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Abstract 

Background  The purpose of this study was to explore whether incorporating the peritumoral region to train deep 
neural networks could improve the performance of the models for predicting the prognosis of NPC.

Methods  A total of 381 NPC patients who were divided into high- and low-risk groups according to progression-
free survival were retrospectively included. Deeplab v3 and U-Net were trained to build segmentation models for 
the automatic segmentation of the tumor and suspicious lymph nodes. Five datasets were constructed by expand‑
ing 5, 10, 20, 40, and 60 pixels outward from the edge of the automatically segmented region. Inception-Resnet-V2, 
ECA-ResNet50t, EfficientNet-B3, and EfficientNet-B0 were trained with the original, segmented, and the five new 
constructed datasets to establish the classification models. The receiver operating characteristic curve was used to 
evaluate the performance of each model.

Results  The Dice coefficients of Deeplab v3 and U-Net were 0.741(95%CI:0.722–0.760) and 0.737(95%CI:0.720–0.754), 
respectively. The average areas under the curve (aAUCs) of deep learning models for classification trained with 
the original and segmented images and with images expanded by 5, 10, 20, 40, and 60 pixels were 0.717 ± 0.043, 
0.739 ± 0.016, 0.760 ± 0.010, 0.768 ± 0.018, 0.802 ± 0.013, 0.782 ± 0.039, and 0.753 ± 0.014, respectively. The models 
trained with the images expanded by 20 pixels obtained the best performance.

Conclusions  The peritumoral region NPC contains information related to prognosis, and the incorporation of this 
region could improve the performance of deep learning models for prognosis prediction.
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Background
Tremendous advances in computer vision technology in 
recent years have enabled artificial intelligence (AI) to 
extract valuable feature information from medical images 
with increasing efficiency, which has led to an acceler-
ated integration of AI into the medical field [1]. Convo-
lutional neural network (CNN), owing to its remarkable 
image feature extraction capability, is one of the most 
used AI techniques in medical imaging. Research on the 
application of AI based on CNN technology in the field 
of nasopharyngeal carcinoma, including image segmen-
tation [2], image classification and recognition [3], drug 
efficacy prediction [4, 5], and prognosis prediction [6, 
7], has also gradually increased in recent years and has 
generally shown better performance than traditional 
machine learning methods. Many studies have reported 
its prediction performance in nasopharyngeal carcinoma 
(NPC) prognosis to exceed the traditional TNM staging 
system [8, 9].

Training artificial intelligence (AI) models to pre-
dict the prognosis of nasopharyngeal carcinoma (NPC) 
has been a focus of research in recent years [10]. Radi-
omics [11–14] and deep learning (DL) [15–17] are the 
main methods used in most studies, despite the use of 
deep learning-based radiomics [4, 18]. The main advan-
tage of radiomics is that the model is well interpretable 
and requires less data, and the main defect is that the 
segmented area must be outlined manually, which is 
labor-consuming [19]. Considering that one of the big-
gest challenges in oncology is the development of accu-
rate and cost-effective screening procedures [20], this 
labor-intensive step hinders its clinical utility [21]. DL 
method enable fully automated analysis of images; how-
ever, a large number of well-labeled images are required. 
Predicting tumor prognosis requires patient endpoint 
information, which is costly and time consuming to col-
lect; this leads to high data costs for building DL mod-
els. Therefore, training better-performing models based 
on limited datasets is currently an important problem to 
be solved in the AI community [22, 23]. Building models 
that can extract valuable features from medical images 

more efficiently using medical priori knowledge as a 
guide is one of the solutions.

