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Abstract

Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceuti-
cal, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not
meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working
conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, design-
ing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic
effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme
promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an
efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Meta-
bolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic
tools. This review sought to provide an in-depth description of novel strategies for improving cell factory perfor-
mance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory
elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through
chromosomal integration, metabolite tolerance, and modularization of pathways.

Keywords: Terpenoids, Protein engineering, Dynamic regulation, Promoter engineering, RBS engineering, Cellular
tolerance, Chromosomal integration, Modular engineering
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natural compounds, making them the largest known
natural compounds (Tetali 2019; Tholl 2015). Terpe-
noids have a wide distribution in plants, microorganisms,
insects, and marine invertebrates (Bian et al. 2018; Chen
et al. 2011; Huber et al. 2015; Yamada et al. 2015). Plants
exhibit a vast array of isoprenoids; hemiterpenoids (Cs),
monoterpenoids (C,,), sesquiterpenoids (C,5), diterpe-
noids (C,), sesterterpenoids (C,s), triterpenoids (Cs),
and tetraterpenoids (C,;) (Fig. 1). These naturally occur-
ring products can be harnessed into useful compounds
in the pharmaceutical, food, agricultural, and chemical
industries due to their many different properties. Terpe-
noids are derived from the five-carbon (C5) intermediary
units isopentenyl diphosphate (IPP) and its double-bond
isomer dimethylallyl diphosphate (DMAPP) from two
major universal pathways: the mevalonate (MVA) path-
way and the 2-C-methyl-p-erythritol 4-phosphate (MEP)
pathway. These are subsequently converted into the
plethora of isoprenoids by their respective prenyltrans-
ferases and terpene synthases (Tholl 2015) (Fig. 1). This
has led to the synthesis of numerous drugs, health care,
cosmetic products, flavor and fragrant agents, and biofu-
els (Tetali 2019).

Given their potential benefits in various sectors, the
demand for terpenoids is rapidly increasing. Low yields
and high costs restrict the direct extraction from plants
and other naturally occurring sources. Synthetic pro-
duction, an alternative source for terpenoid synthesis,
produces several isomers. These synthetic chemicals
come with several health issues that restrict their direct
application due to the possible transfer of by-products
and intermediates. However, “wild-type” microbes are
unsuitable for commercial purposes since they produce
low yields. Designing ideal industrial cell factories is an
alternative to producing terpenoids and their derivatives
that meet safety and economic concerns. Eliminating the
negative feedbacks in the precursor pathways is one of
the strategies to increase the pool of precursors. Since
wild-type strains are inefficient for industrial applica-
tions, it is therefore expedient to metabolically engineer
them for high-producing strains.

To ensure a smooth transition to a bio-based econ-
omy devoid of complications associated with natural
and artificial biosynthetic pathways, developing new,
versatile, industrial microbial platforms is required
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(Jakocianas et al. 2020). Since cells have extensive
metabolic networks with hard-wired, strictly regu-
lated molecular pathways that resist resource redirec-
tion, turning them into successful factories is difficult.
(Nielsen and Keasling 2016). The emergence of syn-
thetic biology has facilitated the production of chemi-
cals that, in the past, could not be produced in desired
hosts by simply expressing and fine-tuning exogenous
pathway genes. To boost productivity, metabolic path-
ways in these production hosts are frequently regulated
by several genetic regulatory tools (Fordjour et al. 2019;
Ward et al. 2018). Nevertheless, microbial metabolism
is extremely complicated that achieving sufficient yield
of a target product from engineered microbe demands
careful studies and understanding, as well as the avail-
ability of essential tools to manipulate the host strain.
The expression of heterologous genes normally results
in a metabolic burden on the host strain, affecting the
yield of target products. The goal of synthetic biology
is to create predictable biological systems. However,
bacteria, for example, are very complicated organisms,
making it tough to comprehend all of the cell’s func-
tions at the same time and to predict the perturbation
outcomes (Jervis et al. 2019).

To overcome these metabolic hurdles and increase the
production of metabolites, several strategies have been
adopted including: (i) DNA-based engineering, for exam-
ple, promoter engineering; (ii) RNA engineering includ-
ing synthetic RNA switches; (iii) protein and cofactor
engineering; (iv) metabolic pathway engineering, includ-
ing modular pathway engineering and compartmen-
talization engineering; (v) genome-wide engineering;
(vi) cell engineering, including transporter engineering
(Chen et al. 2018b). This review analyzes recent progress
in microbial biosynthesis of terpenoids and examines the
critical issues and challenges confronting engineering of
cell factories for commercial purposes. In this review, we
summarize recent synthetic biology and metabolic engi-
neering strategies to address these challenges and care-
fully construct a suitable chassis for industrial purposes.
We focused on how transcriptional and translational
efficiencies through static and dynamic regulatory ele-
ments have been harnesses for cell factory development.
Also, enzyme engineering and high-throughput screen-
ing strategies, cellular function enhancement through

(See figure on next page.)

