
RESEARCH ARTICLE Open Access

Radiomics nomogram for the preoperative
prediction of lymph node metastasis in
pancreatic ductal adenocarcinoma
Yun Bian1, Shiwei Guo2, Hui Jiang3, Suizhi Gao2, Chengwei Shao1, Kai Cao1, Xu Fang1, Jing Li1, Li Wang1,
Chao Ma1, Jianming Zheng3, Gang Jin2 and Jianping Lu1*

Abstract

Purpose: To develop and validate a radiomics nomogram for the preoperative prediction of lymph node (LN)
metastasis in pancreatic ductal adenocarcinoma (PDAC).

Materials and methods: In this retrospective study, 225 patients with surgically resected, pathologically confirmed
PDAC underwent multislice computed tomography (MSCT) between January 2014 and January 2017. Radiomics
features were extracted from arterial CT scans. The least absolute shrinkage and selection operator method was
used to select the features. Multivariable logistic regression analysis was used to develop the predictive model, and
a radiomics nomogram was built and internally validated in 45 consecutive patients with PDAC between February
2017 and December 2017. The performance of the nomogram was assessed in the training and validation cohort.
Finally, the clinical usefulness of the nomogram was estimated using decision curve analysis (DCA).

Results: The radiomics signature, which consisted of 13 selected features of the arterial phase, was significantly
associated with LN status (p < 0.05) in both the training and validation cohorts. The multivariable logistic regression
model included the radiomics signature and CT-reported LN status. The individualized prediction nomogram
showed good discrimination in the training cohort [area under the curve (AUC), 0.75; 95% confidence interval (CI),
0.68–0.82] and in the validation cohort (AUC, 0.81; 95% CI, 0.69–0.94) and good calibration. DCA demonstrated that
the radiomics nomogram was clinically useful.

Conclusions: The presented radiomics nomogram that incorporates the radiomics signature and CT-reported LN
status is a noninvasive, preoperative prediction tool with favorable predictive accuracy for LN metastasis in patients
with PDAC.

Keywords: Pancreatic neoplasm, Carcinoma, Pancreatic ductal adenocarcinoma, Lymph nodes, Computed
tomography, Radiomics, Nomograms
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Introduction
Pancreatic cancer is a highly lethal disease, and its mortal-
ity closely parallels its incidence [1, 2]. Surgical resection
is regarded as the only potentially curative treatment and
can result in significantly longer survival than other treat-
ment options. Lymph node (LN) metastases are observed
in 70% or more of resected ductal adenocarcinomas and
are present even when the primary tumor is small (< 2
cm) [3]. LN variables remain some of the most important
individual predictors of survival. A reliable method to ob-
tain accurate LN results is postoperative pathology. How-
ever, this technique is limited in detecting LN metastasis
during preoperative staging.
Endoscopic ultrasonography-guided fine-needle aspir-

ation (EUS-FNA) is considered quite sensitive for detect-
ing LN metastases from pancreatic lesions, but EUS-
FNA is an invasive diagnostic tool that is expensive and
time consuming and has a rather significant risk of com-
plications [4, 5]. Several factors limit the use of magnetic
resonance imaging (MRI) for determining LN status in
clinical cohort settings, including spatial resolution prob-
lems, motion artifacts and dose-dependent oversatura-
tion artifacts [6]. Multislice computed tomography
(MSCT) is the best initial diagnostic test for pancreatic
cancer. However, a meta-analysis that investigated CT
for assessing extraregional LN metastases in pancreatic
and periampullary cancer yielded a pooled sensitivity of
25% and a positive of predictive value (PPV) of 28% [7].
Important clinical objectives, including differentiation of
reactive, inflammatory lymphadenopathy from malignant
lymphadenopathy and detection/visualization of micro-
metastases, were not achieved with this technique.
Radiomics is an emerging field that converts imaging

data into a high-dimensional mineable feature space
using a large number of automatically extracted data
characterization algorithms [8, 9]. Radiomics provides a
noninvasive method for the prediction of LN metastasis.
At present, there are few studies on predicting LN me-
tastasis using radiomics [10–13]. To the best of our
knowledge, no studies have determined whether a radio-
mics signature would enable superior prediction of LN
metastasis from PDAC.
Therefore, in this present study, we aimed to develop

and validate a radiomics nomogram incorporating a
radiomics signature and CT-reported LN status for the
preoperative prediction of LN metastasis in patients with
PDAC.

