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Abstract

Background: Laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) with thyroid cartilage invasion are
considered T4 and need total laryngectomy. However, the accuracy of preoperative diagnosis of thyroid cartilage
invasion remains lower. Therefore, the purpose of this study was to assess the potential of computed tomography
(CT)-based radiomics features in the prediction of thyroid cartilage invasion from LHSCC.

Methods: A total of 265 patients with pathologically proven LHSCC were enrolled in this retrospective study (86
with thyroid cartilage invasion and 179 without invasion). Two head and neck radiologists evaluated the thyroid
cartilage invasion on CT images. Radiomics features were extracted from venous phase contrast-enhanced CT
images. The least absolute shrinkage and selection operator (LASSO) and logistic regression (LR) method were used
for dimension reduction and model construction. In addition, the support vector machine-based synthetic minority
oversampling (SVMSMOTE) algorithm was adopted to balance the dataset and a new LR-SVMSMOTE model was
constructed. The performance of the radiologist and the two models were evaluated with receiver operating
characteristic (ROC) curves and compared using the DeLong test.

Results: The areas under the ROC curves (AUCs) in the prediction of thyroid cartilage invasion from LHSCC for the
LR-SVMSMOTE model, LR model, and radiologist were 0.905 [95% confidence interval (CI): 0.863 to 0.937)], 0.876
(95%CI: 0.830 to 0.913), and 0.721 (95%CI: 0.663–0.774), respectively. The AUCs of both models were higher than
that of the radiologist assessment (all P < 0.001). There was no significant difference in predictive performance
between the LR-SVMSMOTE and LR models (P = 0.05).

Conclusions: Models based on CT radiomic features can improve the accuracy of predicting thyroid cartilage
invasion from LHSCC and provide a new potentially noninvasive method for preoperative prediction of thyroid
cartilage invasion from LHSCC.
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Background
Laryngeal and hypopharyngeal squamous cell carcinoma
(LHSCC) are common malignant tumors in the head
and neck [1, 2]. The International Agency for Research
on Cancer estimated that 177,422 and 80,608 new cases
of laryngeal carcinoma and hypopharyngeal carcinoma
would be diagnosed in 2018 globally, directly accounting
for 94,771 and 34,984 deaths, respectively, and approxi-
mately 12 to 43% of patients are predicted to be diagnosed
with cartilage invasion during the diagnosis of LHSCC [3,
4]. Over-staging of thyroid cartilage invasion results in un-
necessary total laryngectomy, whereas underestimation re-
sults in a higher risk of local residual tumor and recurrence
[5–7]. Therefore, accurate evaluation of thyroid cartilage in-
vasion in patients with LHSCC is crucial for preoperative
TNM staging and treatment [1, 2, 4, 5, 8].
At present, conventional imaging modalities, for ex-

ample computed tomography (CT) and magnetic reson-
ance imaging (MRI), play an essential role in the
diagnosis of thyroid cartilage invasion [9]. According to
the literature, the sensitivity of conventional CT in the
diagnosis of thyroid cartilage invasion is low (49–71%)
because of the great variability of ossification in the thy-
roid cartilage [10, 11]. The introduction of dual-energy
CT has improved the sensitivity of CT to 89% [10, 12].
However, dual-energy or spectral CT is expensive and
not all hospitals can afford the technology. The reported
sensitivity of MRI is 64 to 96% and the specificity is
relatively low (64–75%) [2, 10, 13, 14]. Furthermore, in-
flammatory changes in the thyroid cartilage can be mis-
taken for tumors [11]. Conventional imaging diagnosis
is often based on the qualitative analysis of radiologists
and has limitations in the assessment of thyroid cartil-
age invasion.
Radiomics is a quantitative analysis method based on

medical images and uses a large number of algorithms
to transform the region of interest (ROI) in medical im-
ages into high-dimensional features [15]. It can be used
to analyze the heterogeneity of an entire tumor based on
hundreds of quantitative features and also analyze the
relationship between the biological and imaging charac-
teristics of the tumor quantitatively [15–17]. It is widely
used in research on tumor diagnosis, prognosis, and the
prediction of treatment response [17–21]. To the best of
our knowledge, there is no study in the literature that
has evaluated the application of CT radiomics for the
prediction of thyroid cartilage invasion of LHSCC. In
addition, a balanced dataset is of great importance in the
creation of a good training set [22, 23]. In 2002, Chawla
et al. [24] proposed the classic synthetic minority over-
sampling technique (SMOTE), which over-sampled
minority classes by generating “synthetic” examples to
balance the dataset. The SMOTE technique in combin-
ation with support vector machine [(SVM), SVMS