Fig. 1 The MVA pathway and MEP pathway for isoprenoids biosynthesis. The isoprenoid biosynthetic pathway can be grouped into the

central carbon pathway, upstream isoprenoid pathway, and downstream isoprenoid pathway. PEP, phosphoenolpyruvate; HMG-CoA,
S-3-hydroxy-3-methylglutaryl-CoA; DXP, 1-deoxy-p-xylulose 5-phosphate; MEP, 2-C-methyl-p-erythritol 4-phosphate; CDP-ME, 4-(cytidine 5-d
iphospho)-2-C-methyl-o-erythritol; CDP-ME2P, 2-phospho-4-(cytidine 5-diphospho)-2-C-methyl-o-erythritol; MECPP, 2-C-methyl-p-erythritol
2,4-cyclodiphosphate; HMBPP, 1-hydroxy-2-methyl-2-butenyl 4-diphosphate; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; GPP,
geranyl pyrophosphate; NPP, neryl pyrophosphate; FPP, farnesyl pyrophosphate; GGPP, geranylgeranyl pyrophosphate; CCP, central carbon pathway;
C5, hemiterpenoids; C10, monoterpenoids; C15, sesquiterpenoids; C20, diterpenoids; C30, triterpenoids; C40, tetraterpenoids
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chromosomal integration, cell tolerance, and modulari-
zation of pathways have been discussed here.

Strategies for developing cell factories
for terpenoid biosynthesis
Protein engineering
The lack of a centralized database with adequate func-
tionally annotated sequence data has impeded a thor-
ough study of terpene synthases and prenyltransferases
in terms of product specificity. In the metabolic process
of terpenoid synthesis, terpenoid synthases and prenyl-
transferases catalyze the synthesis of biologically impor-
tant terpenoid compounds (Keeling and Bohlmann 2006)
(Fig. 1). As is especially true in the case of the terpenoid
pathway, various features of a metabolic pathway are not
associated exclusively with increasing the concentration
of enzymes. Enzymes in their natural states do not show
the stability, specificity, or catalytic efficiency required
for particular processes (Kokkonen et al. 2019). Protein
engineering has been successfully applied to optimize
the catalytic efficiencies of rate-limiting enzymes. This
has happened through directed evolution and structure-
guided engineering using structural information as a tool
for enzyme engineering. The lack of a thorough under-
standing of the structure/function relationship of these
terpene synthases and prenyltransferases becomes a
deficiency in how to engineer them for high isoprenoids
production. To improve properties, protein engineering
techniques such as de novo design, directed evolution,
rational design, and analytical techniques can be used
(Fig. 4). To ensure efficient screening of variants, several
high-throughput screening approaches have been devel-
oped (Zeng et al. 2020). A lycopene-dependent color
high-throughput screening method has already been
developed. Adopting this screening strategy, an improved
variant form of IDI bearing triple-mutation (L141H/
Y195F/W256C) with a catalytic activity of 2.53-fold
higher than the wild-type was selected after a directed
evolution and site-saturation mutagenesis process. The
final strain expressing the mutated enzyme produced
more than 1.2 g/L of lycopene, a 2.8-fold increment as
compared to the wild-type (Chen et al. 2018a). Wang
et al. also developed a novel high-throughput screen-
ing method based on DMAPP toxicity to screen for
enhanced isoprene synthases (ISPS). Error-prone PCR
was used to generate ISPS variants that were cloned into
an already constructed DMAPP high-producing strain. A
combinatorial mutant with a double mutation (A570T/
F340L) was developed to produce isoprene threefold
higher than the wild-type strain (Wang et al. 2017).
Terpenoid synthases are known to generate interme-
diates in enzyme-bound carbocation, to achieve struc-
tural and functional diversity. This happens after they
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go through a series of reconfigurations and carbocation
quenching (Fig. 2). The process of enzyme carbocation
is very important when dealing with protein engineer-
ing and has been extensively highlighted by Hong et al.
(2020), Huang et al. (2021), Ker et al. (2020), Leferink
et al. (2019), McClelland (2008), Raz et al. (2020), Salmon
et al. (2015), Tantillo (2010, 2017). Readers are therefore
urged to consult the suggestions for further reading. Such
functional promiscuity is associated with poor catalytic
properties and undesirable product creation (Nobeli
et al. 2009). Though enzyme promiscuity is known to
provide organisms with genome plasticity to thrive in
extreme environmental conditions by altering and repro-
gramming their metabolic pathways or suppression of
undesirable activity (Guzman et al. 2019), these cycliza-
tion reactions often produce “impure” compounds with
undesirable products. This increases the cost of produc-
tion as undesirable by-products have to be removed to
ensure a clean commercial product. But the unavailability
of enough information about cyclization type and active
site sequence (Chen et al. 2011; Christianson 2006) and
a holistic and predictive understanding of structural and
stability hampers the use of rational engineering to build
models of proteins with desirable properties for this pur-
pose. Levopimaradiene (LP), a diterpenoid, is a meta-
bolic product of Levopimaradiene synthase (LPS) via its
complex reaction cascade of cyclization, rearrangement,
and proton transfers using geranylgeranyl pyrophosphate
(GGPP) as its substrate. LPS is known for its promiscu-
ity as it produces isomeric side products such as abieta-
diene, sandaracopimaradiene, and neoabietadiene (Peters
et al. 2000; Ravn et al. 2000). A combinatorial muta-
tion engineering was used to screen for LPS variants
with enhanced diterpenoid productivity and selectivity
towards LP. The final strain produced an approximately
2600-fold increase in LP. An approximate 700 mg/L of LP
was produced in a bench-scale bioreactor under a con-
trolled condition (Leonard et al. 2010).