The TNM staging system is used clinically to evaluate 
the prognosis of NPC. In this system, the T-staging is 
focused on the information of the relationship between 
the tumor and the surrounding anatomical structures 
[24, 25]. Many studies have indicated that T-staging 
achieves considerable performance in predicting tumor 
prognosis [9, 26], which confirms the predictive value of 
the peritumoral region. However, the prediction mod-
els established by radiomics are conventionally based 
on the tumor region, in which the peritumoral region is 
erased. In contrast, the predictive models built by DL are 
mainly based on full images containing distant informa-
tion that is generally considered clinically irrelevant to 
tumor prognosis [25]. We believe that the peritumoral 
region, not only the tumor region, should receive addi-
tional attention when applying AI to predict the progno-
sis of NPC. Therefore, we envisioned that incorporating 
the tumor region along with a portion of the peritumoral 
region for analysis may contribute to improvement of the 
performance of the predictive DL model. This study was 
designed to validate this idea.

Methods
Patients and images
Patients with pathology-confirmed NPCs who were 
admitted for treatment between June 2012 and Decem-
ber 2018 were retrospectively selected. Patients were 
screened according to the inclusion and exclusion 
criteria presented in Table  1. Pre-treatment mag-
netic resonance imaging (MRI) images, including 
axial T1-enhanced sequences, were collected from the 
picture archiving and communication system for all 
included patients, and demographic information was 
tabulated simultaneously. Progression-free survival 
(PFS), defined as the time from treatment to disease 
progression (recurrence or distant metastasis) or the 
occurrence of death caused by any reason or the last 
review, was regarded as the endpoint. The standard for 
regular review was defined as follows: Patients were 

Table 1  Inclusion and exclusion criteria of patients

Inclusion criteria • Primary nasopharyngeal carcinoma diagnosed by pathology and treated in hospital.
• No distant metastases at the time of initial diagnosis
• Pre-treatment MRI images were available, which included axial T1-enhanced sequences
• Regular review was performed
• Telephone follow-up was available

Exclusion criteria • nasopharyngeal carcinoma that recurred after treatment
• Pre-treatment MRI was not available, or the images were corrupted, or ther have not axial T1-enhanced sequences
• There has been distant metastasis at the time of diagnosis
• Regular review was not performed
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reviewed at least every 3 months for 2 years after treat-
ment, at least every 6 months from 2 to 5 years after 
treatment, and annually starting 5 years after treat-
ment. Items to be included in the review were MRI of 
nasopharyngeal, CT/MRI of the head and abdomen 
or contingent positron emission tomography (PET)/
CT. Patients who stopped reviewing after 2 years of 
regular review were followed up by telephone. Recur-
rence was confirmed on the basis of nasopharyngeal 
MRI or pathology obtained via endoscopy. Criteria for 
determining recurrence based on MRI of the naso-
pharynx were defined as progressive localized bone 
erosion being reported, areas of abnormal soft tissue 
larger than those reported on the previous review, and 
intensive shadows newly identified in the previous neck 
review that were progressively increasing in the current 
review. The results of lung CT, CT/MRI of the head and 
abdomen, or PET/CT were used to determine the pres-
ence of distant metastases. Fatality data were obtained 
by telephone follow-up. MRI was obtained using 3.0-T 
MR imaging systems (GE, Discovery MR 750 and Signa 
HDxt). Axial T1-enhanced sequence was used to con-
struct the datasets. The parameters for the images 
were as follows: repetition time 552–998 msec, echo 
time 9.65–13.79 msec, flip angle 90-111°, slice thick-
ness 4–7 mm, and matrix size 512*512. This study was 
approved by the Ethics Committee of author’s hospital, 
and informed consent from patients was waived.

Image processing
Slices with tumors or suspicious lymph nodes (cervi-
cal lymph nodes > 1 cm in length; SLN) in the axial 
T1-enhanced sequences of each patient were selected 
by a senior radiologist (with 15 years of experience) to 
construct the original dataset. Our experimental design 
contained an automatic semantic segmentation network 
for tumors and cervical lymph nodes and a classification 
neural network for tumor risk assessment. Two data-
sets were constructed as each network required a corre-
sponding training dataset.