MOTE] can further improve the learning ability of clas-
sifiers [25–27].
The purpose of our study is to assess the value of

radiomics features with and without the SVMSMOTE to
predict thyroid cartilage invasion in LHSCC based on
CT images.

Materials and methods
Patients
Our institutional review board approved this retrospect-
ive study. The study population consisted of patients
who had preoperative contrast-enhanced CT (CE-CT)
examination for suspected hypopharyngeal and laryngeal
masses (from January 2009 to November 2017). The in-
clusion criteria were as follows: 1) all patients were con-
firmed by histopathology; 2) no preoperative treatment;
3) surgical resection within 4 weeks after scanning; and
4) excellent image quality clearly showing the extent of
the lesions. The exclusion criteria were as follows: 1) no
surgery; 2) benign or non-LHSCC patients; 3) treatment
before surgery; 4) recurrence; 5) pathological report that
excluded information regarding the presence or absence
of thyroid cartilage invasion; 6) image quality that is too
poor to determine the extent of the lesion or has severe
artifacts. The details of the patient recruitment pathway
are shown in Fig. 1. Ultimately, 265 patients were en-
rolled in this study and were divided into two groups: 1)
LHSCC patients with thyroid cartilage invasion (86); 2)
LHSCC patients without thyroid cartilage invasion (179).

CT imaging acquisition and processing
CE-CT images were obtained using three scanners: the
SOMATOM Definition Flash CT scanner (Siemens
Healthcare, Germany) and the Brilliance 64 and iCT 256
multi-detector row CT (MD-CT) scanners (Philips
Medical Systems, Nederland B.V.). Before scanning, the
patients’ heads were fixed and they were instructed to
keep their head and neck still, breathe calmly and avoid
swallowing. The scanning parameters were as follows:
SOMATOM Definition Flash CT scanner: tube volt-

age, 80/Sn140 kVp; reference tube current of 100 mAs
and 50 mAs, respectively, with automatic tube current
modulation (Care Dose 4D); detector collimation, 128 ×
0.6 mm; pitch, 1.0; field of view, 200 ~ 225mm; pixel
size, 512 × 512; rotation time, 0.28 s.
Philips Brilliance 64-MDCT scanner: tube voltage, 120

kVp; automatic tube current modulation (ATCM); de-
tector collimation, 64 × 0.625 mm; pitch, 0.8; field of
view, 200 ~ 225mm; pixel size, 512 × 512; rotation time,
1.0 s.
Philips Brilliance iCT 256-MDCT scanner: tube volt-

age, 120 kVp; ATCM; detector collimation, 128 × 0.625
mm; pitch, 0.8; field of view, 200 ~ 225mm; pixel size,
512 × 512; rotation time, 0.75 s.
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Other parameters were: slice interval, 1 mm; slice
thickness, 1 mm; reconstructed section thickness, 3 mm;
slice interval, 3 mm.
The patients were positioned in a supine position. The

scanning region was from the skull base to the thoracic
inlet. Contrast agent was injected into the anterior elbow
vein or dorsal hand vein at a rate of 3 ml/s with an injec-
tion dose of 1 ml/kg. CT scans were acquired at 50 s
(Brilliance 64 and iCT 256 MDCT scanners) or 70 s
(SOMATOM Definition Flash CT scanner) after the ad-
ministration of iodine contrast agent (iopaconol, 300
mg/ml iodine, Shanghai Xinyi Pharmaceutical Co., Ltd.,
China).

