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Radiomic signature based on CT imaging to
distinguish invasive adenocarcinoma from
minimally invasive adenocarcinoma in pure
ground-glass nodules with pleural contact
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Abstract

Background: Pure ground-glass nodules (pGGNs) with pleural contact (P-pGGNs) comprise not only invasive
adenocarcinoma (IAC), but also minimally invasive adenocarcinoma (MIA). Radiomics recognizes complex patterns
in imaging data by extracting high-throughput features of intra-tumor heterogeneity in a non-invasive manner. In
this study, we sought to develop and validate a radiomics signature to identify IAC and MIA presented as P-pGGNs.

Methods: In total, 100 patients with P-pGGNs (69 training samples and 31 testing samples) were retrospectively
enrolled from December 2012 to May 2018. Imaging and clinical findings were also analyzed. In total, 106 radiomics
features were extracted from the 3D region of interest (ROI) using computed tomography (CT) imaging. Univariate
analyses were used to identify independent risk factors for IAC. The least absolute shrinkage and selection operator
(LASSO) method with 10-fold cross-validation was used to generate predictive features to build a radiomics
signature. Receiver-operator characteristic (ROC) curves and calibration curves were used to evaluate the predictive
accuracy of the radiomics signature. Decision curve analyses (DCA) were also conducted to evaluate whether the
radiomics signature was sufficiently robust for clinical practice.

Results: Univariate analysis showed significant differences between MIA (N = 47) and IAC (N = 53) groups in terms
of patient age, lobulation signs, spiculate margins, tumor size, CT values and relative CT values (all P < 0.05). ROC
curve analysis showed, when MIA was identified from IAC, that the critical value of tumor length diameter (TLD)
was1.39 cm and the area under the ROC curve (AUC) was 0.724 (sensitivity = 0.792, specificity = 0.553). The critical
CT value on the largest axial plane (CT-LAP) was − 597.45 HU, and the AUC was 0.666 (sensitivity = 0.698,
specificity= 0.638). The radiomics signature consisted of seven features and exhibited a good discriminative
performance between IAC and MIA, with an AUC of 0.892 (sensitivity = 0.811, specificity 0.719), and 0.862 (sensitivity
= 0.625, specificity = 0.800) in training and testing samples, respectively.

Conclusions: Our radiomics signature exhibited good discriminative performance in differentiating IAC from MIA in
P-pGGNs, and may offer a crucial reference point for follow-up and selective surgical management.

Keywords: Pure ground-glass nodules (pGGN), Pleural contact, Invasive adenocarcinoma (IAC), Minimally invasive
adenocarcinoma (MIA), Radiomics, Computed tomography (CT)
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Background
The practicability of a new classification system for lung
adenocarcinoma (ADC) was proposed by the Inter-
national Association for Study of Lung Cancer, Ameri-
can Thoracic Society and the European Respiratory
Society (IASLC, ATS, ERS) in 2011 [1]. Later in 2015, it
was revised and adopted by the World Health
Organization (WHO) [2]. ADC classification includes
adenocarcinoma in situ (AIS), minimally invasive adeno-
carcinoma (MIA) and invasive adenocarcinoma (IAC).
Patients with MIA survive well, postoperative recurrence
and lymph node metastasis are rare, and the 5 year sur-
vival rate is close to 100%, whereas in contrast, an IAC
prognosis is not as good [3–6]. Furthermore, studies
have shown that pure ground-glass nodule (pGGNs),
pathologically suspected to be AIS or MIA, require close
follow-up or limited resection (segmental or wedge re-
section), while lobectomy is considered the standard sur-
gical treatment for IAC [7].
Lung pGGN is a non-specific sign on thin-slice com-

puted tomography (TSCT). The WHO recommended
that if a biopsy indicated a pattern of lepidic growth with
a pGGN on CT, AIS or MIA was proposed [2]. Previous
studies have suggested that the proportion of IAC in
pGGNs can be as high as 30.42–48.82% [8–11]. How-
ever, studies have also suggested that owing to limited
CT image resolution (0.2–0.3 mm), a stromal or myofi-
broblastic invasion of an MIA ≤ 5 mm, or an IAC > 5
mm may be pGGN on high resolution CT [12].
Previous radiological studies suggested that the inci-

dence of pleural contact signs in IAC groups were higher
than MIA groups in ADC groups presented as pGGNs
[13, 14]. In addition, studies using contrast analysis be-
tween High resolution CT (HRCT) signs and pathology
concluded that pleural contact signs were significantly
correlated with invasiveness, and more likely reminiscent
of IAC [15, 16]. But pure ground - glass nodules with
pleural contact (P-pGGNs) comprise not only the IAC,
also part of the MIA [13, 14, 17], the proportion of
which is as high as 42.86% [18]. Therefore, how can P-
pGGNs be accurately assessed?
CT imaging plays an essential role in all phases of can-

