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Abstract

Background: As artificial intelligence methods for the diagnosis of disease advance, we aimed to evaluate machine
learning in the predictive task of distinguishing between malignant and benign breast lesions on an independent clinical
magnetic resonance imaging (MRI) dataset within a single institution for subsequent use as a computer aid for radiologists.

Methods: Computer analysis was conducted on consecutive dynamic contrast-enhanced MRI (DCE-MRI) studies
from 1483 breast cancer and 496 benign patients who underwent MRI examinations between February 2015
and October 2017; with the age ranges of the cancer and benign patients being 19 to 77 and 16 to 76 years
old, respectively. Cases were separated into a training dataset (years 2015 & 2016; 1444 cases) and an
independent testing dataset (year 2017; 535 cases) based solely on MRI examination date. After radiologist
indication of the lesion, the computer automatically segmented and extracted radiomic features, which were
subsequently merged with a support-vector machine (SVM) to yield a lesion signature. Area under the
receiving operating characteristic (ROC) curve (AUC) with 95% confidence intervals (CI) served as the primary
figure of merit in the statistical evaluation for this clinical classification task.

Results: In the task of distinguishing malignant and benign breast lesions DCE-MRI, the trained predictive
model yielded an AUC value of 0.89 (95% CI: 0.858, 0.922) on the independent image set. AUC values of 0.88
(95% CI: 0.845, 0.926) and 0.90 (95% CI: 0.837, 0.940) were obtained for mass lesions only and non-mass
lesions only, respectively. Compared with actual clinical management decisions, the predictive model achieved
99.5% sensitivity with 9.6% fewer recommended biopsies.

Conclusion: On an independent, consecutive clinical dataset within a single institution, a trained machine
learning system yielded promising performance in distinguishing between malignant and benign breast
lesions.

Keywords: Computer-aided diagnosis, Breast cancer, Quantitative MRI, Radiomics, Machine learning, Artificial
intelligence (AI), Independent statistical testing
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Background
Breast cancer is the most common cancer and the second
leading cause of cancer death in women in western coun-
tries [1]. In Chinese women, breast cancer is the most
common cancer diagnosed, and it alone is expected to ac-
count for 15% of all new cancers in women [2]. Dynamic
contrast enhanced (DCE) magnetic resonance imaging
(MRI) of the breast is being used increasingly for a variety
of clinical purposes, including screening of women at high
risk for developing breast cancer, evaluating of the extent
of malignant disease, and post-treatment evaluation [3–5].
DCE-MRI has emerged as a modality that is complemen-
tary to mammography and ultrasonography because of
the additional three-dimensional spatial and temporal in-
formation about the lesion that it yields.
While there is diagnostic value of DCE-MRI

characterization in the differentiation of malignant
from benign lesions [6], the MRI assessment of breast
cancer cases may be hindered by inter-observer and
intra-observer variations, labor-intensive interpretation
methods, and limited clinical interpretation guidelines
[7, 8]. To aid radiologists in diagnostic classification, vari-
ous investigators are developing computerized image ana-
lysis methods for characterization, i.e., computer-aided
diagnosis (CADx)/radiomics [9–15]. The purpose of this
study was to evaluate the potential of quantitative MRI
radiomics and machine learning in the task of distinguish-
ing between malignant and benign breast lesions on an in-
dependent, consecutive clinical dataset within a single
institution for ultimate use as a computer aid to radiologists

in the workup of breast lesions. To our knowledge, our
study is the largest such independent study in the field.

Methods
Breast DCE-MRI database
Our study initially involved 4704 patients presenting
for breast DCE-MRI examinations as recorded in the
Department of Breast Imaging of the Tianjin Medical
University Cancer Institute and Hospital. As this
study was a retrospective and anonymized machine
learning study, informed consent was waived and the
study was deemed exempt. Patient’s MRIs and clinical
data were collected consecutively for our study within
the years of 2015–2017. Exclusion criteria included
patients with either previous surgical excision, sys-
temic hormone therapy, chemotherapy or the patients
without final pathology results. A total of 1979 pa-
tients were ultimately included in our study (Fig. 1).
We conducted a retrospective review of the breast