Radiologist assessment of the thyroid cartilage invasion
Two radiologists (R.G. and L.C.Z with 5 and 3 years of
head-neck radiologic experience, respectively), who were
blinded to the patients’ clinical and pathological infor-
mation, interpreted all CT images to assess thyroid

cartilage involvement. The following criteria were con-
sidered to be thyroid cartilage invasion: 1) minor cartil-
age erosion or lysis, which was defined as tumor
invasion of the inner cortex that did not penetrate the
outer cortex; 2) major cartilage lysis or penetration,
which was defined as tumor penetration of the outer
cortex of the cartilage or extralaryngeal soft tissue [6, 12,
28] as is shown in Fig. 2.

Radiomics assessment of the thyroid cartilage invasion
Tumor segmentation
The volumes of interest (VOI) containing the entire
tumor for each patient were contoured on all slices by
two radiologists (R.G. as reader 1 and L.C.Z. as reader
2). The guidelines used for contouring were as follows:
1) To avoid partial volume effects, the outlines were de-
lineated slightly within the borders of the tumor on each
slice and no ROI was delineated on the first and last
slices where the lesion was visible; 2) cystic areas were

Fig. 1 Patient recruitment pathway

Fig. 2 a Axial CE-CT image. Histopathology confirmed thyroid cartilage invasion in a 57-year-old man with supraglottic laryngeal carcinoma.
Thyroid cartilage shows focal erosion (white arrow) that involves the inner cortex but do not penetrate the outer cortex, which is defined as
minor invasion. b Axial CE-CT image for a 61-year-old man depicts a large tumor at the level of the glottic region that penetrates the right
thyroid cartilage and presents as an extralaryngeal mass (white arrow) and thyroid cartilage is lysis, which was defined as major invasion
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avoided; 3) for thyroid cartilage involvement, the area
where the tumor involved the thyroid cartilage was delin-
eated and if the tumor across the cartilage to form an extra-
laryngeal mass, the extralaryngeal area was also delineated,
but cartilage that appeared normal on the CT was avoided;
4) the extent of the lesion was carefully determined by
adjusting the window width and level and performing
multi-planar reconstruction. Reader 1 delineated the VOI
for all patients manually, while reader 2 delineated the VOI
for 50 patients selected randomly from the cohort. The
inter-class correlation coefficient (ICC) among 1029 fea-
tures was calculated for the latter 50 patients. Reader 3
(J.G), a senior radiologist with 15 years of relevant experi-
ence, examined each VOI during the process of tumor seg-
mentation. When drawing or checking the VOI, the three
readers were blinded to the information for each patient.
An example of the manual segmentation is shown in Fig. 3.

Radiomics feature extraction
A total of 1029 radiomics features were extracted for
each patient from the original and filtered CE-CT im-
ages based on the VOI, including intensity histogram
features, shape and size features, and texture features.
The filters consisted of an exponential filter, square fil-
ter, square root filter, logarithmic filter, and wavelet de-
composition. The texture features were further divided
into three subgroups: gray level co-occurrence matrix
(GLCM), gray level run length matrix (GLRLM), and
gray level size zone matrix (GLSZM). The definitions

and names of the radiomics features were in accordance
with the Imaging Biomarker Standardization Initiative
(IBSI) [29] and consistent with the studies by Shu et al.
[20] and Liang et al. [30]. Details of the radiomics fea-
tures are shown in Supplementary S1.

Feature standardization and selection
Before feature selection, each radiomics feature was
standardized in order to eliminate bias from the value
ranges for different features. The Kruskal-Wallis non-
parametric test (KW test) [31] was used to remove the
features showing significant statistical differences among
the three scanners, and the remaining features were se-
lected using the least absolute shrinkage and selection
operator regression (LASSO) method [32].
The process of LASSO-feature selection in our study

was as follows: Firstly, the optimal coefficient of
regularization α was found via the minimum average
mean square error among a set of candidate values using
ten-fold cross validation. Secondly, features with non-
zero coefficients in the LASSO method were selected
using the whole dataset based on the optimal α. Thirdly,
the remaining features were further selected based on
the absolute values of coefficients that were greater than
0.04 in the LASSO method to avoid over-fitting and im-
prove the generalization of classifiers.
Furthermore, to reduce the impact of a dataset imbalance

on the prediction model, the SVMSMOTE technique was
implemented to generate pseudo-data for patients with in-
vasion based on selected features using the KW test to
reach a one-to-one distribution ratio between the two
groups. Afterward, the dataset containing pseudo-data was
subjected to the above LASSO-feature selection process.