cer management, including predictive evaluation. Zhao
et al [19]. assessed 115 P-pGGNs cases and proposed
that tumor shape, relative density and tumor-pleural re-
lationships independently identified IAC from AIS/MIA.
Receiver-operator characteristic (ROC) curve analysis for
relative density confirmed sensitivity and specificity as
72.3 and 64.7%, respectively. Zhao et al. resulted in an
unsatisfied diagnostic performance evaluation for these
predictors of IA in P-pGGNs. By visually and subject-
ively assessing CT images to define the nodule’s type,
observers may allow subtle but valid information to slip.
In contrast to such qualitative inference, radiology fields

that rely on imaging data have begun to benefit from
radiomics. This approach recognizes complex patterns
in imaging data and uses automatic or semi-automatic
software to extract high-throughput radiographic images
to quantify phenotypic intra-tumor heterogeneity in a
non-invasive manner [20]. These features include de-
scriptors of intensity distribution, spatial relationships
between various intensity levels, texture heterogeneity
patterns, descriptors of shape, and tumor relationships
with the surrounding tissues (i.e., attachment to the
pleural wall of the lung, or differentiation) [21]. Radio-
mics, as a tool that recognizes and evaluates histological
subtypes, is currently under intensive focus. A recent
study on pGGNs revealed that CT texture analysis,
which assesses histograms, volumetrics, morphological
and second-order texture features showed higher en-
tropy and lower homogeneity and had the potential to
distinguish AIS/MIA from IAC. The AUC of the ROC
entropy curve, homogeneity and nodule size were 0.765,
0.671 and 0.712, respectively. By including mass, entropy
and homogeneity into the logistic regression model, this
improved the diagnostic accuracy (AUC = 0.962) when
compared to conventional parameters alone, such as
nodule size [22].
The nomogram is accepted as a reliable calculative in-

strument that visualizes risks posed by ADC [23]. Up to
now, it is still unclear whether radiomic nomograms can
be used to identify IAC and MIA in P-pGGNs. Thus, in
this retrospective study, we developed and validated a
radiomics signature for the identification of IAC and
MIA as P-pGGNs in preoperative TSCT, which was later
pathologically confirmed by surgery.

Materials and methods
Patients
This retrospective study was performed with institu-
tional review board ethical approval. From December
2012 to May 2018, we identified 275 consecutive lung-
pGGN patients (MIA; N = 167, IAC; N =108) who
underwent preoperative chest TSCT, and were patho-
logically confirmed as single MIA and IAC after thoracic
surgery. After screening, 100 cases with P-pGGN were
finally included. The clinical characteristics of all P-
pGGN cases were recorded (e.g., age, sex, smoking his-
tory, etc.).
Inclusion criteria: (A) patients having completed a

lung TSCT scan 2 weeks before surgery; (B) pGGNs on
lung window images (window width; 1500 HU, window
level; − 600 HU), (C) single MIA and IAC pathologically
confirmed by thoracic surgery, with accompanying histo-
pathological specimens, (D) P-pGGNs located in the
sub-pleural area displayed on preoperative TSCT, and
defined as a pGGN attached or connected to the pleural
surface, including visceral and interlobar pleura.
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Exclusion criteria: (A) patients having undergone tumor
therapy (radiotherapy, chemotherapy, etc.), puncture bi-
opsy, or surgical resection before the TSCT scan, (B) un-
available image archiving and communication systems,
and (C) visible soft-tissue attenuation within the lesion,
viewed on mediastinal window images (window width =
400 HU, window level = 40 HU).

CT scan acquisition
All patients underwent chest CT examinations without
intravenous contrast-media injection, with > 16 rows of
spiral CT (GE Healthcare; GEHD 750; Somatom Perspec-
tive). Chest scans were performed on patients whose
hands were at either side of the head in a supine position
from the upper supraclavicular area to the lower adrenal
area at deep inhalation and breath-holding moment. Scan-
ning was performed in conventional helical mode, at a
tube voltage of 120kVp, tube current 170–200mA, slice
thickness 5.0 mm, slice interval 5.0 mm, matrix 512× 512,
bone algorithm for reconstruction, slice thickness 1.0–1.5
mm, and slice interval 1.0–1.5mm.

