognostic prediction performance 
than that of the TNM staging system, which is consistent 
with the previous studies [42–44]. Xu et al. designed a 
nomogram to predict the OS of gastroenteropancreatic 
neuroendocrine tumors and demonstrated a better per-
formance than the traditional TNM staging system [42]. 
Lin et al. proved that a nomogram with three risk factors 
performed better than the TNM stage system for OS in 
hepatoid adenocarcinoma of the stomach [43]. The TNM 
staging system considers anatomic features (depth of 
tumor invasion into the rectal wall, locoregional lymph 
node metastases, and distant metastases) but ignores the 
physical condition, pathological or genotype characteris-
tics, and radiomic or deep learning factors [10, 44].

Many studies have applied the nomogram to fit patient 
survival curves to guide clinical treatment [45], but 
most studies currently apply clinical indicators com-
bined with radiomic features or deep learning features 
[17, 19]. Because clinical features are readily available 
and easy to interpret for patients, they are widely used 
for survival analysis in clinical scenarios [46]. Radiomic 
features allow quantitative analysis of information about 
a lesion on a CT image to simulate a physician’s diag-
nosis of a patient and are also widely used in survival 
analysis [20, 47]. Deep learning features can extract high-
dimensional image information that is invisible to the 
naked eye, allowing for deeper survival analysis [48, 49]. 
The innovation of this paper is to combine the informa-
tion of the above three modalities and find the optimal 
combination of features to fit the patient’s survival curve 
through univariable and multivariable Cox analysis, so 
as to assist the doctor’s clinical diagnosis and treatment 
plan development.

The nomograms are limited by the retrospective nature 
of data collection and fail to incorporate certain rec-
ognized prognostic characteristics such as lymphatic 
permeation, vascular invasion, and molecular character-
istics such as EGFR mutation and different chemotherapy 
drugs. We plan to improve the integrity of the data col-
lection and patient follow-up in future studies. The data 
used in this experiment were obtained from a single 
center, which presents the disadvantage of generaliza-
tion. We plan to collect more multicenter data for further 
verification, and a larger scale of patient populations is 
needed to identify potential risk factors.

Conclusions
Nomograms integrating the TNM stage, peritumoral 
radiomic signature, and deep learning signature enable 
the prediction of individual prognosis measured by OS 
and PFS for NSCLC patients who received chemother-
apy. The nomograms in this research provided a higher 
overall net benefit than the TNM stage in DCA curves 
and peritumoral radiomic and deep learning signatures 
outperformed the TNM staging system in predicting 
both OS and PFS. Being noninvasive and without the 
need for increasing additional expenses, signatures built 
from prechemotherapy CT images acquired in routine 
examinations have the potential to improve individual-
ized treatment and precise management of patients with 
NSCLC.
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