Dataset for semantic segmentation
Among the 500 randomly selected layers containing 
tumors and SLNs, tumors and SLNs were manually seg-
mented by an otolaryngologist (with 5 years of experi-
ence) in ITK-snap software [27] and reviewed by a senior 
radiologist (with 15 years of experience). The slices and 
manually segmented regions were saved accordingly. 
A total of 500 slices were randomly divided into train-
ing and testing cohorts at a 4:1 ratio in the execution 
program.

Dataset for classification
A total of 381 patients (2445 slices), which were divided 
into high-risk and low-risk groups according to PFS 
(patients with median PFS were classified into the high-
risk group), were included in our study. Patients in each 
group were divided into training and test cohorts in a 
4:1 ratio, and each slice was labeled consistently with 
the corresponding group. The original images was con-
verted into segmented images using the trained seman-
tic segmentation model. Segmented areas smaller than 
10 × 10 pixels were automatically removed. To explore 
whether the inclusion of the peritumoral region helps 
to improve the performance of the DL model, the 
images were expanded to include 5, 10, 20, 40, and 60 
pixels outward from the edge of the segmented region 
to form the corresponding expand 5 images, expand 
10 images, expand 20 images, expand 40 images, and 
expand 60 images. Therefore, a total of seven datasets 
(original images, segmented images, expand 5 images, 
expand 10 images, expand 20 images, expand 40 
images, and expand 60 images) were used for training 
the four neural networks for classification (Fig. 1).

Network architecture
Architecture of the semantic segmentation models
Our compiling platform was based on the PyTorch 
library (version 1.9.0) with CUDA (version 10.0) for 
GPU (NVIDIA Tesla V100, nvidia corporation, Santa 
Clara, California, USA) acceleration on a Windows 
operating system (Server 2019 data center version 64 
bit, 8 vCPU 32 GiB). Deeplab v3 [28] and U-Net [29] 
were trained by transfer learning to build the auto-
matic segmentation models. The better-performing one 
was used to generate the dataset for classification. The 
RMSprop optimizer was used to train the models with 
a batch size of 32, and the initial learning rate was set to 
0.001. The dropout rate of the full connected layer was 
set as 0.5. Both semantic segmentation models were 
trained for 40 epochs.

Architecture of the classification models
To avoid the potential impact of different preferences of 
different neural networks on the dataset, four common 
neural networks, namely Inception-Resnet-V2 [30], 
ECA-ResNet50t [31], EfficientNet-B3 [32], and Effi-
cientNet-B0 [32], were trained by transfer learning to 
establish the classification models separately. The aver-
age performance of the four models trained on each 
dataset was used for evaluation. As seven datasets were 
used for classification, a total of 28 DL models (4*7) 
were established. Networks with a batch size of 32 was 
trained using a stochastic gradient descent optimizer 
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with an initial learning rate of 0.001 and dropout rate of 
0.5. Each model was trained for 40 epochs.

Statistical analysis
The Dice similarity coefficient was used to evaluate the 
performance of the semantic segmentation models. The 
receiver operating characteristic curve (ROC curve) was 
used to evaluate the performance of each model for clas-
sification. The average area under the ROC curve (AUC), 
sensitivity, specificity, F1 score, and precision of the four 
models were used to evaluate the performance of each 
model on the dataset. DeLong’s test was used to compare 
whether the differences between the ROC curves of the 

models were significant. Grad-CAM images for visual-
izing the areas of the image that were considered by the 
DL models to be prognostically relevant were produced 
by extracting feature maps from the convolutional layers.

Results
A total of 381 patients (2445 slices), including 194 high-
risk (1394 slices) and 187 low-risk patients (1051 slices), 
were included in this study. Information on the age, sex, 
and clinical T/N stage of the included patients is shown 
in Table 2.