Pathological analysis
All pathological evaluations were performed by examin-
ing hematoxylin/eosin (HE) stained slides. These were
prepared using formalin-fixed paraffin-embedded tissues
with 0.4 cm thick sections, including the largest section
of the tumor. All tumors were histologically evaluated by
two experienced pathologists blinded to patient patho-
logical information. The pathological type of each lesion
was recorded. Pathological IAC and MIA diagnoses were
performed according to the new ADC classification pro-
posed by the IASLC/ATS/ERS in 2011. When opinions
were divergent regarding morphology, discrepancies
were resolved by consensus.

Conventional image analysis
All raw CT images were retrieved on a picture archiving
and communication system (PACS, DJ Health Union
Systems Corporation), and observed by two experienced
chest radiologists blinded to histological findings in the
lung window (window width = 1500 HU, window level =
− 600 HU). TSCT P-pGGN images were evaluated and
the following imaging features were recorded.

Conventional morphological characteristics
(1) Tumor location: left superior lobe, left inferior lobe,
right superior lobe, right middle lobe, right inferior lobe;
(2) Shape: round and oval, irregular; (3) Tumor-lung
interface: clear or not; (4) Lobulation signs: defined as a
portion of the edge of the lesion; is wavy or fan-shaped;
(5) Spiculate margin: defined as a thin line extending
from the edge of the nodule to the lung parenchyma,
but reaching the pleural surface; (6) Bubblelike

appearance: defined as 1–3 mm cystic transparency of
air attenuation within nodules; and (7) Air bronchogram:
defined as lucency along the regular bronchial wall in-
side the P-pGGN.

Conventional quantitative CT features
(1) TLD on the largest axial plane (LAP): LAP was se-
lected from the axial TSCT image on the lung window,
and the maximum diameter on the LAP was determined
as TLD; (2) Tumor short diameter (TSD) on the LAP.
The TLD vertical diameter was determined on the LAP
as the TSD; (3) Tumor vertical diameter (TVD) on the
largest coronal plane (LCP) [24]: LCP was selected from
the coronal TSCT image on the lung window, and the
largest diameter on the LCP was measured as TVD; (4)
CT value on the LAP (CT-LAP): the CT value on the
LAP was measured as CT-LAP; (5) Relative CT value on
the LAP (RCT-LAP) [19]: the normal lung density mea-
sured on the same plane with LAP (NLD-LAP) was di-
vided by the CT-LAP value as RCT-LAP.
Measurement standards for conventional quantitative

CT features: (1) The region of interest (ROI) of the P-
pGGN was delineated by a regular curve. The ROI
should include > 70% of the lesion area of the P-pGGN.
(2) ROI measurements should avoid large vessels,
bronchus and vacuoles, when there are bronchovascular
bundles and vacuoles in the measurement layer. Sub-
maximum layers should be selected when they cannot
be completely avoided. (3) Selection of NLD-LAP: The
same lobe and subpleural area at the same level of the
lesion were selected. We completed ROI measurements
by delineating the similar pulmonary microvascular at-
tenuation and area as the CT-LAP measured.

Radiomics analysis
Segmentation and radiomic feature extraction
All TSCT image layers were manually segmented, and
radiomics feature were radiographically extracted using
a free open-source software called 3D slicer (version
4.8.1) (https://www.slicer.org/). A total of 106 radiomics
features were extracted automatically, and included
shape (N = 13), Gray Level Dependence Matrix (GLDM;
N = 14), Gray Level Co-occurrence Matrix (GLCM; N =
24), first order (N = 18), Gray Level Run Length Matrix
(GLRLM; N = 16), Gray Level Size Zone Matrix
(GLSZM; N = 16), and Neighboring Gray Tone Differ-
ence Matrix (NGTDM; N = 5), comprising seven
categories.

Intra- and inter-observer agreements
Intra- and inter-observer agreements for feature extrac-
tion were evaluated using the intra- and inter-class cor-
relation coefficient (ICC). Initially, 50 P-pGGN TSCT
images were randomly selected, and ROI segmentation
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and feature extraction were independently completed by
two blinded experienced radiologists. Observer one per-
formed feature extraction on the CT image after an
interval of no less than 30 days once more. Inter-
observer agreement was assessed by comparing feature
extraction measured by observer two, with feature
extraction of observer one. The remaining image seg-
mentation was measured by observer one, both inde-
pendently and manually.