Statistical analysis
The interobserver reproducibility was assessed based on
the intraclass correlation coefficients (ICCs). The Stu-
dent’s t test and the Chi-square test were used to compare
the general characteristics of the patients in the two
groups. The diagnostic performance of the radiologist was
evaluated using a receiver operating characteristics (ROC)
curve with the calculated area under the curve (AUC).
The following metrics were calculated: sensitivity, specifi-
city, accuracy, precision, F1-score, Cohen’s kappa coeffi-
cient (Kappa), and Matthews correlation coefficient
(MCC). The MCC was calculated with the equation

TP� TNð Þ − FP � FNð Þ½ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ
p

Where TP, FP, TN, and FN refer to the true positive,
false positive, true negative, and false negative values,
respectively.
Two CE-CT radiomics models were used to predict thy-

roid cartilage invasion from LHSCC. The models were

Fig. 3 An example of manual segmentation in CE-CT image from a
65-year-old male patient with supraglottic laryngeal carcinoma. Red
contour was drawn to contain the whole tumor region in one slice
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constructed using logistic regression (LR) based on the
two feature sets described in the Feature standardization
and selection section (the LR model using the features se-
lected by LASSO and the LR-SVMSMOTE model using
the features selected by LASSO and SVMSMOTE) with
five-fold cross validation.
In five-fold cross validation, the whole dataset was ran-

domly partitioned into five equal sized subsets. A single
subset was retained as the validation dataset and the
remaining k-1 subsets were used to create the training data-
set. The cross-validation process was repeated five times,
with each of the subsets used once as the validation dataset.
The predictive performance of both models was evalu-

ated using a ROC curve and statistical metrics men-
tioned above. The ROC curves were compared with the
Delong test [33]. The tests in our study were two-tailed,
and a P-value less than 0.05 was considered to indicate
statistical significance.

Platform and packages
Manual tumor segmentation and feature extraction were
both performed with the Radcloud platform (https://mics.
radcloud.cn, Huiying Medical Technology Co., Ltd). Fea-
ture standardization, selection, and statistical analysis were

performed with the Anaconda3 platform (https://www.
anaconda.com/) using the Python 3.6 programming lan-
guage (https://www.python.org/), mainly with the pack-
ages ‘scikit-learn’ (https://scikit-learn.org/) and ‘matplotlib’
(http://matplotlib.org/).

Results
General characteristics of the patients
In our study, 265 (253 men and 12 women; mean age,
60.4 ± 7.6) patients were enrolled, among which 86
(32.5%) with thyroid cartilage invasion and 179 (67.5%)
without thyroid cartilage invasion. There were no signifi-
cant differences in age, gender, and N stage between the
two groups (P > 0.05). There were significant differences
in the primary site (supraglottis, glottis, subglottis, hypo-
pharynx) and T stage of the lesions between the two
groups (P < 0.05). The general characteristics and tumor
staging for the two groups are shown in Table 1.

Interobserver reproducibility of radiologist assessment
and radiomics
The evaluation of thyroid cartilage invasion by reader 1
and reader 2 showed good interobserver agreement, with
an ICC of 0.803[95% Confidence Interval (CI):0.755 to

Table 1 Patient general characteristics and tumor staging

General characteristics With thyroid cartilage invasion Without thyroid cartilage invasion P Value

Number 86 179

Age(mean ± SD, years) 59.7 ± 10.5 59.3 ± 9.4 0.263a

Gender

male 80 (93.0%) 173 (3.4%) 0.184b

female 6 (7.0%) 6 (2.8%)

Primary site

Supraglottis 30 (34.9%) 82 (45.8%) 0.029b

Glottis 49 (57.0%) 69 (38.5%)

Subglottis 1 (1.1%) 8 (4.5%)

Hypopharynx 6 (7.0%) 20 (11.2%)

T stage

T1 0 (0) 25 (14.0%) < 0.001b

T2 0 (0) 67 (37.4%)