Patients and methods
Patients
This retrospective single-center study was reviewed and
approved by the Biomedical Research Ethics Committee
of the Navy Military Medical University of the Chinese
People’s Liberation Army. Patients were excluded from

the study if one of the following criteria was met: pa-
tients who had not undergone preoperative standard
contrast-enhanced MSCT, had not undergone enhanced
MSCT within a month before surgery, had received any
treatment (radiotherapy, chemotherapy or chemoradio-
therapy) before undergoing imaging studies, had not
undergone surgery, were not diagnosed with PDAC by
both hematoxylin and eosin (HE) staining and immuno-
histochemistry, had pathologically confirmed PDAC with
mixed differentiation, had pancreatic lesions that could
not be visualized by MSCT, had other tumors in the
pancreas, or lacked preoperative serum carbohydrate
antigen 19–9 (CA 19–9) concentration. Consequently, a
total of 225 consecutive patients with PDAC, 137 males
(mean age, 60.02 years; age range, 31–77 years) and 88
females (mean age, 63.28 years; age range, 32–80 years),
were included in this cross-sectional study at our institu-
tion. A flowchart of the study population is presented in
Fig. 1. We divided the patients into two independent co-
horts. One hundred eighty consecutive patients consti-
tuted a training cohort of 107 males (mean age, 59.19
years; age range, 31–75 years) and 73 females (mean age,
62.59 years; age range, 32–75 years). Data were gathered
from records between January 2014 and January 2017.
Forty-five consecutive patients constituted a validation
cohort of 30 males (mean age, 63.00 years; age range,
45–77 years) and 15 females (mean age, 64.13 years; age
range, 46–80 years). Data were gathered from records
between February 2017 and December 2017.

CT scanning
A 640-slice CT scanner (Aquilion ONE, Canon Medical
Systems, Tokyo, Japan) was used with the following CT
scan parameters: 120 kV, 150 effective mAs, beam colli-
mation of 160 × 0.5 mm, a matrix of 350 × 350, and a gan-
try rotation time of 0.5 s. After nonenhanced CT
scanning, dynamic contrast-enhanced CT scanning was
performed. The scan delayed time was determined ac-
cording to the test bolus. The contrast agent, 90–95mL of
370 mgI/mL iopromide (Ultravist 370, Bayer Healthcare,
Berlin, Germany), was injected at a rate of 5.5 ml/sec with
a power injector (Medrad Mark V plus, Bayer, Leverkusen,
Germany) via the forearm vein, followed by 98ml of nor-
mal saline to flush the tube. Arterial (20–25 s), portal ven-
ous (60–70 s), and delayed-phase (110–130 s) scans were
performed after contrast agent injection. The slice thick-
ness/intervals of the scan and reconstruction were 0.8/1.0
mm and 1.0/1.0 mm, respectively. The scanning range was
from the level of the diaphragm to the level of the pelvis.

Imaging analysis
All CT images were analyzed by two board-certified ab-
dominal radiologists (W.L. and F.X., with 30 and 5 years
of experience, respectively) who were aware that the
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study population had PDAC but were blinded to the
clinical and pathologic details.
All tumors were evaluated for the following 6 features:

(a) Tumor location was defined as in the head, body, or
tail of the pancreas or in multiple locations in the pan-
creas. (b) Tumor size was defined as the maximum
diameter of a cross-section of the tumor [14]. (c) CT-
reported LN metastasis was considered if one of the fol-
lowing six criteria was met: short-axis diameter of a LN
> 10mm, nonuniform density, nonuniform enhance-
ment, internal necrosis, LN fusion, ill-defined borders,
or involvement of surrounding organs or blood vessels
[15, 16]. (d) Organ invasion was defined as involvement

of the liver, spleen, intestines, or stomach in which the
tumor could not be separated from the organs. (e) Vas-
cular invasion was defined as invasion of the common
hepatic artery, splenic artery and vein, gastroduodenal
artery, superior mesenteric artery and vein, or portal
vein. The criteria for vascular invasion included vessel
occlusion or stenosis or tumor contacting more than
half of the perimeter of the vessel.