The Dice coefficients of the two semantic segmentation 
models stabilized after 20 epochs. The Dice coefficients 

Fig. 1  Design of the study. A: The process of building semantic segmentation model. a: Manual segmentation of tumor and suspicious lymph 
node regions in original images. b: Training Deeplab v3 and U-Net using manually segmented datasets. c: Automatic segmentation of datasets for 
classification using the trained semantic segmentation model. d. Extension by 5, 10, 20, 40, and 60 pixels outward from the segmented region to 
form 5 new datasets. B: The process of building classification model for predicting tumor prognosis
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of the Deeplab v3 and U-Net after completed training 
were 0.741(95%CI:0.722–0.760) and 0.737(95%CI:0.720–
0.754), respectively. Based on the results, Deeplab v3 was 
used to perform automatic segmentation of the origi-
nal image and to construct a segmented image, which 

was named Deeplab seg image. Examples of the original 
image, Deeplab seg image and the constructed expand 5, 
10, 20, 40, and 60 image are displayed in Fig. 2.

The AUC, sensitivity, specificity, precision, and f1 
scores of the seven DL models based on ECA-ResNet50t, 
Inception-Resnet-V2, EfficientNet-B3, and EfficientNet-
B3 trained on the original image, Deeplab seg image, 
extended 5 image, extended 10 image, extended 20 image, 
extended 40 image, and extended 60 image are shown in 
Table  3 and Fig.  3. The AUC of the DL model based on 
ECA-ResNet50t trained on the extended 20 images was 
significantly higher than that of the DL model trained on 
the original image and Deeplab seg image, with p-val-
ues of 0.013 and 0.032, respectively. There was no sig-
nificant difference between the performance of the DL 
model trained on the original image and Deeplab seg 
image (p = 0.203). The AUC of the DL model based on 
Inception-Resnet-V2 trained on the extended 20 images 
was also significantly higher than that of the DL model 
trained on the original image (p = 0.010), while there was 
no significant difference between the performance of the 
DL model trained on the extended 20 images and Dee-
plab seg image (p = 0.056). The AUC of the DL model 
based on EfficientNet-B3 trained on the extended 20 
images was significantly higher than that of the DL model 
trained on the original image and Deeplab seg image, 
with p-values of 0.007 and 0.012, respectively. The per-
formance of the DL model trained on the Deeplab seg 
image was significantly higher than that of the DL model 
trained on the original image (p = 0.041). The AUC of 
the DL model based on EfficientNet-B0 trained on the 
extended 20 images was significantly higher than that of 
the DL model trained on the original image and Deeplab 

Table 2  Clinical characteristics of patients in the high- and low-
risk cohorts

SD Standard deviation
a Based on the 7th edition of the American Joint Committee on Cancer (AJCC)/
International Union Against Cancer staging system [16]

High risk cohort Low risk cohort

Patients 194 187

Slices 1394 1051

Age (years)

  Mean ± SD 51.22 ± 11.25 50.31 ± 10.51

  < 45 48 51

  45–55 87 79

  > 55 59 57

Gender

  Male 139 123

  Female 55 64

T stagea

  T1 11 24

  T2 41 93

  T3 82 51

  T4 60 19

N stagea

  N0 13 37

  N1 24 69

  N2 123 72

  N3 34 9

Fig. 2  Examples of the seven datasets for training DL models. A and B represent the SLN and primary tumor, respectively, in the Deeplab seg 
image, expand 5 image, expand 10 image, expand 20 image, expand 40 image, expand 60 image, and original image. DL: deep learning; SLN: 
suspicious lymph nodes
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seg image, with p-values of 0.009 and 0.034, respectively, 
while there was no significant difference between the per-
formance of the DL model trained on the original image 
and Deeplab seg image (p = 0.122). The average AUC 
(aAUC) of the four deep neural networks trained with 
the original image, Deeplab seg image, expand 5 image, 
expand 10 image, expand 20 image, expand 40 image, 
and expand 60 image were 0.717 ± 0.043, 0.739 ± 0.016, 
0.760 ± 0.010, 0.768 ± 0.018, 0.802 ± 0.013, 0.782 ± 0.039, 
and 0.753 ± 0.014, respectively (Fig.  4). The DL models 
trained with the expand 20 images obtained the highest 
aAUC (0.802 ± 0.013), whereas the models trained with 
the original image (0.717 ± 0.043) and Deeplab seg image 
(0.739 ± 0.016) performed the worst. The Grad-CAM 
images generated based on EfficientNet-B0 is used as an 
example to show the predictive basis of the model (Fig. 5).