Taxol (paclitaxel) has been a potent chemotherapeutic
drug in recent years. However, microbial production is
normally hampered by the decomposition of its pathway
intermediates to produce undesired products as less than
10% of taxadiene has been speculated to be converted
to taxadien-5a-ol by the taxadiene-5-a-hydroxylase
(CYP725A4). To ensure product specificity and reduce
by-product formation, an alternative pathway was cre-
ated by mutating taxadiene synthase through site-sat-
urated mutagenesis to yield a 2.4-fold improvement in
taxa-4(20)-11(12)-diene which was subsequently hydrox-
ylated to taxadien-a5-ol by CYP725A4 (Edgar et al. 2017).
Another strategy for improving protein activity is via
enzyme fusion. The fusion of protein has gained increas-
ing recognition in creating novel protein therapeutics
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and enhancing the performance of engineered strains for
biomolecules synthesis. Enzyme fusion is a technique of
joining enzymes to produce a recombinant protein with
combined characteristics of parental proteins (Uhlen
et al. 1992). Enzyme fusion has found application in vari-
ous areas of biotechnology such as protein purification
(Terpe 2003), imaging (Yuste 2005), biopharmaceuticals
(Berger et al. 2015), and facilitating downstream fer-
mentation processes (Uhlen et al. 1992). Several reasons
for constructing these artificially fused enzymes include
improved catalytic activity, activated substrate chan-
neling due to proximity to biocatalysts, higher stability,
and cheaper production processes (Elleuche 2015).

In metabolic engineering, one of the main objec-
tives of fusing enzymes is to ensure active sites are close

to ensuring intermediates are channeled from active
site A to active site B while also preventing competi-
tion for these intermediates (Fig. 3B). The direct fusion
of enzymes without spacers or linkers, which are indis-
pensable components in building stable, bioactive fused
proteins, could result in poor protein expression and
reduced catalytic activity (Chen et al. 2013b). Hence,
to maintain the functionality of fused enzymes, linkers
or spacers are needed. Biosynthesis of isoprene is gain-
ing enough ground because of its associated commer-
cial application (Liu et al. 2019). To increase isoprene
production in Cyanobacteria, an isoprene synthase was
fused with a highly expressed native protein, ¢pcB, with
or without a linker. A strain with a seven amino acid
linker generated 28.9 ug/L/h of isoprene, a 27-fold higher
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than the strain bearing the unfused enzymes. The study
concluded that the relative folding of two enzymes with
respect to one another facilitates their catalytic activity
(Chaves et al. 2017). Therefore, linkers are an important
component in recombinant fusion protein technology.
The close active sites of fused proteins guarantee sub-
strate utilization, prevent intermediate diffusion, and
alleviate feedback inhibition (Dale et al. 2003). Enzyme
fusion has also been proven to remove competition for
substrates (Camagna et al. 2019). In S. cerevisiae, gera-
nyl pyrophosphate (GPP), the primary precursor for
monoterpenes production, is also a precursor for FPP
production. To improve the availability and efficient uti-
lization of GPP for geraniol production, Erg20%¥¥ was

fused with truncated geraniol synthase in both forward
and reverse form. There was 15% increment in geraniol
production after 120 h of fermentation compared to the
unfused strain (Jiang et al. 2017).