MRI images from the 1483 histopathology-proven
breast cancer patients and the 496 histopathology-
proven benign patients who had underwent diagnostic
breast MRI examinations between February 2015 and
October 2017. All histopathology was based on surgi-
cal specimens. The age range of the cancer patients
was between 19 and 77 years old with an average of
48.1 years with a standard deviation of 9.9 years and a
median of 47 years. The age range of the benign pa-
tients was between 16 and 76 years old with an aver-
age of 42.1 years with a standard deviation of 9.8 years

Fig. 1 Flowchart of study participants enrollment
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and a median of 43 years. The breast MRI databases
consisted of 1494 lesions from the 1483 cancer pa-
tients, including 8 bilateral breast cancer patients and
3 bifocal breast cancer patients, and 496 primary le-
sions from 496 benign patients.
MR images had been obtained with a 3 T GE sys-

tem using a dedicated 8-channel phased-array breast
coil (Discovery 750, GE Medical Systems, Milwaukee,
WI). Sagittal dynamic contrast-enhanced MRI (DCE-
MRI) was obtained with the volume imaging for
breast assessment (VIBRANT) bilateral breast imaging
technique, with TR = 6.1 ms, TE = 2.9 ms, flip angle =
15°, matrix size = 256 × 128, field of view = 26 cm × 26
cm, NEX = 1, slice thickness = 1.8 mm. The temporal
resolution for each dynamic acquisition was 90 s. Be-
fore injection of the contrast agent, serial mask im-
ages were obtained. Successively, the contrast agent
(Gd-DTPA, 0.1 mmol/kg body weight, flow rate 2.0
ml/s) was injected using an automatic MR-compatible
power injector, and followed by flushing with the
same total dose of saline solution. Dynamic MRI ac-
quisitions were started immediately after the injection.
The acquisition was repeated five times, and each
phase took 90 s.
In order to not incur bias in case selection as well as

to mimic a development-then-clinical-use scenario, our
database was divided into a training dataset and a testing
dataset based solely on the date of the MRI examina-
tions. The training data set included the breast MRIs ac-
quired within February 2015 through December 2016,
and the test dataset included the breast MRIs acquired
within January 2017 through October 2017. Note that
the cases were unique in that no patients were within
both the training and testing sets.
The clinicopathological characteristics of the breast

cancer and benign patients of the two datasets are
shown in Table 1, including the BI-RADS classifica-
tions. Invasive ductal carcinomas composed the ma-
jority of malignant lesions, whereas fibroadenomas
were the most common benign lesion (Fig. 2). During
the patients’ clinical workup, BI-RADS ratings had
been recorded by the MRI radiologist using the Breast
Imaging Reporting and Data System (BI-RADS) [16].
Note that all of the patients in this study underwent
pathological examination, even those with MRI-BI-
RADS categories 1 or 2 or 3 when their mammo-
graphic or their sonographic findings were judged to
be suspicious or highly suggestive for cancer, and the
actual clinical decisions were made according to the
multimodality medical imaging interpretations.

Computerized analysis of breast lesions on MRI images
We analyzed the DCE-MRIs using an existing quanti-
tative radiomics machine learning workstation from

the University of Chicago, which had been previously
developed to characterize suspicious breast lesions on
MRI as benign or malignant (Fig. 3) [11, 17–19].
With the workstation, a breast lesion is first manually
located on the MRI by the study radiologist (YJ), a
breast radiologist with 5 years of experience in breast
DCE-MRIs. The computer then automatically con-
ducted three-dimensional segmentation of the tumor
and extraction of radiomic features, including those
from six categories: size, shape, morphology, enhance-
ment texture, kinetics, and enhancement-variance
kinetics.
The output from this established workstation was

subsequently used for the machine learning predictive
model to perform classification—that is, calculation of
a malignancy score related to the likelihood of malig-
nancy for each lesion.
During training of the predictive model on the

training set, stepwise feature selection using linear
discriminant analysis with a Wilks lambda cost func-
tion [20] was conducted in order to identify the sub-
set of features that performed effectively in the
classification of malignant and benign lesions [21].
Then a support-vector machine (SVM) classifier [22]
was trained yielding a lesion score, related to the like-
lihood of malignancy.
The diagnostic performance was evaluated using the

trained predictive model on the independent test set
– for (a) all cases, both mass and non-mass lesions,
(b) only mass lesions, and (c) only non-mass lesions.
In order to assess the robustness of the trained
system, only the one trained system was used in all
three evaluations. Such evaluations were deemed to
mimic the clinical situation where the mass/non-mass
status of a lesion is unknown.