Discussion
In this study, four common neural networks were trained 
with the original, segmented, and the five new con-
structed datasets to establish DL models for the prog-
nosis prediction of NPC. The results show that the DL 
models trained with the segmented region and the origi-
nal images performed the worst (aAUC was 0.739 ± 0.016 
and 0.717 ± 0.043 respectively). The performance of the 
models gradually improved when the segmented area was 
gradually extended outward by 5, 10, and 20 pixels, and 
reached its maximum when it was extended by 20 pixels 
(aAUC was 0.802 ± 0.013). Then, the performance of the 
model gradually decreased when the area was extended 
beyond 20 pixels. This confirms the predictive value of 
peritumor area images for the prognosis of nasopharyn-
geal carcinoma.

Table 3  Performance of seven DL models based on ECA-ResNet50t, Inception-Resnet-V2, EfficientNet-B3, and EfficientNet-B3 trained 
on the original image, Deeplab seg image, extended 5 image, extended 10 image, extended 20 image, extended 40 image, and 
extended 60 image

AUC​ Area under the curve, aAUC​ Average area under the curve (AUC) of the four DL models based on ECA-ResNet50t, Inception-Resnet-V2, EfficientNet-B3, and 
EfficientNet-B0, SD Standard deviation

Dataset Neural network Sensitivity Specificity F1 score Precision AUC​ 95%CI aAUC (SD)

Original image ECA-ResNet50t 0.810 0.724 0.803 0.796 0.774 0.730–0.818 0.717 (0.043)

Inception-Resnet-V2 0.738 0.695 0.750 0.763 0.722 0.685–0.759

EfficientNet-B3 0.656 0.695 0.696 0.741 0.676 0.635–0.721

EfficientNet-B0 0.659 0.743 0.712 0.773 0.695 0.644–0.746

Deeplab seg image ECA-ResNet50t 0.781 0.695 0.777 0.773 0.745 0.704–0.786 0.739 (0.016)

Inception-Resnet-V2 0.774 0.729 0.783 0.791 0.759 0.719–0.798

EfficientNet-B3 0.706 0.752 0.746 0.791 0.727 0.684–0.770

EfficientNet-B0 0.688 0.771 0.740 0.800 0.725 0.678–0.773

Expand 5 image ECA-ResNet50t 0.803 0.719 0.797 0.792 0.768 0.728–0.809 0.760(0.010)

Inception-Resnet-V2 0.778 0.733 0.786 0.795 0.761 0.718–0.804

EfficientNet-B3 0.746 0.790 0.783 0.825 0.765 0.718–0.812

EfficientNet-B0 0.710 0.790 0.760 0.818 0.745 0.703–0.787

Expand 10 image ECA-ResNet50t 0.821 0.738 0.813 0.806 0.786 0.739–0.832 0.768 (0.018)

Inception-Resnet-V2 0.789 0.738 0.794 0.800 0.766 0.730–0.802

EfficientNet-B3 0.756 0.800 0.793 0.834 0.777 0.732–0.822

EfficientNet-B0 0.706 0.790 0.758 0.817 0.744 0.707–0.781

Expand 20 image ECA-ResNet50t 0.849 0.767 0.839 0.829 0.817 0.766–0.868 0.802 (0.013)

Inception-Resnet-V2 0.817 0.776 0.823 0.829 0.801 0.757–0.845

EfficientNet-B3 0.789 0.829 0.822 0.859 0.805 0.754–0.856

EfficientNet-B0 0.749 0.833 0.799 0.857 0.785 0.732–0.837

Expand 40 image ECA-ResNet50t 0.875 0.790 0.861 0.847 0.84 0.783–0.897 0.782 (0.039)