Radiomics workflow
The radiomics workflow included (a) image segmenta-
tion, (b) feature extraction, (c) feature reduction and se-
lection, and (e) predictive model building (Fig. 2).

Fig. 1 The patient enrolment process for this study
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Image segmentation, Radiomics feature extraction and
Radiomics signature building
In this study, radiomics features were extracted from
arterial CT scans. The draw tool available in the Editor
module of 3D Slicer version 4.8.1 (open source software:
https://www.slicer.org/) was used to delineate the
tumors in multiple slices. In this study, the volume of
interest was extracted by stacking the corresponding
regions of interest (ROIs) delineated slice-by-slice for
each patient. Image preprocessing can be found in
Supplementary 1.
Radiomics feature extraction was conducted using an

open source Python package, PyRadiomics 1.2.0 (http://
www.radiomics.io/pyradiomics.html) [17]. The feature
extraction methods used in this study included two cat-
egories: original feature classes and filter classes. The fil-
ter classes further included five categories: wavelet,
square, square root, logarithm, and exponential. A total
of 1029 2D and 3D features from primary tumors in the
arterial phase were extracted and divided into five
groups: (a) first-order statistics, (b) shape features, (c)
gray-level cooccurrence matrix (GLCM) features, (d)
gray-level size zone matrix (GLSZM) features, and (e)
gray-level run-length matrix (GLRLM) features. More
information about the procedures for image

segmentation and radiomics feature extraction is re-
ported in Supplementary 2.
To assess interobserver reliability, the ROI segmenta-

tion was performed in a blinded fashion by two radiolo-
gists: reader 1 (W.L.) and reader 2 (F.X.). To evaluate
intraobserver reliability, reader 1 repeated the feature ex-
traction 3 times at the interval of 1 week. Reader 1 com-
pleted the remaining image segmentations, and the
readout sessions were conducted over a period of 1
month. The reliability was calculated by using intraclass
correlation coefficients (ICCs). Radiomics features with
both interobserver and intraobserver ICC values greater
than 0.75 (indicating excellent stability) were selected for
subsequent investigation.
As the radiomics features were very high-dimensional

compared with the sample size, the least absolute
shrinkage and selection operator (LASSO) logistic re-
gression algorithm, suitable for performing regression
analysis of high-dimensional data, was used to select the
most useful associated features [18]. The LASSO logistic
regression model was used with penalty parameter tun-
ing that was conducted by 5-fold cross-validation based
on minimum criteria. The radiomics score (rad-score)
was calculated for each patient via a linear combination
of selected features weighted by their respective

Fig. 2 Radiomics workflow
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coefficients. More information about feature selection
can be found in Supplementary 3.

Development, performance, and validation of a Radiomics
model
Multivariable logistic regression analysis was conducted
to develop a model for predicting LN metastasis in the
primary cohort. To provide a more understandable out-
come measure, a nomogram was then constructed by
using the selected covariates. The discrimination per-
formance of established models was quantified by the re-
ceiver operating characteristic (ROC) curve, which was
constructed using Bootstrap resampling (times = 500),
and the area under the curve (AUC) value [19]. AUC es-
timates in the prediction models were compared by
using the Delong nonparametric approach [20]. Calibra-
tion curves was plotted via bootstrapping with 500
resamples to assess the calibration of the radiomics
model, accompanied by the Hosmer-Lemeshow
goodness-of-fit test. The performance of the radiomics
model was then internally tested in an independent val-
idation cohort by using the formula derived from the
primary cohort.

Clinical utility of the Radiomics nomogram
To estimate the clinical utility of the nomogram, deci-
sion curve analysis (DCA) was performed by calculating
the net benefits for a range of threshold probabilities
(Supplementary 4).