Performance evaluation and statistical analyses
Receiver operating characteristic (ROC) analysis was
used to assess overall classification performance on
the independent test set for the task of differentiating
between malignant and benign lesions: (a) for all
lesions; i.e., both mass and non-mass lesions, (b) only
mass lesions, and (c) only non-mass lesions. Area
under the ROC curve (AUC) served as the primary
figure of merit in these tasks [23, 24]. Secondary per-
formance metrics calculated were sensitivity, specifi-
city, positive predictive value (PPV) and negative
predictive value (NPV) [25].
Note that the BI-RADS had been used by the radi-

ologist during the actual clinical interpretation in
which all available MR images were used. And al-
though BI-RADS categories 1, 2 and 3 are considered
benign and categories 4 and 5 are considered malig-
nant, clinically, all lesions had been sent to biopsy.
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Table 1 Clinicopathological characteristics of breast cancer and benign patients
Clinicopathological characteristics of breast cancer and benign patients

Training data Testing data

Malignant Benign Malignant Benign

Total 1073 382 421 114

Age, years (mean, range) 47.6 (19–77) 42.2 (16–76) 49.3 (25–75) 41.9 (19–65)

Lesion type

Mass 716 (66.7%) 230 (60.2%) 293 (69.6%) 70 (61.4%)

Non-mass 357 (33.3%) 152 (39.8%) 128 (30.4%) 44 (38.6%)

MRI-BI-RADS category

0 0 (0%) 2 (0.5%) 0 (0%) 0 (0%)

1 0 (0%) 1 (0.3%) 0 (0%) 2 (1.8%)

2 0 (0%) 4 (1.0%) 0 (0%) 0 (0%)

3 4 (0.3%) 202 (52.9%) 0 (0%) 50 (43.8%)

4 351 (33.1%) 170 (44.5%) 113 (26.8%) 60 (52.6%)

5 529 (49.8%) 3 (0.8%) 221 (52.5%) 2 (1.8%)

6 178 (16.8%) 0 (0%) 87 (20.7%) 0 (0%)

Pre or Post Biopsy MRI

Pre 868 (81.7%) 362 (94.8%) 330 (78.4%) 112 (98.2%)

Post 194 (18.3%) 20 (5.2%) 91 (21.6%) 2 (1.8%)

Histology

IDC 914 (85.2%) 366 (86.9%)

ILC 22 (2.1%) 4 (1.0%)

DCIS 76 (7.1%) 18 (4.3%)

Other malignant lesions 61 (5.6%) 33 (7.8%)

Fibroadenoma 165 (43.2%) 46 (40.4%)

Papilloma 66 (17.3%) 28 (24.6%)

Inflammation 19 (5.0%) 10 (8.8%)

Other benign lesions 132 (34.5%) 30 (26.3%)

Grade of IDC

I 56 (6.2%) 13 (3.7%)

II 683 (75.1%) 275 (77.2%)

III 171 (18.7%) 68 (19.1%)

Lymph node status (n = 1468)

Negative 734 (70.3%) 295 (70.7%)

Positive 310 (29.7%) 122 (29.3%)

Estrogen receptor

< 1% 193 (18.1%) 77 (18.3%)

≥ 1% 876 (81.9%) 344 (81.7%)

Progesterone receptor

< 1% 222 (20.8%) 104 (24.7%)

≥ 1% 846 (79.2%) 317 (75.3%)

Her2

0 or 1+ 632 (59.2%) 243 (57.7%)

2+ or 3+ 436 (40.8%) 178 (42.3%)

Ki-67

< 14% 180 (16.9%) 60 (14.3%)