Inception-Resnet-V2 0.774 0.738 0.785 0.797 0.758 0.713–0.803

EfficientNet-B3 0.742 0.786 0.780 0.821 0.761 0.721–0.802

EfficientNet-B0 0.735 0.819 0.785 0.844 0.77 0.725–0.815

Expand 60 image ECA-ResNet50t 0.806 0.724 0.801 0.795 0.773 0.732–0.814 0.753 (0.014)

Inception-Resnet-V2 0.767 0.724 0.777 0.787 0.75 0.709–0.791

EfficientNet-B3 0.728 0.771 0.766 0.809 0.747 0.708–0.786

EfficientNet-B0 0.703 0.786 0.754 0.813 0.74 0.699–0.781
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A review titled “Nasopharyngeal carcinoma” published 
in The Lancet in 2019 proposed 18 research questions on 
NPC that remain to be answered, and two of them were 
about AI and NPC: “How can reliable radiomics models 
for improving decision support in NPC be developed?” 
and “How can artificial intelligence automation for NPC 
treatment decisions be applied?” [33]. These two issues 
remain relevant today, as DL models are still facing the 
challenges of low reliability and practicality. Risk assess-
ment of NPC is a focal topic in this field. Traditionally, 
TNM staging of tumors has been used to assess tumor 
risk, where T is the relevant information about the pri-
mary tumor. According to the 7th and 8th edition of 
the American Joint Committee on Cancer/International 
Union Against Cancer staging systems, the T-staging of 
NPC is determined based on the relationship between 
the tumor and the surrounding anatomical structure 
and does not contain information from inside the tumor 
[24, 25]. According to the literature, T-staging has good 

predictive performance for the prognosis of NPC [9, 19, 
26]. However, in most studies, only the tumor region 
was delineated as the region of interest in the radiomic 
approach, and peritumor information was obliterated. 
This may cause a partial loss of information related to 
prognosis, which leads to a limited performance of the 
model. Simultaneously, there are several studies using 
DL to establish a prognostic prediction model for NPC 
in which the original image was incorporated for model 
training [4–7]. However, original images contain a large 
amount of noise, such as uninvaded cerebellar, nasal, and 
temporal regions far from the tumor, which may provide 
only very limited prognostic information, and most of the 
pixels in these regions are noise. The inclusion of these 
regions may lead to a decrease in model performance 
and increase the requirement for the amount of training 
data. As a result, the models developed in these studies 
may not have fully exploited the prognostic informa-
tion embedded in the images for NPC. By analogy, when 

Fig. 3  Receiver operating characteristic (ROC) curves of the ECA-ResNet50t, Inception-Resnet-V2, EfficientNet-B3, and EfficientNet-B0 trained with 
the seven datasets in the test cohort
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predicting the prognosis of other tumors, such as gastric 
[34], breast [35], and cervical cancer [36], based on radi-
omics or CNN techniques, the inclusion of peritumor 
image may be able to improve the performance of the 
prediction model.

Before the tumor invades the surrounding anatomical 
structures, some patients have developed cellular-level 
tumor microfiltration which does not result in significant 
changes in image signal and is difficult to correlate with 
patient prognosis with the naked eye. However, this may 
indeed be indicative of tumor progression and may there-
fore be closely related to the patient’s prognosis. Neural 
networks that analyze images at the pixel level can cap-
ture these infiltrative features, which are difficult to dis-
tinguish with the naked eye, and correlate them with the 
patient’s prognosis. Therefore, we logically assume that 
the prognostic information decreases progressively out-
ward from the tumor region, while the noise increases 
progressively, and there should be an information bal-
ance boundary. Better performance could be achieved 
by incorporating the region within this information bal-
ance boundary to train the prognostic prediction model 
(Fig. 6).