Radiomics feature selection and radiomics signature
development
The dataset was assigned to either the training samples or
testing samples in a 7:3 ratio. All cases in the training
samples were used to select features and train the predict-
ive model, while cases in the test cohort were used to in-
dependently evaluate the model’s performance. Before
analyses, features were standardized by standardization.
ICCs were calculated to determine inter- and intra-
observer agreement, and features with ICCs > 0.75 were
retained. The least absolute shrinkage and selection oper-
ator (LASSO) method was used for regression assessment
of high-dimensional data. LASSO was used to derive the
most useful predictive features. Optimal features were se-
lected according to the AUC. In LASSO, a 10-fold cross-
validation was performed to choose the optimal hyper-
parameter log (λ), with mean square error as a criterion
(the smaller the better). The radiomics signature (Rad-
score) was calculated based on the sum of selected fea-
tures weighted by their corresponding coefficients to pre-
dict IAC before surgery for each patient. A 10-fold cross-
validation in the training samples was also performed to
evaluate the performance and reliability of our model. A
logistics model was built from optimal feature subsets of
the training sample.

Evaluation of the radiomics signature
The AUC of the ROC curve was used to evaluate the
predictive accuracy of the radiomics model, in both
training and testing samples. A calibration curve was
used to demonstrate the calibration degree, which
reflected consistency between predicted and observed
IAC risks. Decision curve analysis (DCA) was conducted
to evaluate the clinical usefulness of the radiomics model
(Fig. 1).

Statistical analysis
The Kolmogorov-Smirnov test evaluated whether vari-
ables were normally distributed. Variables were de-
scribed as the mean ± standard deviation (SD) for
normal distributions, and described as the median and
quartile for non-normal distributions. T-tests were used
for normally distributed variables, and the Mann–Whit-
ney U test was used for non-normally distributed

variables. A Pearson χ2 test or Fisher exact test was used
to test differences between groups in terms of tumor lo-
cation, shape, tumor-lung interface, lobulation signs,
spiculate margins, bubblelike appearance and air
bronchograms. ROC curves were plotted to assess the
performance of conventional quantitative CT features in
differentiating IAC from MIA groups. Accuracy, sensi-
tivity, specificity and AUC were also calculated. LASSO
methods were performed using the “glmnet” package. A
calibration curve was performed to evaluate the predict-
ive accuracy of the radiomics signature. DCA was con-
ducted to evaluate whether the radiomics signature was
sufficiently robust for clinical practice. All statistical ana-
lyses were performed using SPSS (version 26.0, IBM,
Armonk, NY, USA), R 3.5.1 and Python 3.5.6. A two-
tailed P-value < 0.05 indicated statistical significance.

Results
Baseline characteristics
One hundred eligible single P-pGGNs, of which 47 were
MIA (47%) and 53 were IAC (53%) were included. None
of the lesions was associated with any mediastinal lymph
node metastases. Twenty-nine (29%) males and 71 (71%)
females participated, with a median age of 60.50 years
(50.00–66.00 years). The IAC group was older than the
MIA group (63.00, 56.00–67.00 vs. 55.50, 44.50–63.50, P
= 0.006). Most of the underlying diseases were localized
and mild, and there were more underlying diseases in
the IAC group than in the MIA group (IAC identified:
bronchitis,1;pulmonary bullae 7;emphysema 7;MIA iden-
tified: tuberculosis 1). We observed no statistical differ-
ences in terms of smoking history, gender and statistical
differences in terms of underlying disease between
groups (Table 1).

Conventional morphological characteristics
Lobulation signs and spiculate margin indications in the
IAC group were significantly higher than the MIA group
(54.72% vs. 25.53%, P = 0.003; 60.37% vs. 29.79%, P =
0.002). Other objective morphological characteristics
(i.e., tumor location, shape, tumor-lung interface, bub-
blelike appearance, air bronchogram) showed no statis-
tical differences between groups (P > 0.05) (Table 2).

Conventional quantitative CT features
Significant differences in TLD, TSD, TVD, CT-LAP and
RCT-LAP between groups are shown (P < 0.05) (Table 3).
The CT-LAP and RCT-LAP of the IAC group were
higher than the MIA group (− 560.94 HU vs. -620.45
HU, P = 0.004; 1.54 vs. 1.40, P = 0.034). The TLD, TSD
and TVD of the IAC group were also higher than the
MIA group. ROC curve analysis showed that when iden-
tifying MIA from IAC, the TLD critical value was 1.39
cm and the AUC was 0.724 (sensitivity = 0.792,
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Fig. 1 Flow diagram showing original imaging to radiomics-model building. LASSO; the least absolute shrinkage and selection operator method;
AUC, the area under the ROC curve; ROC, receiver operating characteristics
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Table 1 Patient P-pGGN characteristics

Variable IAC(N=53) MIA(N=47) Total P value

Age Median (25th to 75th percentile) years 63.00 (56.00~67.00) 55.50 (44.50~63.50) 60.50 (50.00~66.00) 0.006

Sex/Male No. (%) 16 (30.19) 13 (27.66) 29 (29.00) 0.781

Smoking history, No. (%) 0.719

Ever smokers 5 (9.43) 3 (6.38) 8 (8.00)