Notable properties of these linkers like secondary
structure, length, hydrophobicity, amino acid composi-
tion, protease sensitivity, and potential interactions with
fused proteins are essential determinants in enzyme
fusion technology (Yu et al. 2015). The synthesis of carot-
enoids begins with the production of phytoene from
GGPP catalyzed by phytoene synthase (cr¢B). Phytoene
desaturase (crtl) then catalyzes the synthesis of lycopene,
which is finally cyclized to form carotenoids by the lyco-
pene cyclase (crtY). To facilitate an improved production
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of carotenoid, crtl and crtB domains were joined using
two possible configurations with natural and synthetic
linkers. A tridomain enzyme comprising crtB, crtl, and
crtY was also created. The results from this study dem-
onstrated that the domain order and linker properties
affect the expression and stability of the fused proteins,
which affects their catalytic effects (Rabeharindranto
et al. 2019). In practice, directed evolution, site-directed
evolution, enzyme truncation, the fusion of enzymes
with other enzymes and or tags are suitable strategies to
improve the activities of enzymes. Remarkable advances
have been made in enzyme restructure and modifica-
tion via protein engineering. These could be found in
Table 1. This prevents the accumulation of precursors
that have resulted in host toxicity. However, the lack of
structural-functional relationships that accompanies the
fused enzymes becomes a significant challenge as fused
enzymes may encounter misfolding, impaired catalytic
activity, and low expression level, affecting their desired
intentions. Investigations are required to decipher
domain-linker interactions and domain—domain interac-
tions to advance the designing of suitable cell factories.

Dynamic pathway regulation

The use of static regulatory elements results in cellu-
lar perturbations which can only be addressed through
a comprehensive fine-tuning of the various regulatory
parts. Static regulation often results in metabolic imbal-
ances that affect a cells’ productivity. Dynamic control of
metabolic pathways is crucial in debugging bottlenecks at
various points of enzymatic reactions. Taking cues from
the natural regulatory metabolic network that respond
to intracellular conditions, dynamic regulators have
been engineered to manage the production of metabo-
lites and cell growth (Holtz and Keasling 2010). Various
dynamic regulatory mechanisms including global regula-
tors (Farmer and Liao 2000), environmental cues (Harder
et al. 2018; Yin et al. 2017; Zhao et al. 2018), and chemi-
cal cues (Ge et al. 2020) to regulate pathway expression
have been developed to ensure a careful balance between
the production of biomass and metabolites. Recently, a
configurable responsive genetic circuit that genetically
controls the activation and repression of pathway genes
was developed to control intracellular pyruvate concen-
tration (Xu et al. 2020). In a related study, Shen et al.
(2016) adopting feedback responsive promoter enhanced
the zeaxanthin synthesis by dynamically regulating the
mevalonate pathway to prevent the accumulation of toxic
precursors. To enhance the synthesis of monoterpenes,
the Erg20 was degron-tagged to control the downstream
flux which competes with GPP accumulation, the main
precursor for monoterpenes synthesis (Peng et al. 2018).
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Dynamic regulation, as an approach, helps micro-
organisms to thrive in changing environmental condi-
tions and regulate homeostasis, and metabolic flux.
One major known method for dynamically regulating
pathways is found in the “two-staged metabolic control
system” This involves decoupling the growth and pro-
duction stages into two to maximize biomass and the
production of metabolites (Hartline et al. 2021). One of
such regulatory mechanisms is quorum sensing (QS), a
mechanism of cell-to-cell communication dependent on
cell density in several species of microorganisms, par-
ticularly in bacteria (Papenfort and Bassler 2016). This
intercellular communication enables bacteria to make
a collective decision based on their population. The QS
generates, releases, and detects auto-inducers at a cer-
tain threshold of cell density (Ge et al. 2020) (Fig. 3A).
Knowing the mechanisms at the molecular level of this
naturally occurring cell-cell communication system lays
a foundation for the engineering of living cells to perform
specified and unique tasks. Adopting the two-component
QS system lux[-luxR from Vibrio fischeri, Kim et al,
achieved 44% increment in bisabolene production from
their previous work. In this work, seven variants of the
sensor plasmid, carrying lux/—-IuxR genes, and four vari-
ants of the Response plasmid under the control of P, ;
promoter, carrying pathway genes to produce bisabolene,
were designed to improve the biosynthesis of bisabolene.
To avert the problems associated with the plasmid-asso-
ciated pathway expression system, the QS-based bis-
abolene pathway was integrated into the E. coli strain
resulting in a 1.1 g/L of bisabolene production (Kim et al.
2017). Examples of QS system-associated regulation of
metabolic pathways for terpenoids production can be
seen in Table 2.