T3 44 (51.2%) 87 (48.6%)

T4 42 (48.8%) 0 (0)

N stage

N0 60 (69.7%) 117 (65.4%) 0.717b

N1 14 (16.3%) 28 (15.6%)

N2 12 (14.0%) 33 (18.4%)

N3 0 (0) 1 (0.6%)

SD standard deviation
P value < 0.05 is considered as a significant difference
aStudent’s t test
bChi-square test
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0.842]. Of the 1029 radiomics features, 877 were demon-
strated to have good interobserver agreement, with ICCs
from 0.750 to 0.999. Subsequent processes were based
on the results reported by reader 1, who had longer
work experience than reader 2.

Diagnostic performance of radiologist assessment
Histopathologic diagnosis was used as the gold standard.
Data used in the detection of thyroid cartilage invasion
for LHSCC on CT versus histopathologic examination is
shown in Table 2. The AUC, sensitivity, specificity, ac-
curacy, precision, F1-score, Kappa, and MCC were
0.721(95%CI: 0.663–0.774), 74.4, 69.8, 71.3, 54.2, 0.627,
0.404, and 0.417%, respectively. The diagnostic perform-
ance of radiologist assessment in the detection of thyroid
cartilage invasion is summarized in Table 4.

Predictive performance of radiomics features
Radiomics feature selection
After the KW nonparametric test, there remained 740
features showing no significant differences among the
three scanners in the original radiomics feature set.
Twenty-two of these features were selected by the
LASSO method. After pseudo-data generation with
SVMSMOTE based on 740 features, 87 non-zero fea-
tures were obtained with the LASSO method and 30 fea-
tures were further selected because the absolute values
of their coefficients in the LASSO method were greater
than 0.04. The feature sets selected for the two models
are shown in Table 3.

Predictive performance of two models
Figure 4a-b and c-d show the ROC curves for the LR
model and the LR-SVMSMOTE model, respectively.
The left image (Fig. 4a and c) show the mean result for
the model with five-fold cross-validation and the right
image (Fig. 4b and d) show the combined five-fold
cross-validation results, respectively. Figure 5 shows that
the models based on CT-radiomics predicted thyroid
cartilage invasion of LHSCC with high AUC.
The predictive performance for each model is summa-

rized in Table 4. The AUC, sensitivity, specificity, accur-
acy, precision, F1-score, Kappa, and MCC of the
radiomics features were 0.876(95%CI: 0.830 to 0.913),
80.2, 83.8, 82.6, 70.4, 0.750, 0.618, and 0.621% for the LR

model, respectively, and 0.905(95%CI: 0.863 to 0.937),
80.2, 88.3, 85.7, 76.7, 0.784, 0.677, and 0.677% for the
LR-SVMSMOTE model, respectively. The LR-SVMS
MOTE model had better AUC, but the improvement
was not significant according to the Delong test (shown
in Fig. 5, P = 0.050). The AUCs of the LR-SVMSMOTE
model and LR model were higher than that of the radi-
ologist assessment in the prediction of thyroid cartilage
invasion from LHSCC (shown in Fig. 5, P < 0.001 for all).

Discussion
Our study analyzed CT-radiomics features for the pre-
diction of thyroid cartilage invasion from LHSCC and
preliminarily established different predictive models with
machine learning. In our study, the LR-SVMSMOTE
and LR models showed relatively higher AUC (0.905 and
0.876, respectively) than assessment by the radiologist
(0.721) in the prediction of thyroid cartilage invasion
from LHSCC. The results demonstrated that CT-based
radiomics features have great potential to act as nonin-
vasive imaging markers for accurate prediction of thy-
roid cartilage invasion from LHSCC with a satisfactory
predictive performance.
The majority of laryngeal cartilage ossifies and calcifies