Never smokers 48 (90.57) 44 (93.62) 92 (92.00)

Underlying disease 0.000

Positive

Bronchitis 1 (1.00) 0 (0.00) 1 (1.00)

Pulmonary bullae 7 (7.00) 0 (0.00) 7 (7.00)

Emphysema 7 (7.00) 0 (0.00) 7 (7.00)

Tuberculosis 0 (0.00) 1 (1.00) 1 (1.00)

Negative 38 (38.00) 46 (46.00) 84 (84.00)

IAC Invasive adenocarcinoma, MIA Minimally invasive adenocarcinoma

Table 2 Morphological index analyses

Morphological index IAC MIA Total P value

Tumor location, No. (%) 0.671

Left lung

Superior lobe 15 (28.30) 11 (23.41) 26 (26.00)

Inferior lobe 6 (11.32) 9 (19.15) 15 (15.00)

Right lung

Superior lobe 17 (32.08) 16 (34.04) 33 (33.00)

Middle lobe 3 (5.66) 4 (8.51) 7 (7.00)

Inferior lobe 12 (22.64) 7 (14.89) 19 (19.00)

Shape, No. (%) 0.536

Round and oval 17 (32.08) 18 (38.30) 35 (35.00)

irregular 36 (67.92) 29 (61.70) 65 (65.00)

Tumor-lung interface(clear), No. (%) 31 (58.49) 25 (53.19) 56 (56.00) 0.687

Lobulation sign, No. (%) 0.003

Positive 29 (54.72) 12 (25.53) 41 (41.00)

Negative 24 (45.28) 35 (74.47) 59 (59.00)

Spiculate margin, No. (%) 0.002

Positive 32 (60.37) 14 (29.79) 46 (46.00)

Negative 21 (39.62) 33 (70.21) 54 (54.00)

Bubblelike appearance, No. (%) 0.159

Positive 18 (33.96) 10 (21.28) 28 (28.00)

Negative 35 (66.04) 37 (78.72) 72 (72.00)

Air bronchogram, No. (%) 0.446

Positive 11 (20.75) 7 (14.89) 18 (18.00)

Negative 42 (79.25) 40 (85.11) 82 (82.00)

IAC Invasive adenocarcinoma, MIA Minimally invasive adenocarcinoma
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specificity = 0.553). The CT-LAP critical value was −
597.45 HU, and the AUC was 0.666 (sensitivity =
0.698, specificity = 0.638). The AUC for TSD, TVD
and RCT-LAP ranged between 0.623–0.702 (Table 4,
Figs. 2 and 3a-d).

Radiomics feature selection and signature development
We completed ROI feature extraction and consistency
tests within and between observers. Intra-observer ICCs
ranged from 0.475–0.995, and there were 13 features
ICC < 0.750. Inter-observer ICCs ranged from 0.278–
0.992, and inter-observer showed 17 features ICC <
0.750. When ICC > 0.750, the features were repeatable.
Nineteen features of poor repeatability were eliminated.
The remaining 87 radiomics features showed favorable
intra- and inter-observer reproducibility and consistent
feature extraction. The detailed results of intra- and
inter-observer ICCs are listed in Additional file 1: Table
1. In LASSO regression analysis using 10-fold cross-
validation, the best alpha was 0.036. At this value, 87
radiomics features were reduced to seven potential pre-
dictors with non-zero coefficients. Log (λ) changes from
– 10 to 0, features that participated into the model is re-
duced, and the absolute values of the coefficients of the
variables also shrink toward zero (Fig. 4a and b).

These features were enrolled into signatures, including
shape features (N = 1): Sphericity; GLDM(N = 1): Small
Dependence High Gray Level Emphasis; GLCM; (N = 2):
Joint Average, Imc1; first order feature(N = 1): Skewness;
GLRLM(N = 2): Gray Level Variance 1, Long Run Em-
phasis. Definitions of these radiomics features are available
(Additional file 1). A logistic-model-based nomogram was
also performed. According to these radiomic nomograms,
each predictive feature was assigned a weighted number
of points (Fig. 5). The total number of points for each pa-
tient was calculated using the nomogram, and was associ-
ated with an estimated IAC probability, present as P-
pGGNs. The calculation formula was:

Rad score ¼ 0:189 − 1:701� Sphericity − 0:603
�Small Dependence High Gray Level Emphasis
þ0:253� Joint Averageþ 0:378� Imc1 − 0:786
�Skewnessþ 0:732� Gray Level Variance:1 − 0:925

�Long Run Emphasis:

The heatmap and rad-score of the features in the
model are described (Figs. 6 and 7a and b).