QS systems that are completely orthogonal forestall
the unexpected interference of the two components
involved. Such systems are both signal and promoter
orthogonal. Recently, the tra QS system from Agrobac-
terium tumefaciens and the las QS system from Pseu-
domonas aeruginosa were constructed into a complete
orthogonality. To achieve this the Esal was chosen to syn-
thesize the inducer, N-(3-oxo-hexanoyl)-L-homoserine
lactone (30C6HSL), for the tra system. This system can
be employed to metabolically regulate pathway genes
(Jiang et al. 2020b). Other QS systems have recently
been developed which could be applied to metaboli-
cally enhance cell factories’ productivity. For example,
a homologous QS regulatory circuit system (hQSRC),
a dual-input genetic controller that operates in three
modes: (1) a constitutive model for high expression; (2) a
tightly repressed mode, and (3) an inducible mode regu-
lated by arabinose and autoinducer-2 was developed for
QS-mediated protein expression in Escherichia coli (E.
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Table 2 Dynamic and static regulatory strategies used to enhance the cell factory productivities
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Strain

Product

Description

Outcome

Refs.

Dynamic regulation
E. coli

E. coli

E. coli

S. cerevisiae

S. cerevisiae

S. cerevisiae
S. cerevisiae

S. cerevisiae

S. cerevisiae

B. subtilis

CRISPR interference (CRISPRI)
E. coli

E. coli

P putida

C. glutamicum

C. glutamicum

Synechocystis sp. PCC 6803

Methylorubrum extorquens

Promoter and RBS design
E. coli

Bisabolene

Lycopene

Zeaxanthin

Linalool and Limonene

Amorpha-4,11-diene

Lycopene
o-Santalene

Nerolidol

Nerolidol

Menaquinone-7

Isoprene, a-bisabolol and
lycopene

Isopentenol

Mevalonate

Decaprenoxanthin

Squalene

Valencene

Carotenoid

Geraniol

An inducer-free Lux QS
system

Engineering the Ntr regulon
to control intracellular
metabolites

IPP/FPP-responsive promoter
to regulate tuneable inter-
genic regions (TIGRs)

An N-degron-dependent
protein degradation strategy
to downregulate Erg20p

Ergosterol-responsive
promoters to regulate Erg9
transcription

Growth-phase-dependent
dynamic regulation

Dynamic regulation of £rg9
expression with HXTT

An auxin-inducible protein
degradation system to decou-
ple growth and production

An endoplasmic reticulum-
associated protein degra-
dation of Erg9p to redirect
flux towards sesquiterpene
production

A bifunctional and modular
Phr-60-Rap-60-Spo0A QS
system regulated by two
endogenous promoters PabrB
and PspoiiA

Development of CRISPRi
system for pathway regulation

Combinatorial knockdown
of competing pathways with
CRISPRi

CRISPRi-mediated regula-
tion of glpR, responsible for
glycerol utilization

CRISPRI to identify regula-
tory genes for carotenoid
biosynthesis

CRISPRi-mediated repression
of competing target genes

Downregulation of crtE with
CRISPRI to decrease carot-

enoid production combined
with fusion of ispA and CnVS

CRISPRi-mediated gene min-
ing of phytoene desaturase
as well as squalene-hopene
cyclase gene repression

Optimization of GPP synthase
with RBS

1.1g/L

18-fold

2.1-fold

18 and 76 mg/L, respectively

350 mg/L

148 g/L
92 mg/L

35g/L

86% improvement

400-fold

2.6-,10.6-, 8.0-fold increment,
respectively

98% improvement

2379/l

43- and ninefold

5.2-fold

19 mg/g DCW

1.9-fold

1119 mg/L

Kim et al. (2018)

Farmer and Liao (2000)

Shen et al. (2016)

Peng et al. (2018)

Yuan and Ching (2015)

Su et al. (2020)
Scalcinati et al. (2012)

Luetal. (2021)

Peng et al. (2017)

Cuietal. (2019)

Kim et al. (2016)

Tian et al. (2019)

Kim et al. (2020)

Gottl et al. (2021)

Park et al. (2019)

Dietsch et al. (2021)

Mo et al. (2020)

Zhou et al. (2015)




Fordjour et al. Bioresources and Bioprocessing (2022) 9:6 Page 12 of 33

Table 2 (continued)

Strain Product Description Outcome Refs.