Pathological image analysis
All the specimens were analyzed by a specialized path-
ologist. Pathological examinations and analyses were
standardized according to a formal protocol [21]. The
resected specimens were immediately fixed in formalin
for 24 h. Subsequently, they were cut horizontally into 5-
mm tissue blocks that were dehydrated and embedded
in paraffin. Finally, 5-μm sections were stained with HE
for conventional histology. Each large section was care-
fully examined by light microscopy. Tumor–node–me-
tastasis (TNM) staging was performed on the basis of
the American Joint Committee on Cancer TNM Staging
Manual, 8th Edition [15].

Statistical analysis
Normal distribution and variance homogeneity tests
were performed on all continuous variables. Continuous
variables with a normal distribution are expressed as
mean ± SD; variables with a non-normal distribution are
expressed as the median and interquartile range. The
rad-score was expressed as ten times. First, we examined
group differences in terms of age, gender, body mass
index (BMI), CA 19–9 level, tumor location, tumor (T)
grade, differentiation grade, and the rad-score between

the LN-positive and LN-negative patients. Student’s t
test (normal distribution), the Kruskal-Wallis H (skewed
distribution) test, and the chi-square test (categorical
variables) were used to identify significant differences
between the two groups. Second, patients were catego-
rized into quartiles (Q1 < -0.45, Q2 [− 0.45 to − 0], Q3 [0
to 0.46], and Q4 ≥ 0.46) on the basis of the rad-score,
with Q1 as the reference group. Univariate regression
analysis was applied to estimate the effect sizes between
all variables and LN metastasis. Variables that reached
statistical significance in the univariable analysis were
considered for the multivariable model.
A two-tailed p-value less than 0.05 was considered sta-

tistically significant. All analyses were performed with R
(R version 3.3.3; R Foundation for Statistical Computing;
http://www.r-project.org) and EmpowerStats (X&Y Solu-
tions, Inc., Boston, MA, USA).

Results
Clinical characteristics
The LN-negative and LN-positive patients accounted for
47.56% (107) and 52.44% (118) of the study cohort, re-
spectively. There was a significant difference in M stage
between the LN-positive and LN-negative patients in the
training cohort (p = 0.043). However, there were no sig-
nificant differences in age, gender, CA 19–9 level, T
stage, M stage of the validation cohort or differentiation
grade (p > 0.05) between the 2 groups. The patient char-
acteristics are shown in Table 1.

Tumor MSCT features
Among various CT findings, tumor size in the validation
cohort and CT-reported LN status in the training cohort
differed significantly between the LN-negative and LN-
positive patients. However, there were no significant dif-
ferences in tumor location, tumor size in the training co-
hort, vascular invasion, organ invasion, and CT-reported
LN status in the validation cohort between the LN-
negative and LN-positive patients (Table 1).

Radiomics analysis
A total of 1029 radiomics features from the arterial
phase of CT were extracted and grouped on the basis
of LN metastasis. We removed the 480 radiomics fea-
ture with ICC values < 0.75. The interobserver ICCs
of the 549 radiomics features were good, ranging
from 0.80 to 0.91. The intraobserver ICCs of the 549
radiomics features were also good, ranging from 0.86
to 0.92. Next, the radiomics features that did not sig-
nificantly different between the groups or did not
show significant correlations with LN-positive/nega-
tive was excluded. The 24 remaining radiomics fea-
tures were further reduced using a LASSO logistic
regression model. Finally, the radiomics characteristics
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Table 1 Baseline and MSCT Characteristics of Patients with PDAC

Characteristics Training cohort Validation cohort

LN-negative
(n = 81)

LN-positive
(n = 99)

P value LN-negative
(n = 26)

LN-positive
(n = 19)

P value

Age (y, mean ± SD) 61.7 ± 7.2 59.6 ± 9.8 0.115 62.9 ± 8.1 64.1 ± 7.3 0.620

BMI (kg/m2, mean ± SD) 22.6 ± 2.8 22.6 ± 2.6 0.999 23.17 ± 3.0 22.5 ± 2.4 0.422

Sex

Male 47 (58.0) 60 (60.6) 0.726 16 (61.5) 14 (73.7) 0.393

Female 34 (42.0) 39 (39.4) 10 (38.5) 5 (26.3)