≥ 14% 887 (83.1%) 361 (85.7%)
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Therefore, the clinical performance could be charac-
terized as having 100% sensitivity and 0% specificity.
Thus, for comparison of the machine learning sys-

tem to the actual clinical findings, the threshold value
of the computer-generated malignancy score that re-
sulted in 100% sensitivity on the training set was de-
termined and subsequently applied to the testing set
to obtain sensitivity, specificity, PPV, and NPV values.
Resulting performance values at different threshold
values were also calculated. PPV is calculated as the
percentage of true positives over all lesions that had
been classified as positive (i.e., malignant) by the
trained predictive model, i.e., the probability that a
case with a malignant computer output actually has
cancer. NPV is the percentage of true negatives over
all lesions that had been classified as negative (i.e.,
benign) by the trained predictive model, i.e., the

likelihood that a case with a benign computer output
actually is cancer free.
All statistical analyses were performed using SPSS

software (version 19.0, SPSS). The reported p-values
were two-sided. A p-value less than 0.05 was set as
the threshold for statistical significance given that a
single performance evaluation was conducted. In
addition, confidence intervals were calculated using
ROC software.

Results
Radiomic features, which had been selected and
merged into the lesion signature during training in-
cluded 2 shape phenotypes, 1 morphological pheno-
type, 3 enhancement texture phenotypes, and 4
kinetic curve assessments (Table 2).

Fig. 2 Distribution of unique patients relative to their primary lesion pathology (malignant and benign) in the training and testing data sets. IDC:
invasive ductal carcinoma; ILC: infiltrating lobular carcinoma; DCIS: ductal carcinoma in situ; IMPC: invasive micropapillary carcinoma; MCB:
mucinous carcinoma of the breast
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On the independent test dataset including both
mass and non-mass lesions, the trained machine
learning system yielded an AUC value of 0.89 (95%
CI: 0.858, 0.922) in the task of distinguishing between
malignant and benign mass lesions (Fig. 4).
For mass lesions in the test dataset, the trained sys-

tem yielded an AUC value of 0.88 (95% CI: 0.845,

0.926). For non-mass lesions in the test dataset, the
trained system yielded an AUC value of 0.90 (95% CI:
0.837, 0.940).
Summary of sensitivity, specificity, PPV, and NPV

values at different threshold values of the malignancy
score in test set are given in Table 3. At the thresh-
old value that had yielded 100% sensitivity on the

Table 2 Summary of computerized features in distinguishing between malignant and benign on dynamic contrast-enhanced
magnetic resonance imaging.

Feature Description

Irregularity Deviation of the lesion surface from the surface of a sphere

Surface to volume ratio (1/mm) Ration of surface area to volume

Margin sharpness Mean of the image gradient at the lesion margin

Energy Measure of image homogeneity

Information measure of correlation Measure of nonlinear gray-level dependence

Sum Average Measure of the overall image brightness

Maximum enhancement Maximum contrast enhancement

Time to peak Time at which the maximum enhancement occurs

Washout rate (1/s) Washout speed of the contrast enhancement

Volume of most enhancing voxels (mm3) Volume of the most enhancing voxels

Fig. 3 Diagram outlines the protocol for automated analysis of breast lesions seen on DCE MR imaging
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training set, the machine learning system on both
mass and non-mass lesions demonstrated on the test
set a higher PPV (i.e., 80.3%, 419/522) than the actual
clinical decisions (78.7%, 421/535) (P > 0 .05), that is,
it suggested eleven fewer unnecessary benign biopsies
(i.e., 9.6%, 11/114). However, it erroneously would
have not recommended biopsy of two cancers (i.e.,
0.5%, 2/421). These two cases were both invasive
ductal carcinomas and were initially classified by the
radiologist as BI-RADS 5, and thus, would have gone
to biopsy.
Compared with non-mass lesions, the machine learn-

ing system demonstrated a lower sensitivity (P > 0.05)
and higher specificity on mass lesions (P > 0.05).
Some representative breast DCE-MRI studies from the in-

dependent consecutive test set as classified by the trained
MRI machine learning system are presented in Fig. 5.