E. coli (3-carotene Regulation of atoB, mvas, and ~ 51% increment Ye et al. (2016)
HmgT1 with artificial regulatory
parts, MI-46, M-37, and M1-93

E. coli Viridiflorol and Amorpha- Transcription and translational  25.7 g/Land 30 g/L, respec-  Shukal et al. (2019)
diene optimization of enzymes tively
E. coli Amorphadiene Combinatorial screening of Fivefold increase Nowroozi et al. 2014)
RBS for translation of pathway
enzymes
E. coli Violaxanthin RBS optimization of zeaxan- 231 ug/g DW Takemura et al. (2019)

thin epoxidase

E. coli a-Santalene Promoter replacement to 599 g/L Wang et al. (2021e)
fine-tune the expression of
iridoid synthase

E. coli Steviol Engineering of 5-UTR and 384+£1.7mg/L Moon et al. (2020)
N-terminal of pathway
enzymes

E. coli Salicylate A combinatorial screening of ~ 123% Qian et al. (2019)
RBS sequences

S. cerevisiae Sabinene Downregulating ERG20 with 194 mg/L Jiaetal. (2020)
the glucose dependent weak
promoter PHXT

S. cerevisiae Squalene-type triterpenoids  Expression of CYP505D13 3.28 mg/L, 13.77 mg/L, and Song et al. (2019)
from Ganoderma lucidum on ~ 12.23 mg/L
a yeast expression vector for
squalene-type triterpenoids

S. cerevisiae Linalool Downregulating squalene Threefold increment Zhou et al. (2021)
production by replacing the
endogenous ERG20 promoter
with the sterol-responsive
promoter ERG1

S. cerevisiae B-amyrin Employing short synthetic ter-  3.16-fold improvement Ahmed et al. (2019)
minators to regulate pathway

S. cerevisiae Lutein Regulation of pathway N. A Bian et al. (2021)
enzymes with constitu-
tive promoters as well as
temperature-sensitive variant
of transcriptional activator

Gal4aM9

S. cerevisiae Lycopene Gal promoter screening 3.28g/L Shietal. (2019)

Y. lipolytica a-farnesene Promoter optimization of Sc- 257 g/L Liu et al. (2020d)
tHMGT, IDI and OptFSLERG20

Aspergillus oryzae Nepetalactol Promoter replacement to 7.2 mg/L Duan et al. (2021)

fine-tune the expression of
iridoid synthase

Rhodobacter capsulatus Bisabolene Promoter screening coupled 9.8 g/L Zhang et al. (2021b)
with other pathway engineer-
ing strategies

Rhodobacter sphaeroides Pinene RBS optimization coupled N. A Wu et al. (2021)
with fusion of geranyl diphos-
phate synthase and pinene
synthase
C. glutamicum Astaxanthin Combinatorial RBS, spacer, 04 mg/L/h Henke et al. (2016)
and start codon library for
crtW and crtZ translation
P putida Mevalonate Development of an inducible  40-fold Kiattisewee et al. (2021)
CRISPR activation (CRISPRa)
system to regulate promoters
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Table 2 (continued)
Strain Product Description Outcome Refs.

Chlamydomonas reinhardtii - Carotenoids

Overexpression of wild-type
and mutant form of the plant

Two and threefold, respec- Yazdani et al. (2021)

tively

regulatory protein ORANGE
under a strong light inducible

promoter

Synechococcus elongatus Limonene

UTEX 2973

Fine-tuning GPP synthase
expression with synthetic RBS

164 mg/L Linetal. (2021)

with varying translation rates
coupled with crtE mutagen-

esis

coli) (Hauk et al. 2020). Since QS controls processes that
are touted as “expensive public goods” (Schuster et al.
2013), it will be costly and unproductive for a single cell
to undertake such a process. Decoupling microbial bio-
synthesis into growth and production phases improves
cell density that subsequently translates into high prod-
uct formation. Since dynamic regulation predominantly
supports a sufficiently dense population, there is a coor-
dinate expression of the target gene when the population
is at the large response. Also, dynamic regulation that
ensures close interaction between cell density and gene
expression could regulate pathway expression.

CRISPR interference (CRISPRi)

Recent advancement in genome engineering has made
it possible for biological researchers to directly delete,
insert and modify DNA sequences of cells or organ-
isms to elucidate their functions. A number of genomic
editing technologies like zinc-finger nucleases (ZEN)
based on eukaryotic transcription factors (Miller et al.
2007; Sander et al. 2011; Wood et al. 2011), transcrip-
tion activator-like effector nucleases (TALENS) from
Xanthomonas bacteria (Reyon et al. 2012; Sanjana et al.
2012; Wood et al. 2011; Zhang et al. 2011) and the most
recent RNA-guided CRISPR-Cas nuclease system (Cho
et al. 2013; Cong et al. 2013; Horvath and Barrangou
2010) have been employed in investigating genomic edit-
ing. Clustered regularly interspaced short palindromic
repeats (CRISPR) with the CRISPR-associated (Cas) pro-
teins system is RNA-mediated adaptive immune system
in prokaryotes that protects them against bacteriophage
and plasmid invasion (Barrangou et al. 2007; Barrangou
and Marraffini 2014; McGinn and Marraffini 2016).