with aging. However, the process of ossification has
great variability, especially in the thyroid cartilage [11].
Therefore, normal adult thyroid cartilage can be classi-
fied into three types: (1) no ossification, (2) cortical ossi-
fication, and (3) high fatty content in the medullary
cavity of ossified cartilage [11, 34]. Sclerosis was identi-
fied as one of the criteria for thyroid cartilage invasion
in a previous study [28]. Thus, asymmetric ossification
of normal thyroid cartilage can be misdiagnosed as thy-
roid cartilage invasion. Moreover, the CT values of non-
ossified hyaline cartilage are similar to those of tumors
[11, 12, 34], making it difficult to assess thyroid cartilage
invasion with CT. On MRI, the differentiation of peritu-
moral inflammatory changes and thyroid cartilage inva-
sion remains challenging and the specificity is low
(around 65%) [13, 35]. Additionally, because of its longer
imaging time, the quality of MR images can be degraded
by swallowing or breathing movements. Compared with
conventional methods, radiomics can be used for quanti-
tative analysis of tumors, excavating the valuable infor-
mation in CT images for patients with and without

Table 2 Cross tabulation of thyroid cartilage invasion for LHSCC on CT versus histopathologic examination (cases)

CT diagnosis Histopathologic diagnosis Total

With thyroid cartilage invasion Without thyroid cartilage invasion

With thyroid cartilage invasion 64 54 118

Without thyroid cartilage invasion 22 125 147

Total 86 179 265

LHSCC Laryngeal and hypopharyngeal squamous cell carcinoma
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thyroid cartilage invasion and making diagnosis more
accurate.
Clinical research using radiomics can be divided into

five steps: (1) Data collection: targeted collection for a
specific clinical question; (2) ROI segmentation: delinea-
tion of the target area in the images; (3) Feature selec-
tion: high-throughput extraction of lesion features; (4)
Feature reduction: selection of features with high reli-
ability from the feature set for model training to improve
the generalization ability of the model; and (5) Model es-
tablishment [15, 36, 37].
Segmentation is one of the most important issues in

radiomics. A study suggested that three-dimensional
analysis may achieve better predictive performance than
two-dimensional analysis for kidney masses [38]. In our
study, all slices of the tumor were manually delineated
on CE-CT images into 3-mm thick reconstructed sec-
tions. This is a laborious and time-consuming process.
Whether better results could be achieved by including
all slices in the analysis rather than using the maximum
cross sectional area in LHSCC is unknown. It should be
noted that delineating the VOIs on CT can be challen-
ging and the result may not have been particularly ac-
curate. The reason is that the contrast between lesions
and normal structures is often low in CT images. In
spite of this limitation, the interobserver agreement in
this study was good. Compared with CT, the tumor
boundary is often more clearly observed on MRI. Hence
MRI-based radiomics features in LHSCC may provide
better predictive performance compared to CT. Our
study focused only on the aggressiveness of the tumor it-
self and the thyroid cartilage was not examined. Perhaps
segmentation of the thyroid cartilage can be performed
in the future to achieve better results.

Table 3 The selected feature sets with LASSO and LASSO with
SVMSMOTE

Selected Features

LASSO (n = 22) original_shape_LeastAxis

original_shape_Elongation

original_shape_Flatness

logarithm_firstorder_Kurtosis

logarithm_glrlm_HighGrayLevelRunEmphasis

square_firstorder_10Percentile

square_glrlm_ShortRunHighGrayLevelEmphasis

exponential_glcm_Imc1

exponential_glrlm_LongRunEmphasis

exponential_glrlm_LongRunLowGrayLevelEmphasis

wavelet-LHL_firstorder_Skewness

wavelet-LHH_glcm_ClusterShade

wavelet-HLL_firstorder_Energy

wavelet-LLH_firstorder_Kurtosis

wavelet-LLH_glcm_ClusterProminence

wavelet-HHH_glszm_GrayLevelNonUniformity

wavelet-HHH_glszm_LowGrayLevelZoneEmphasis

wavelet-HHH_glszm_
SmallAreaLowGrayLevelEmphasis

wavelet-HHL_firstorder_Skewness

wavelet-HHL_glrlm_
ShortRunLowGrayLevelEmphasis

wavelet-LLL_firstorder_Kurtosis

wavelet-LLL_glcm_Correlation

LASSO with
SVMSMOTE (n = 30)