Discussion
Our results demonstrated that a computer worksta-
tion, initially developed with datasets from the US for
automatic 3D lesion segmentation and radiomic
feature extraction, has the potential to distinguish be-
tween malignant and benign breast lesions from
Chinese populations. It is important to note that the
statistical power of the current study was limited by

the modest size of the database, even though, to our
knowledge, this is the largest database of this type in
this breast radiomics field. Our results demonstrate
that machine learning analysis of DCE-MRI may po-
tentially provide clinically-useful information to distin-
guish benign and malignant lesions in Chinese
databases obtained from a single institution.
While we cannot compare directly to the reported

results from others due to the use of different data-
bases, we can note that the performance level of the
computer workstation was similar, and often higher,
than other reported AUCs in this diagnostic task
[26–28]. We also note that our performance was
higher than that reported in Shimauchi et al. [29],
which indicated that use of the computer aid resulted
in a statistically significant improvement in radiolo-
gists’ performances.
The American College of Radiology (ACR) BI-RADS

MRI lexicon [16] is used worldwide for describing the
morphologic and kinetic features of breast lesions. It
allows for standardization of the terminology used in
describing the findings and categorization of the
study. Subsequent descriptors of other lesion features,
such as shape, distribution, margins, enhancement
pattern are also used, which differ depending on the
type of enhancement, i.e., mass enhancement or non-
mass enhancement. Most previous investigations have
reported on masses and rarely for lesions presenting
as non-mass enhancement, primarily because of the
challenges in defining the lesion extent for computer-
based analysis. In our study, in order to mimic clin-
ical practice, a single and independently-trained ma-
chine learning model was used for all the lesion types
(masses and non-mass enhancements), and our result
demonstrated that the classification model was stable
in the task of distinguishing between malignant and
benign for mass and non-mass lesions.
Note that in clinical practice, radiologists’ perform-

ance is based on multiparametric breast MR images,
including DCE, T2-weighted, and diffusion-weighted
images, as well as mammography and ultrasound. In
our study, the computer only analyzed dynamic
contrast-enhanced MR images to yield the predictive
lesion signature. One would expect improved per-
formance by using multiparametric breast MR images
and multimodality medical images; thus, we will
analyze those in the future.
The imaging technique used in our study involves

acquisition of one pre-contrast and a series of post-
contrast images of both breasts at a temporal reso-
lution of roughly 90 s. This type of breast MRI acqui-
sition sequence has the advantage of being able to
provide both morphological and kinetic information
from one MRI examination, and was representative of

Fig. 4 Receiver operating characteristic curves for the classification
performance of the trained radiomics signature on the independent
clinical testing set for (a) malignant and benign lesions, (b)
malignant and benign mass lesions, (c) malignant and benign
non-mass lesions
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early dynamic MRI protocols [30]. In addition, our large
clinical database came from a single institution, thus, hand-
ling the problem that the image acquisition protocols across
breast MRIs might not be standardized. However, that also
limits statements on generalizability of the findings.
Patient motion during image acquisition may intro-

duce inaccuracies in the computer-extracted kinetic fea-
tures [31, 32]. Cases with abrupt and large patient
movements between dynamic series had been clinically
treated as acquisition failure and were clinically excluded
from our datasets. In our datasets, only patient respira-
tory motion was observed. The motion mostly resulted
in additional blurring rather than actual displacement of
image structure. However, it is important to note that
image alignment of breast volumes at different time
frames may improve the accuracy of our analyses.

There are some limitations of this study, First, this was a
retrospective analysis of images from a single vendor acquired
at a single institution, although the analysis was conducted
with independent training and testing sets with unique pa-
tients. It will be critical to evaluate whether the present find-
ings generalize to other vendor images and external data. A
future multicenter study may help address this question. Sec-
ond, all the cases had gone to biopsy, thus, we could not assess
the system on benign lesions that were deemed benign solely
by follow-up. Also, the study findings cannot be used to deter-
mine whether the radiologists’ performances with the com-
puter aid system are significantly improved in comparison
with their performances without computer aid, even though
we analyzed the DCE-MRI diagnostic results by the clinical ra-
diologists. A clinical observer study is necessary. We note that
we previously demonstrated in an observer study that use of

Table 3 Summary of sensitivity, specificity, PPV and NPV at different threshold values of the malignancy score on the independent
test set