The CRISPR-Cas9 system has also been harnessed for
genome regulation via the inactivation of the Cas9 pro-
tein (dCas9) (Qi et al. 2013; Schultenkdmper et al. 2020).
CRISPR interference (CRISPRi) or dead Cas9 (dCas9) is
made possible by mutating the active region of the two
domains of Cas9, RuvC and HNH, D10A and HS840A,

respectively, to attenuate the Cas9, yet retaining its bind-
ing ability (Bikard et al. 2013; Ma et al. 2015; Qi et al.
2013). This catalytically dead endonuclease hinders the
transcriptional elongation of target genes. CRISPRIi is an
efficient promising tool to balance and modulate terpe-
noid production and cell growth as it precisely and pre-
dictably binds to fine-tune and repress target pathway
genes instead of the traditional gene knockout strategy.
This CRISPRi has been employed in pathway engineering
to drive the flux towards the production of numerous ter-
penoids. More recently, CRISPRi-based system has been
used to downregulate competing pathways for isopen-
tenol (Tian et al. 2019), valencene (Dietsch et al. 2021).
Table 2 provides a list of CRISPRi-mediated systems for
regulating terpenoid pathways.

Promoter and ribosome binding site (RBS) designs

Synthetic biology is a gene-combinatorial approach to
combining pathway genes from different sources into
a proposed metabolic pathway (Yadav et al. 2012). The
conditional regulation of gene expression has for years
been the object of scientific research. Gene expres-
sion can be tuned from transcription initiation, post-
translational protein processing through the interaction
between transcriptional and translational factors, repres-
sors, activators, or enhancers. Post-transcriptional regu-
lation always affects the level of translated proteins as the
level of mRNA transcribed does not always correspond
to translated proteins (Jeong et al. 2016; McManus et al.
2014). Promoters and RBS when with known functional
characteristics, form an indispensable component of syn-
thetic biology as they establish a baseline for transcrip-
tion and translation of pathways to ensure optimized
native and heterologous pathways (Lee and Trinh 2019).
While the construction of well-characterized biological
parts involves robust synthetic circuits, the incomplete
characterization of the regulators in the construct result
in an unstable output in a distinct genetic context. In a
recent work to produce B-carotene in E. coli, Ye et al.
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regulated the expression of the endogenous acetyl-CoA
acetyltransferase (atoB) as well as the exogenous enzymes
3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA)
synthase (mvaS) and HMG-CoA reductase (HmglI) with
artificial regulatory parts (MI-46, M-37, M1-93) pos-
sessing a characteristic constitutive strength and an RBS
library, respectively. This ensured a 51% increment in
[-carotene production (Ye et al. 2016).

Optimization of metabolic networks requires a quan-
titatively characterized pool of the regulatory elements
for controlling the expression of target genes (Liu et al.
2018) (Fig. 4). However, several limitations hinder the
generation and measurement of a large set of regulatory
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elements such as trial-and-error, making the processing
time-consuming. Hence, a simple model was developed
to determine the strength of a promoter based on RNA
levels while RBS strength is determined by the efficiency
of translation (Kosuri et al. 2013). To produce the sesquit-
erpene viridiflorol, the biosynthetic pathway was divided
into three modules and regulated by a T7 promoter with
varying strength. After a careful permutation to tran-
scribe the modules to prevent the accumulation of inter-
mediates and ensure high productivity, the best strain
produced 283 mg/L of viridiflorol. RBS was also designed
to control the translation of viridiflorol synthase (VS)
which increased productivity to 511+37 mg/L, ~50%
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Fig. 4 Schematic diagram for producing enzyme, promoter, and RBS library construction and screening. Directed evolution, site-directed
mutagenesis, DNA shuffling can be employed to enhance enzyme and regulatory elements efficiency. Engineered promoters and RBS can be used
to fine-tune biosynthetic pathways




Fordjour et al. Bioresources and Bioprocessing (2022) 9:6

increment (Shukal et al. 2019). In a similar related study,
a combinatorial approach involving RBS with varying
strength was used to fine-tune the production of amor-
phadiene. This led to a fivefold increase in amorphadiene
accumulation with a subsequent reduction in toxic inter-
mediate metabolites (Nowroozi et al. 2014). Violaxanthin
is a carotenoid with numerous pharmaceutical and indus-
trial applications. In the quest to enhance violaxanthin,
Takemura et al. modified and designed RBS sequences
to regulate Capsicum annuum zeaxanthin epoxidase
(CaZEP), the enzyme responsible for catalyzing violaxan-
thin production from antheraxanthin. A 231 ug/g DW of
violaxanthin was achieved (Takemura et al. 2019). Also, a
convolutional neural network on cross-RBSs was used in
fine-tuning biosensors’ dynamic range (Ding et al. 2020).
This shows the importance of promoter and RBS engi-
neering as powerful tools to enhance biosynthetic gene
clusters found in transcriptionally silent natural prod-
ucts. The choice (inducible or constitutive) and strength
affect the timing and expression level of target proteins.
Hence, biological engineers focus on increasing size and
complexity to precisely change the degree of expression
of several different genes in a pathway (Han et al. 2019)
(Table 2).