Validation of the radiomics signature
ROC curves showed that the LASSO regression predic-
tion model, which was based on a combination of seven

Table 3 Conventional quantitative CT features analyses

Quantitative indicators IAC MIA P value

TLD (cm)
Median (25th to 75th percentile) cm

1.81 (1.40~2.56) 1.28 (0.85~1.87) 0.000

TSD (cm)
Median (25th to 75th percentile)

1.49 (1.09~2.10) 1.09 (0.79~1.61) 0.004

TVD (cm)
Median (25th to 75th percentile)

1.51 (1.23~2.13) 1.16 (0.79~1.42) 0.000

CT-LAP (HU)
Median (25th to 75th percentile)

−560.94(−625.01~− 477.06) −620.45(− 655.94~− 551.01) 0.004

RCT-LAP (HU)
Median (25th to 75th percentile)

1.54 (1.38~1.72) 1.40 (1.32~1.55) 0.034

Normal lung density (HU)
Median (25th to 75th percentile)

− 868.79(− 890.52~ −841.36) − 877.43(− 899.33~− 849.76) 0.218

TLD Tumor length diameter on the largest axial plane, TSD Tumor short diameter on the largest axial plane, TVD Tumor vertical diameter on the largest coronal
plane, CT-LAP CT value on the largest axial plane, RCT-LAP relative CT value on the largest axial plane, NLD-LAP normal lung density measured on the same plane
with LAP, HU Hounsfield units

Table 4 ROC curve analyses

Quantitative indicators AUC p Critical value Sensitivity Specificity Youden index

TLD (cm) 0.724 0.000 1.39 0.792 0.553 0.345

TSD (cm) 0.669 0.004 0.91 0.906 0.404 0.310

TVD (cm) 0.702 0.000 1.28 0.698 0.638 0.336

CT-LAP(HU) 0.666 0.004 −597.45 0.698 0.638 0.336

RCT-LAP 0.623 0.034 1.43 0.717 0.553 0.270

TLD Tumor length diameter on the largest axial plane, TSD Tumor short diameter on the largest axial plane, TVD Tumor vertical diameter on the largest coronal
plane, CT-LAP CT value on the largest axial plane, RCT-LAP relative CT value on the largest axial plane, NLD-LAP normal lung density measured on the same plane
with LAP, HU Hounsfield units
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radiomics features, had good performance and generality
in distinguishing IAC and MIA as P-pGGNs. In terms of
discriminating analysis, the signatures had AUCs of
0.892 (sensitivity = 0.811, specificity = 0.719) and 0.862
(sensitivity = 0.625, specificity = 0.800) in train and test
samples, respectively (Table 5, Fig. 8a and b). The AUCs
in test samples declined slightly when compared with
train samples, but still had a satisfactory classification
performance. Three IAC nodules were underestimated
by the radiomics signature, and all six cases were pre-
dicted as MIA (Fig. 7a and b). Calibration curves dem-
onstrated that IAC probabilities were consistent between
predictions and observations in both train and test sam-
ples (Fig. 9a and b).
“True” positive and weighted false-positive rates were cal-

culated across different threshold probabilities in the valid-
ation set, to determine the net benefit. Specifically, the
weighting factor was defined as the specific value of the
threshold probability, divided by 1, minus the threshold
probability. A higher true-positive rate and a relatively low
false-positive rate was suggested by a high net benefit. Finally,
we used a DCA curve to assess whether this model would
help with clinical treatment strategies. When the threshold
probability varied from 0 to 1, according to the DCA, the
radiomics model achieved a high net benefit, when compared
with a “treat all” and a “treat none” strategy (Fig. 10a and b).

Discussion
To the best our knowledge, the present research is the
first to utilize a quantitative radiomics signature to dif-
ferentiate IAC from MIA appearing as P-pGGNs. We
systematically evaluated the conventionally morpho-
logical and quantitative CT features of enrolled P-
pGGNs and processed 106 radiomics features, then a
signature was developed, confirmed that CT-based im-
aging radiomics features could accurately predict the
presence or absence of IAC from MIA in P-pGGNs. The
AUC was 0.892 and 0.863 for the training and test sam-
ples, respectively.
Since the WHO adopted a new classification for ADC

in 2015, researchers have continuously explored correla-
tions between CT findings and tumor pathology. It has
been accepted that pGGNs with pleural contact signs
are predisposed to IAC [25, 26]. Our study revealed the
occurrence probability of pleural contact signs in MIA
was reached 28.14% (47/167) almost same as one report
as 30.76% [27]. Therefore, the effective identification of
MIA and IAC in P-pGGNs is clinically meaningful.
In our study, females and nonsmokers were associated

with the P-pGGN group. Similarly, age was also associ-
ated with IAC. Patients with IAC tended to be older,
while patients with MIA were younger. This was consist-
ent with previous findings [28]. Morphological features