Performance on All
Lesions in Test Set

Performance on Mass
Lesions in Test Set

Performance on Non-mass
enhancements on Test Set

Malignancy score
threshold

Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV

0.00756
[Threshold value
yielding 100% sensitivity
on the training set]

99.5%,
419/421

9.6%, 11/
114

80.3%,
419/
522

84.6%,
11/13

99.3%,
291/293

10.0%, 7/
70

82.2%,
291/
354

77.8%,
7/9

100.0%,
128/128

9.1%, 4/
44

76.2%,
128/168

100.0%,
4/4

0.05 98.1%,
413/421

35.1%,
40/114

84.8%,
413/
487

83.3%,
40/48

97.6%,
286/293

38.6%,
27/70

86.9%,
286/
329

79.4%,
27/34

99.2%,
127/128

29.5%,
13/44

80.4%,
127/158

92.9%,
13/14

0.1 96.7%,
407/421

43.0%,
49/114

86.2%,
407/
472

77.8%,
49/63

96.6%,
283/293

47.1%,
33/70

88.4%,
283/
320

76.7%,
33/43

96.9%,
124/128

36.4%,
16/44

81.6%,
124/152

80.0%,
16/20

0.2 94.3%,
397/421

54.4%,
62/114

88.4%,
397/
449

72.1%,
62/86

94.9%,
278/293

55.7%,
39/70

90.0%,
278/
309

72.2%,
39/54

93.0%,
119/128

52.3%,
23/44

85.0%,
119/140

71.9%,
23/32

0.3 91.9%,
387/421

64.9%,
74/114

90.6%,
387/
427

68.5%,
74/108

93.2%,
273/293

65.7%,
46/70

91.9%,
273/
297

69.7%,
46/66

89.1%,
114/128

63.6%,
28/44

87.7%,
114/130

66.7%,
28/42

0.4 87.9%,
370/421

73.7%,
84/114

92.5%,
370/
400

62.2%,
84/135

88.7%,
260/293

74.3%,
52/70

93.5%,
260/
278

61.2%,
52/85

85.9%,
110/128

72.7%,
32/44

90.2%,
110/122

64.0%,
32/50

0.5 83.6%,
352/421

82.5%,
94/114

94.6%,
352/
372

57.7%,
94/163

83.3%,
244/293

84.3%,
59/70

95.7%,
244/
255

54.6%,
59/108

84.4%,
108/128

79.5%,
35/44

92.3%,
108/117

63.6%,
35/55

0.6 75.8%,
319/421

89.5%,
102/114

96.4%,
319/
331

50.0%,
102/
204

75.1%,
220/293

88.6%,
62/70

96.5%,
220/
228

45.9%,
62/135

77.3%,
99/128

90.9%,
40/44

96.1%,
99/103

58.0%,
40/69

0.7 61.3%,
258/421

91.2%,
104/114

96.3%,
258/
268

39.0%,
104/
267

60.1%,
176/293

91.4%,
64/70

96.7%,
176/
182

35.4%,
64/181

64.1%,
82/128

90.9%,
40/44

95.3%,
82/86

46.5%,
40/86

0.8 46.1%,
194/421

96.5%,
110/114

98.0%,
194/
198

32.6%,
110/
337

43.0%,
126/293

97.1%,
68/70

98.4%,
126/
128

28.9%,
68/235

53.1%,
68/128

95.5%,
42/44

97.1%,
68/70

41.2%,
42/102

0.9 20.0%,
84/421

99.1%,
113/114

98.8%,
84/85

25.1%,
113/
450

17.7%,
52/293

98.6%,
69/70

98.1%,
52/53

22.3%,
69/310

25.0%,
32/128

100.0%,
44/44

100.0%,
32/32

31.4%,
44/140
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computer-aided diagnosis with MRI improves the perform-
ance of radiologists in the task of differentiating malignant
and benign lesions [29].

Conclusions
In conclusion, we have validated a machine-learning
radiomics method for DCE-MRI on an independent,

consecutive patient test set, suggesting a potentially use-
ful aid for radiologists in the task of distinguishing be-
tween malignant and benign breast lesions during
diagnostic workup of breast lesions.
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