CA19–9 (μg/L, median, min-max) 332.1 (71.6–1066.6) 293.5 (103.7–1200.0) 0.479 278.4 (13.6–1200.0) 305.5 (41.8–1200.0) 0.926

CA 19–9

< 1000 μg/L 57 (70.4) 65 (65.7) 0.501 17 (65.4) 13 (68.4) 0.831

≥1000 μg/L 24 (29.6) 34 (34.3) 9 (34.6) 6 (31.6)

T stage

T1 14 (17.3) 8 (8.1) 0.158 5 (19.2) 0 0.157

T2 15 (18.5) 23 (23.2) 5 (19.2) 5 (26.3)

T3–4 52 (64.2) 68 (68.7) 16 (61.5) 14 (73.7)

M stage

M0 80 (98.8) 91 (91.9) 0.043 23 (88.5) 19 (100.0) 0.068

M1 1 (1.23) 8 (8.1) 0 3 (11.5)

Differentiation grade

Well to moderately 65 (80.3) 85 (85.9) 0.315 23 (88.5) 12 (63.2) 0.070

Poorly to undifferentiated 16 (19.8) 14 (14.14) 3 (11.5) 7 (36.8)

Surgery

Pylorus-preserving pancreatoduodenectomy 2 (2.47) 10 (10.1) 0.133 2 (7.7) 2 (10.5) 0.781

Pancreatoduodenectomy 43 (53.1) 53 (53.5) 14 (53.9) 9 (47.4)

Total pancreatectomy 7 (8.6) 4 (4.0) 1 (3.9) 0

Distal pancreatectomy 29 (35.8) 32 (32.3) 9 (34.6) 8 (42.1)

Location

Head 44 (54.3) 63 (63.6) 0.205 16 (61.5) 11 (57.9) 0.805

Neck, body and tail 37 (45.7) 36 (36.4) 10 (38.5) 8 (42.1)

Size (mm, median, interquartile range) 26.0 (19.8–31.2) 23.5 (19.0–31.8) 0.885 24.4 (16.7–28.9) 29.2 (21.3–35.3) 0.044

Vascular invasion

No 50 (61.7) 60 (60.6) 0.878 19 (73.1) 11 (57.9) 0.286

Yes 31 (38.3) 39 (39.4) 7 (26.9) 8 (42.1)

Organ invasion

No 72 (88.9) 86 (86.9) 0.681 22 (84.6) 15 (78.0) 0.704

Yes 9 (11.1) 13 (13.1) 4 (15.4) 4 (21.1)

CT-reported LN status

Negative 61 (75.3) 57 (57.6) 0.013 19 (73.1) 9 (47.4) 0.079

Positive 20 (24.7) 42 (42.4) 7 (26.9) 10 (52.6)

Data are presented as n (%)
MSCT multislice computed tomography, LN lymph node, CA19–9 carbohydrate antigen 19–9
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were reduced to 13 features. Finally, the radiomics
signature was constructed, and the radiomics scores
was calculated by using the following formula 1.
There was a significant difference in arterial rad-score
between the LN-positive and LN-negative patients
(p = 0.002) (Supplementary 5).
Formula 1
Radiomics score = 0.52444–0.00008 × original.shape.

Compactness1–0.06501 × original.shape.

Compactness2 + 0.01910 × original.glrlm. LowGrayLe-
velRunEmphasis + 0.00487 × original.glrlm.
LongRunLowGrayLevelEmphasis
+ 0.01580 × logarithm.glszm.

GrayLevelNonUniformityNormalized
+ 0.01921 × square.firstorder. Skewness
- 0.00490 × exponential.glszm.