wavelet-HLL_firstorder_Energy

exponential_glrlm_LongRunEmphasis

wavelet-HHL_firstorder_Skewness

wavelet-HHL_glrlm_
ShortRunLowGrayLevelEmphasis

wavelet-HLH_glrlm_RunPercentage

wavelet-LHL_firstorder_90Percentile

square_glrlm_LongRunEmphasis

logarithm_glrlm_ShortRunHighGrayLevelEmphasis

wavelet-LHL_glcm_MaximumProbability

wavelet-LLH_glszm_GrayLevelNonUniformity

wavelet-LHL_firstorder_Mean

wavelet-LHH_glcm_ClusterShade

wavelet-LHL_glszm_ZonePercentage

wavelet-HHL_glszm_GrayLevelVariance

original_shape_Elongation

wavelet-LLH_firstorder_10Percentile

square_glcm_Correlation

original_shape_Flatness

wavelet-HHH_glszm_LowGrayLevelZoneEmphasis

Table 3 The selected feature sets with LASSO and LASSO with
SVMSMOTE (Continued)

Selected Features

wavelet-LLL_glcm_Correlation

exponential_glrlm_
ShortRunHighGrayLevelEmphasis

wavelet-LLL_firstorder_Kurtosis

wavelet-LHL_firstorder_InterquartileRange

wavelet-LLH_glcm_Contrast

wavelet-LLH_firstorder_Energy

wavelet-LLH_firstorder_Minimum

wavelet-LHL_glszm_ZoneEntropy

wavelet-HHH_glszm_GrayLevelNonUniformity

original_glszm_ZoneEntropy

original_shape_LeastAxis

Each feature is denoted as Filter_FeatureGroup_FeatureName and ‘Original’
indicates the radiomics features extracted from the original images
without preprocessing
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In our study at the beginning of the model establish-
ment process, 1029 features were extracted to reduce
deviations in the model resulting from a lack of import-
ant features. However, the optimal feature subset with
the strongest correlation to thyroid cartilage invasion
had to be determined during the modeling process, that
is, feature selection was necessary to improve the accur-
acy of prediction for establishment of the model. The
LASSO method is an estimation method that can
achieve the reduction of feature sets and can analyze
large sets of radiomics features with a relatively small
sample size [37]. Twenty-two optimal subsets of 1029
radiomics features were found to distinguish thyroid car-
tilage invasion from non-invasion in LHSCC by using
the LASSO method in our study. Of the 22 optimal fea-
ture subsets, the top three ranked features related to thy-
roid cartilage were “GrayLevelNonUniformity”(GLNU),
“LeastAxis”, and “ShortRunHighGrayLevelEmphasis”
(SRHGLE). GLNU is a textural feature derived from
GLSZM. It quantifies the gray-level intensity values in
the VOI. A higher value indicates more heterogeneity in
the intensity values [29, 37]. SRHGLE is a textural

feature calculated from GLRLM. It measures the joint
distribution of shorter run lengths with higher gray-level
values [29, 37]. The values of GLNU and SRHGLE in
the thyroid cartilage invasion group were higher than
those in the non-invasive thyroid cartilage group. It is
likely that the two parameters reflect the spatial hetero-
geneity of the tumors. LeastAxis is a shape features that
represents smallest axis length for the ROI-enclosing el-
lipsoid and has been proven proved be related to tumor
invasiveness [20]. The thyroid cartilage invasion group
had the larger leastaxis value in the current study. A pre-
dictive model was constructed using the LR classifier,
which greatly improved the sensitivity and accuracy
without sacrificing specificity. The LR classifier is the
most popular supervised classifier in radiomics and is
suitable for small sample and two-classification algo-
rithms. It has also been successfully used in model con-
struction for other tumors [20, 30, 37].
To address the imbalance in the dataset used in this

study, the SVMSMOTE method was adopted to resam-
ple the thyroid cartilage invasion group such that the
sample size for the group equaled that of the group