Fig. 2 ROC curve analysis of TLD, TSD, TVD, CT-LAP and RCT-LAP, predicting IAC
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Fig. 3 a-d. Representative axial TSCT images of P-pGGNs in four patients, connected to the visceral pleural surface. The longer TLD, higher CT-
LAP, lobulation signs and bubblelike-appearance suggest P-pGGN invasiveness. a A 63-year-old female with a P-pGGN in the left superior lobe,
diagnosed as IAC, showed a 2.32 cm-TLD, lobulated, bubblelike-appearance, and − 467.31 HU-CT-LAP; b A 59-year-old female with a P-pGGN in
the right superior lobe, diagnosed as IAC, showed a 3.09 cm-TLD lobulated and − 360.13 HU-CT-LAP; c A 57-year-old female with a P-pGGN in the
left inferior lobe, diagnosed as MIA, showed a 2.36 cm-TLD, and − 630.43 HU-CT-LAP; d An 80-year-old female with a P-pGGN in the right superior
lobe, diagnosed as MIA, showed a 4.16 cm-TLD, and − 662.7 HU-CT-LAP

Fig. 4 a and b. The least absolute shrinkage and selection operator (LASSO) binary logistic regression model for feature selection. The features
retained were introduced into the LASSO regression model. First, a 10-fold cross-validation method was used to screen the LASSO regression
model hyperparameter (λ) to select the model with the smallest error (λ). A vertical line was drawn at the selected value using 10-fold cross-
validation, where optimal λ resulted in seven non-zero coefficients
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Fig. 5 Nomogram plot of the logistic model in training samples. To assess the probability of IAC in P-pGGNs, patient values were marked at each
feature axis, a straight line was drawn perpendicular to the point axis, and a corresponding point for each feature was obtained. All points were
summed for all features. Next, the sum was marked on the total points axis, and a straight line drawn perpendicular to the risk axis

Fig. 6 a and b. The left image is the model heatmap of training samples. The right shows the model heatmap in testing samples. Unsupervised
clustering of patients (N = 61) on the y-axis and expression of radiomics features (N = 7) on the x-axis reveals clusters of patients with similar
radiomics expression patterns. There was a significant association of radiomics feature expression patterns with the two different P-pGGN groups.
The indicators corresponding to the dark red squares are more predictive
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from CT images are frequently used in routine clinical
practice for the ADC with pGGNs differential diagnostic
process [29]. Our study confirmed that a P-pGGN with
lobulation and spiculate interface had the greater likeli-
hood of being an IAC (54.72% vs. 25.53%, P = 0.003;
60.37% vs. 29.79%, P = 0.002),these results were similar
to a previous study [15]. There were no differences in
other signs, including irregular shape, bubblelike appear-
ance and air bronchograms.
Conventionally, quantitative features from CT image

can independently identify the pathological invasiveness
of ADC. The nodule size is not ignorable indicators of
risk for predicting P-pGGNs as IAC. According to ROC
curve analysis, the AUC of the nodule size index, TLD
was the highest, i.e., 0.724, and the critical value was
1.39 cm. A previous study observed that the optimal crit-
ical value of 1.35 cm to identify IAC (AUC = 0.870;

sensitivity = 0.860; specificity = 0.720) [30]. In other
studies, a pGGN diameter > 16.4 mm was more likely to
be an IAC (sensitivity = 0.610, specificity = 0.790) [31].
These data were similar to ours. Our study showed that
the IAC group had a significantly higher CT-LAP (me-
dian; − 560.94 vs. -620.45, P = 0.004). The AUC of CT-
LAP was 0.666 and the critical value was − 597.45HU
(sensitivity = 0.698, specificity = 0.638). In a previous re-
port [32], pGGNs > 10.5 mm (AUC = 0.841; sensitivity =
0.871, specificity = 0.709), and with an attenuation > −
632 HU (AUC = 0.724; sensitivity = 0.788; specificity =
0.598) were more likely to be IAC.
We extracted radiomics features from CT images, and

established a preoperative radiomics signature to identify
patients with P-pGGNs at increased risk of IAC. This
radiomics signature united “Sphericity”, “Small Depend-
ence High Gray Level Emphasis”, “Joint Average”,
“Imc1”, “Skewness”, “Gray Level Variance 1”, and “Long
Run Emphasis”. Previous several studies have analyzed
radiomics features in the diagnosis of pGGNs. Zhang
et al. [33] demonstrated that histogram parameters,
combined with an evaluation of morphological charac-
teristics, exhibited good diagnostic performances in dis-
criminating AIS/MIA from IAC, appearing as pGGNs,
The AUC, sensitivity and specificity of the predictive
model was 0.896, 0.794, and 0.914, respectively. Simi-
larly, for the prediction between AIS/MIA and IAC
representing as pGGNs, Xu et al. [34] showed the pre-
dictive radiomics models built in study (AUC 0.833;95%
CI, 0.733–0.934) which provided a good predictive
power. Besides, Sun et al. [35] developed a radiomics-
based Rad-score utilized as a biomarker for the
invasiveness-predicted evaluation in patients with
pGGNs (AUC 0.72; 95% CI, 0.63–0.81). Their study