GrayLevelNonUniformityNormalized
+ 0.01238 × wavelet- LHL.firstorder. Mean

Table 2 Results of univariate analysis in the training cohort for predicting LN metastasis

Variables Statistics Odds Ratio (95% CI) P value

Rad-score (median, interquartile range) 0 (− 0.45–0.46) 3.25 (1.99, 5.33) < 0.0001

Rad-score

Q1 41 (22.8) 1.0 (reference)

Q2 41 (22.8) 1.89 (0.76, 4.71) 0.1712

Q3 48 (26.8) 4.03 (1.65, 9.82) 0.0022

Q4 50 (27.8) 8.57 (3.32, 22.13) < 0.0001

Age (y, mean ± SD) 60.5 + 8.8 0.97 (0.94, 1.01) 0.1167

BMI (kg/m2, mean ± SD) 22.6 + 2.7 1.00 (0.90, 1.12) 0.9987

Sex

Male 107 (59.4) 1.0 (reference)

Female 73 (40.6) 0.90 (0.49, 1.63) 0.7257

CA 19–9

< 1000 μg/L 122 (67.8) 1.0 (reference)

≥1000 μg/L 58 (32.2) 1.24 (0.66, 2.34) 0.5011

Location

Head 107 (59.4) 1.0 (reference)

Neck, body and tail 73 (40.6) 0.68 (0.37, 1.24) 0.2062

T grade

T1 22 (12.2) 1.0 (reference)

T2 38 (21.1) 2.68 (0.91, 7.94) 0.0746

T3–4 120 (66.7) 2.29 (0.89, 5.86) 0.0845

Differentiation grade

Well to moderately 150 (83.3) 1.0 (reference)

Poorly to undifferentiated 30 (16.7) 0.67 (0.30, 1.47) 0.3168

Size (mm, median, interquartile range) 25.01 (19.0–31.6) 1.01 (0.98, 1.04) 0.5712

Vascular invasion

No 110 (61.1) 1.0 (reference)

Yes 70 (38.9) 1.05 (0.57, 1.92) 0.8779

Organ invasion

No 158 (87.8) 1.0 (reference)

Yes 22 (12.2) 1.21 (0.49, 2.99) 0.6809

CT-reported LN status

Negative 118 (65.6) 1.0 (reference)

Positive 62 (34.4) 2.25 (1.18, 4.28) 0.0136

Data are presented as n (%)
Rad-score radiomics score, LN lymph node, CA19–9 carbohydrate antigen 19–9, CI confidence interval
Patients were categorized into quartiles by radiomics score (Q1 < -0.45, Q2 [−0.45 to 0], Q3 [0 to 0.46], and Q4 ≥ 0.46)
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+ 0.00024 × wavelet-LHL.firstorder. Kurtosis
+ 0.00282 × wavelet-HLL.firstorder. Mean
+ 0.01832 × wavelet - LLH.glszm.

LargeAreaHighGrayLevelEmphasis
+ 0.00264 × wavelet-HLH.glrlm.

LowGrayLevelRunEmphasis
+ 0.01276 × wavelet - LLL.firstorder. Mean

Univariate analysis of each parameter
The univariate analysis results are shown in Table 2.
The rad-score (p < 0.0001) and CT-reported LN status
(p = 0.014) were significantly associated with an in-
creased risk for LN metastasis.

Development, performance, and validation of prediction
models
Logistic regression analysis identified the rad-score and
CT-reported LN status as independent predictors (Table
3). A model that incorporated these two independent
predictors was developed and presented as a nomogram
(Fig. 3A). In addition, the prediction model was built
based on CT-reported LN status.
All ROC curves are provided in Fig. 3B and 3C. In the

primary cohort, the radiomics model showed the highest
discrimination between LNs that were positive and nega-
tive for metastasis, with an AUC of 0.75 (95% CI: 0.68,
0.82); the observed AUC value was higher than that for
CT-reported LN status (AUC, 0.59 [95% CI: 0.51, 0.67];
p < 0.0001). In the validation cohort, the radiomics
model yielded the greatest AUC (0.81; 95% CI: 0.69,
0.94), which confirmed that the radiomics model
achieved better predictive efficacy than CT-reported LN
status (AUC, 0.63 [95% CI: 0.46, 0.80]; p = 0.02). In the
radiomics model, the sensitivity, specificity, and accuracy
for the training cohort were 67.68, 75.31%, and 0.711, re-
spectively, whereas those for the validation cohort were
84.21, 69.23%, and 0.756, respectively. The calibration
curve of the radiomics nomogram demonstrated good
agreement between predicted and observed LN metasta-
sis in the primary cohort (Fig. 3D). The Hosmer-
Lemeshow test yielded a p-value of 0.88, suggesting no
departure from the good fit. The favorable calibration of
the radiomics nomogram was further confirmed in the

validation cohort (Fig. 3E). The Hosmer-Lemeshow test
yielded a p-value of 0.63, suggesting a perfect fit of the
nomogram in the validation set.