In this study, to avoid the influence of the neural net-
work structure on the results, four common neural net-
works were selected, and aAUCs were calculated to 
evaluate the impact of using different types of images. The 
results show that the models trained with the segmented 
region and the original images performed the worst. The 
performance of the models gradually improved when 
the segmented area was gradually extended outward by 
5, 10, and 20 pixels, and reached its maximum when it 
was extended by 20 pixels. Then, the performance of the 
model gradually decreased when the area was extended 
beyond 20 pixels. This result can be explained by the 
hypothesis of the information balance boundary men-
tioned above: although the noise in the original image 
has been removed to the maximum extent in the Deeplab 
seg image, the peritumoral region, which contains con-
siderable prognostic information about the tumor, has 
also been eliminated. Inadequate inclusion of prognostic 
information leads to unsatisfactory performance of the 
model. In the process of outward expansion, the prognos-
tic information was gradually incorporated sufficiently so 
that the model performance gradually improved. How-
ever, more noise and less prognostic information are 

Fig. 4  Performance of deep learning (DL) models trained with the original image, Deeplab seg image, expand 5 image, expand 10 image, expand 
20 image, expand 40 image, and expand 60 image. aAUC: average area under the curve (AUC) of the four DL models based on ECA-ResNet50t, 
Inception-Resnet-V2, EfficientNet-B3, and EfficientNet-B0
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included as the region is extended further, which causes 
the performance of the model to begin to degrade, with 
the worst performance when incorporating the full 
image. The information balance boundary of our dataset 
was determined to be 20 pixels outward from the tumor. 
However, different datasets may have different informa-
tion balance boundaries, which need to be confirmed by 
including more multicenter data.

The cost of collecting information related to tumor 
prognosis is extremely high, especially for tumors such as 
NPC, which have an overall 5-year survival rate of 80% 
[37], as it involves a considerable period of review and 
follow-up. Therefore, it is extremely important to train 
models that perform well with limited data. Computer 
experts approach this problem from the perspective of 

mathematical algorithms. However, each medical task 
combined with AI includes a special medical background 
knowledge. How to leverage the specific medical knowl-
edge behind these tasks and provide more adequate 
information to make the trained AI models perform bet-
ter is one of the main tasks/contributions of physicians in 
this field.

This study has some limitations. First, the number of 
cases included in this study was relatively small com-
pared with that in other studies, which may have affected 
the performance of the models. Considering that this 
study was not designed to establish an excellent prognos-
tic prediction model for NPC but was a methodological 
study, the data requirements were not demanding. Sec-
ond, this study was a single-center study, and it is still 

Fig. 5  The Grad-CAM images that were generated based on EfficientNet-B0. A. A patient with nasopharyngeal carcinoma with clinical stage T4N2 
was found to have tumor recurrence at 15 months after treatment (ground truth is high risk). A1 represents the original image of the patient. A2 
to A8 represent Grad-CAM images generated by EfficientNet-B0 using the original image, expand 60 image, expand 40 image, expand 20 image, 
expand 10 image, expand 5 image, and Deeplab seg image, respectively. B. A patient with nasopharyngeal carcinoma with clinical stage T2N3 
and no tumor recurrence at 43 months of follow-up (ground truth is low risk). B1 represents the original image of the patient. B2 to B8 represent 
Grad-CAM images generated by EfficientNet-B0 using the original image, expand 60 image, expand 40 image, expand 20 image, expand 10 image, 
expand 5 image, and Deeplab seg image, respectively. The yellow bright area indicates the region considered by the model to be most relevant to 
the prognosis of the tumor, followed by the green color. As it can be seen in the A2 and B2 plots that the DL model based on the original image 
classifies high- and low-risk patients on the basis of features that appear to be unreasonable in the physician’s experience as the bright yellow areas 
are concentrated around the brainstem. This situation occurs in a very large number of cases



Page 10 of 11Li et al. Cancer Imaging           (2023) 23:14 

unclear whether there are different information balance 
boundaries for the prognosis of NPC in multicenter data.

Conclusion
The peritumoral region on the MRI image of NPC con-
tains information related to prognosis, and the inclusion 
of this information could improve the performance of the 
model for predicting the prognosis of the tumor.
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