Fig. 7 a and b The left image shows the Rad-score figure of the training samples, and the right shows the Rad-score figure of the testing samples.
The red and blue bars represent the two samples. The scale 0 represents the cut-off value. If the scale 0 separates the red bar from the blue bar, the
signature identification ability exhibits good performance

Table 5 Evaluation of the logistic model in training and testing
samples

Item Train Test Total

Patients, No.

IAC 37 16 53

MIA 32 15 47

Accuracy 0.768 0.71

Precision 0.769 0.769

AUC 0.892 0.863

Sensitivity 0.811 0.625

Specificity 0.719 0.800

positive prediction 0.769 0.769

negative prediction 0.767 0.667

MIA Minimally invasive adenocarcinoma, IAC Invasive adenocarcinoma, AUC
area under the ROC curve
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confirmed the advantage of radiomics in the diagnosis of
Benign/AAH/AIS from MIA/IAC. In another study,
Song et al. [36] selected 102 radiomics features to con-
struct the model for discrimination of AAH/AIS from
MIA/IAC, which improved the good discriminative
power (AUC,0.911;95%CI,0.730–0.980,Sensitivity,0.813,
Specificity,0.854), significantly. Several studies have eval-
uated CT radiomics features for predicting invasiveness,
however, due to relatively high heterogeneity and patho-
logically mixed grouping of enrolled lesions the results
might be highly estimated when their model applied to a

more detailed forecast of invasive adenocarcinoma in
pGGNs. In our study, a particular group, which all have
the same malignant radiological signs, was analyzed in a
more detailed grouping. We determined seven features
from TSCT images of P-pGGNs in our diagnostic model
to identify IAC and MIA. The AUC, sensitivity and spe-
cificity were 0.892, 0.811 and 0.719, respectively. These
exhibited a better discriminative performance when
compared with conventional quantitative CT parame-
ters, such as TLD alone, the AUC of which was 0.724
(sensitivity = 0.792; specificity = 0.553).

Fig. 8 a and b. Receiver operating characteristic (ROC) curves for training and testing samples. The radiomic features predictive signature
predicted the preoperative discrimination of IAC and MIA as P-pGGNs. (The AUC for training samples was 0.892 and the AUC for testing samples
was 0.863)

Fig. 9 a and b. Calibration plots of radiomic models for training and testing samples. Calibration curves evaluated the correspondence between
predicted and observed probabilities. The closer the solid line to the grey dotted line, the better the prediction model
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There were some limitations to our study. Firstly, this
was a single center retrospective study, and therefore,
additional studies are required to externally validate this
model. Secondly, our study used retrospective imaging
datasets, and did not take account of scanning device
types, convolution kernels, reconstruction algorithms,
and slice thickness. These factors could affect radiomics
features, and thus, critically alter the accuracy of radio-
mics signatures. Additionally, our radiomics features
were derived from the results of manual segmentation.
Three-dimensional tumor segmentation is a complicated
and time-consuming procedure. We sought to steer
clear of small internal vessels and the bronchi, however,
the remaining vessels may still affect the accuracy of
some features. Furthermore, we did not establish a clin-
ical model in this study. The analysis of isolated texture
features and absorption of clinical parameters may facili-
tate further performance development of the radiomics-
based prediction model. In future refinement studies,
further comparative examinations of pleural contact
signs in lung lesions will be performed between path-
ology and radiomics settings.

Conclusions
Our radiomics method revealed lung nodules in a non-
invasive manner, enabling the identification of imaging
phenotypes to decode lung nodules. These P-pGGNs
would receive an appropriate classification promptly,
keeping away from the blind and extensive radical treat-
ment. Our radiomics signature provided added diagnos-
tic value to differentiate IAC from MIA in P-pGGNs
and offered crucial reference can instruct follow up and
prognosis prediction. What’s more, this quantitative pre-
diction model based on the radiomic features of CT

imaging, might have broader clinical applications and ac-
celerates the development of personalized medicine, es-
pecially for the treatment of patients with lung pGGNs.
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