Clinical use
The DCA in the validation set showed that if the thresh-
old probability is between 0.25 and 0.75, using the radio-
mics nomogram in the current study to predict LN
metastases adds more benefit than the treat-all-patients
scheme or the treat-none scheme (Fig. 4).

Discussion
We developed and validated a diagnostic, radiomics
signature-based nomogram for the preoperative individ-
ualized prediction of LN metastasis in patients with
PDAC. The nomogram incorporates two items, the rad-
score and CT-reported LN status. Incorporating these
two factors into an easy-to-use nomogram facilitates the
preoperative individualized prediction of LN metastasis.
PDAC is characterized by an extremely high mortality

and a poor prognosis, which are largely attributed to dif-
ficulties in early diagnosis and limited therapeutic op-
tions. The number of positive LNs has been shown to be
a crucial and independent prognostic factor for overall
survival in PDAC [22]. Pancreatectomy is the most ef-
fective method to improve long-term patient survival.
Whether pancreatectomy should include standard and
extended lymphadenectomy is still debated [23, 24]. Ac-
curate preoperative LN staging of PDAC is essential for
providing patients with appropriate counsel regarding
surgical decisions and prognosis. However, it is difficult
with the currently available methods.
TH high-risk patients should consider neoadjuvant

therapy if LN metastases are confirmed by endoscopic
ultrasonography-guided FNA (EUS-FNA) [25]. EUS-
FNA is considered quite sensitive for the detection of
pancreatic lesions and offers diagnostic value for both
the primary tumor and LN metastases [4, 5]. A piece of
tissue that can provide sufficient histological information
to help diagnose peripancreatobiliary LN involvement
can be obtained with EUS-FNA. For FNA of LNs, suc-
tion is not recommended to reduce blood contamination
[26]. In addition, EUS-FNA is affected by various factors,
such as scope position [27], lesion characteristics, the
environment surrounding the lesions, and the evaluating
pathologist [27–30]. Positron emission tomography–
computed tomography (PET/CT) is limited in its ability
to evaluate small lesions and cannot differentiate be-
tween inflammatory lymphadenopathy and metastatic
lymphadenopathy [31]. Similarly, MRI has several limit-
ing factors associated with the determination of LN sta-
tus in clinical settings, namely, spatial resolution
problems, motion artifacts, and dose-dependent oversat-
uration artifacts [6]. The most widely used preoperative

Table 3 The multivariable logistic regression model for LN
metastasis of PDAC

Variable Coefficient S.E. OR (95% CI) P-value

(Intercept) −0.10 0.20 0.91 (0.61, 1.34) 0.62

CT-reported LN metastasis

No versus yes 0.79 0.35 2.19 (1.10, 4.38) 0.026

Rad-score 1.17 0.26 3.24 (1.96, 5.35) 0.0001

The predicted model =−0.10+0.79× (CT-reported LN metastasis =1) + 1.17×Rad-score
Note: S. E. standard error, OR odds ratio, CI confidence interval, LN lymph node,
Rad-score radiomics score
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staging modality for pancreatic cancer is CT [32, 33],
which can accurately assess tumor size and vessel in-
volvement, but its diagnostic accuracy for adequately
assessing LN involvement is limited. Many studies have
reported a diagnostic sensitivity of only 20–38% [34–37].
In the current study, the AUCs of CT-reported LN

status were only 0.59 (95% CI, 0.51 to 0.67) in the train-
ing cohort and 0.63 (95% CI, 0.46 to 0.80) in the valid-
ation cohort.
There are several main limitations of preoperative

imaging studies of LNs. First, LN imaging findings
are difficult to correlate one-to-one with pathological