Fig. 4 a-b ROC curve for the LR model. c-d ROC curve for the LR-SVMSMOTE model
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without thyroid cartilage invasion. The SVMSMOTE
method can alleviate the problem of overfitting without
losing valuable information [22, 27]. The classifier of LR
with SVMSMOTE can obtain a more optimal feature set
after dimension reduction. “LeastAxis”, “ZoneEntropy”
(ZE), and GLUN were the top three most important fea-
tures in the results. ZE represents a textural feature that
originates from GLSZM. ZE mainly reflects the textural
complexity of lesion (the higher the ZE value, the more
complex the texture). Compared with the thyroid cartil-
age noninvasive group, the invasive group had higher ZE
value (consistent with faster growth and greater tumor

heterogeneity) [29]. The LR-SVMSMOTE model had
better AUC, specificity, and accuracy than the LR model.
Further, the accuracy of the two different radiomics
models (LR-SVMSMOTE and LR) was superior to that
of the less experienced radiologist. Thyroid cartilage in-
vasion can be quantitatively diagnosed without relying
on the experience of radiologists and has the potential to
help with the diagnosis of radiologists. Quantitative
prediction using radiomics for diseases not only avoids
potential inaccuracy from observers subjectively inter-
preting the imaging findings, but also integrates imaging
features that are difficult to distinguish with the naked

Table 4 The diagnostic performance of radiologist assessment, LR model, and LR-SVMSMOTE model in the prediction of thyroid
cartilage invasion

Radiologist LR LR-SVMSMOTE

AUC(95%CI) 0.721(0.663–0.774) 0.876(0.830–0.913) 0.905(0.863–0.937)

Sensitivity (%) 74.4 80.2 80.2

Specificity (%) 69.8 83.8 88.3

Accuracy (%) 71.3 82.6 85.7

Precision(%) 0.542 0.704 0.767

F1-score 0.627 0.750 0.784

Kappa 0.404 0.618 0.677

MCC 0.417 0.621 0.677

P Value < 0.001a < 0.001a

LR Logistic regression, LR-SVMSMOTE Logistic regression - support vector machine-based synthetic minority oversampling, CI Confidence Interval, MCC Matthews
Correlation Coefficient
aDelong test for differences in AUC compared to radiologist assessment

Fig. 5 ROC curves for LR (orange) and LR-SVMSMOTE (green) models and radiologist assessment(blue) for the whole dataset to predict thyroid
cartilage invasion from LHSCC
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eyes [36, 39].Clinicians can utilize individualized therapy
to improve the 5-year survival rate and quality of life for
patients with LHSCC [8].
Our study had several limitations. First, we manually de-

lineated all of the slices of the lesion, which was time-
consuming. A CT-based semi-automatic segmentation
method was recently used for radiomics analysis of lung tu-
mors [40] and a fully automatic segmentation approach
using MRI has been performed for brain cancer [41]. A reli-
able and stable automatic segmentation method needs to
be developed for LHSCC in the future so as to greatly re-
duce the burden of researchers. Second, only venous phase
CE-CT images were segmented and the related radiomics
features were extracted. The advantages and disadvantages
of non-enhanced and arterial phase CE-CT images were
not compared. Thus, more intensive research will be
needed in the future. Third, our CT scans were performed
with three different scanners and the different scanning pa-
rameters might have affected the results. However, we used
the KW nonparametric test to remove radiomics features
with statistical differences among the three machines. In
addition, our conventional radiology assessment was con-
ducted by two junior radiologists, not senior radiologists.
These two junior radiologists had interpreted a large num-
ber of CT images for LHSCC in the Head and Neck Spe-
cialist Hospital for 3 years. Nevertheless, the interpretations
of senior radiologists still need to be compared with assess-
ments using radiomics to determine the similarities and
whether additional information is obtained using the radio-
mics approach. Furthermore, our study adopted cross-
validation, which may not avoid the overfitting risk, a held-
out test set and external validation are needed to further
validate the performance of the models.

Conclusions
In conclusion, the present study showed that models
based on CT radiomic features had higher AUCs than
radiologist assessment in the prediction of thyroid cartil-
age invasion from LHSCC. The classifier comprised of
LR with SVMSMOTE was able to identify the presence
of thyroid cartilage invasion and the AUC reached 0.905
in this study. This technique provides a new noninvasive
method for preoperative prediction of thyroid cartilage
invasion from LHSCC with satisfactory predictive per-
formance. However, it should be clear that this is a proof
of concept study and the results remains to be proven,
with external validation and prospective clinical studies.
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