Fig. 3 Radiomics nomogram developed with ROC and calibration curves. A A radiomics nomogram was developed in the primary cohort,
incorporating the radiomics signature and CT-reported LN status. Comparison of ROC curves between the radiomics nomogram and CT-reported
LN status alone for the prediction of LN metastasis in the (B) primary and (C) validation cohorts. Calibration curves of the radiomics nomogram in
the (D) primary and (E) validation cohorts
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evidence of LN metastasis. Second, CT has limited
visualization ability to identify metastatic LNs. Finally,
there is no significant correlation between LN metas-
tasis and the clinical and pathologic characteristics of
PDAC patients. In addition, local inflammation sec-
ondary to malignant biliary obstruction may inde-
pendently result in enlarged LNs [38]. In the current
study, we found no significant correlation between
LN metastasis and CT-reported tumor size or vascu-
lar or organ invasion. Thus, improved predictive tools
for preoperative LN staging are urgently needed. In
our study, the arterial radiomics signature was signifi-
cantly associated with LN status (p < 0.05 for both the
training and validation cohorts).
At present, there are few studies on predicting LN me-

tastasis using radiomics. Wu et al. [10] developed and vali-
dated a radiomics nomogram that incorporated the
radiomics signature and CT-reported LN status and
showed good calibration and discrimination in a training
set (AUC, 0.9262; 95% CI, 0.8657–0.9868) and in a valid-
ation set (AUC, 0.8986; 95% CI, 0.7613–0.9901). Huang
et al. [12] developed and validated a radiomics nomogram
that included the radiomics signature, carcinoembryonic
antigen (CEA) level and CT-reported LN status, and the
prediction model yielded C-indexes of 0.736 (95% CI,
0.730 to 0.742) in the training cohort and 0.778 (95% CI,
0.769 to 0.787) in the validation cohort. A nomogram

incorporating some clinical and pathological factors to
predict the prognosis of PDAC has been reported [39, 40].
However, it was difficult to incorporate the radiomics sig-
nature, imaging findings and clinical factors to predict LN
metastasis from PDAC. In the current study, the rad-score
and CT-reported LN status were incorporated into an
easy-to-use nomogram to facilitate the preoperative indi-
vidualized prediction of LN metastasis. Our nomogram
performed well in both the training (AUC, 0.75; 95% CI,
0.68–0.82) and validation cohorts (AUC, 0.81; 95% CI,
0.69–0.94). Our nomogram also showed good calibration
in both the training and validation cohorts.
To go beyond the purely mathematical measures of

performance, such as the AUC, DCA was used to esti-
mate the predicted net benefit of the model across all
possible risk thresholds, thus making it easier to evaluate
the effects of various risk thresholds [41, 42]. DCA
showed that if the threshold probability is between 0.25
and 0.75, the current radiomics nomogram to predict
LN metastases added more benefit than either the treat-
all or treat-none scheme.
The current study has some limitations. The ROC

value in the training cohort was lower than in the valid-
ation cohort. The study was lack of external validation
of the model. Multicenter validation with a larger sample
size is needed to acquire high-level evidence for clinical
application. In addition, genetic markers have not yet

Fig. 4 DCA for the rad-score. DCA for the radiomics nomogram. The y-axis represents the net benefit. The red line represents the radiomics
nomogram. The gray line represents the hypothesis that all patients had LN metastases. The black line represents the hypothesis that no patients
had LN metastases. The x-axis represents the threshold probability, which is where the expected benefit of treatment is equal to the expected
benefit of avoiding treatment. The decision curves in the validation set showed that if the threshold probability is between 0.25 and 0.75, the
radiomics nomogram developed in the current study to predict LN metastases adds more benefit than the treat-all or treat-none scheme
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been incorporated into our nomogram. Previous studies
have showed that Smad4/DPDAC4 and MTA1 mRNA
expression levels may be involved in the progression of
PDAC, particularly in LN metastasis [43, 44]. A combin-
ation of gene marker panels and a radiomics signature
may improve the ability to predict LN metastasis in pa-
tients with PDAC.

Conclusion
Our radiomics nomogram, which is a noninvasive pre-
dictive tool that combines a radiomics signature with
CT-reported LN status, shows favorable accuracy for
preoperatively predicting LN metastasis in PDAC pa-
tients, especially in LN-positive patients.
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