Regulating expression levels in multi-gene biosynthetic
pathways represents a significant challenge for the build-
ing of microbial platforms due to a lack of effective con-
trol elements and resources (Wei et al. 2018). The cellular
burden associated with multi-gene pathways could be
minimized by altering each enzyme’s translation initia-
tion rate (TIR) in the pathway of interest to maximizing
titer and yield of the desired chemical (Kent and Dixon
2020). In a recent study to improve the supply of GPP for
geraniol biosynthesis, the GPP synthase expression was
optimized with RBS of increasing TIR. Optimizing the
RBS strength resulted in a sixfold increment in geraniol
production (Zhou et al. 2015). Though gene deactiva-
tion has been applied to block cellular stress response
(Sharma et al. 2020), as well as amino acid supplemen-
tation to ensure efficient recombinant protein produc-
tion (Kumar et al. 2020), various degrees of inducible and
constitutive promoters have been employed to overcome
the metabolic hurdles associated with transcription (Ye
et al. 2016; Zhou et al. 2019). To avert the heterogenei-
ties of cellular response that is associated with the use of
chemical inducers and the need to regulate inducer con-
centrations, constitutive promoters have been used in
the biosynthesis of the keto-carotenoids astaxanthin and
canthaxanthin (Chou et al. 2019; Menin et al. 2019; Nora
etal. 2019).

Machine learning has also been applied to predicting
promoter sequences (Meng et al. 2017), identification
of RNA/DNA binding proteins (Alipanahi et al. 2015),

Page 15 of 33

and predicting RBS sequence for improved chemical
production (Jervis et al. 2019). In two related studies,
machine learning was applied in the modeling pathway
for limonene, bisabolene, and pinene synthesis (Dudley
et al. 2020; Jervis et al. 2019). Native promoters could also
be used to express biosynthetic pathways (Meng et al.
2016; Sengupta et al. 2019; Yuan and Ching 2015). How-
ever, they are frequently restricted by the host regulatory
network. Synthetic promoters with enhanced strength
and orthogonal to intrinsic control networks have been
developed (Mordaka and Heap 2018; Redden and Alper
2015) to avert this problem. Since the titer of metabolites
typically correlates with gene expression, synthetic biolo-
gists have sought the need to expand the synthetic biol-
ogy toolbox by providing diversified regulatory parts for
the construction of efficient endogenous or exogenous
pathways (Table 2). However, the fitness of cell factories
cannot be overlooked when designing pathway regulators
(Bienick et al. 2014).

Cellular tolerance engineering

Saccharomyces cerevisiae and Escherichia coli have been
a “laboratory household name” as they continue to fasci-
nate and bedazzle metabolic engineers and system biolo-
gists. They have been employed in building a fortified
bio-economy. Nevertheless, as the demand for “go green”
surges, metabolic engineers and system biologists have
sought to enhance the cellular tolerance of these labora-
tory “workhorses” and other microorganisms to ensure
improved cellular exportation for maximum product
yield. Mitigation of toxicity effects of both end prod-
ucts and pathway intermediates is a major concern for
designing cell factories for both research and industrial
purposes. Isoprenoids and their associated intermedi-
ate products are of no exemption as excessive accumula-
tion interferes with growth and metabolism. Hence, the
need to explore membrane transporters for this purpose.
The efflux system has been well studied and has been
shown to enhance the biosynthesis of isoprenoids and
other chemicals when effectively utilized. Efflux pumps
or transporters are membrane proteins devoted to main-
taining homeostasis by extruding toxic compounds from
the intracellular environment (Jones et al. 2015; Putman
et al. 2000). Transporter engineering ensures efficient
exportation of compounds to alleviate product feedback
inhibition and cytotoxicity (Eggeling and Sahm 2003).
One possible alternative to prevent cellular toxicity at the
early stages of fermentation is to express pathway genes
under a tightly regulated promoter. The Gal promoter
is a tightly inducible promoter that is induced by galac-
tose and strongly repressed by glucose (Adams 1972). To
alleviate S. cerevisiae’s toxicity to geraniol, pathway genes
were expressed under the Gal promoter system (Jiang
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et al. 2017). Enhancing microbial tolerance coupled
with other metabolic engineering has the propensity to
increase the production of terpenoids in both model and
non-model microorganisms. Some common transporter
and tolerance engineering strategies that have been
implicated in the biosynthesis of terpenoids are provided
in Table 3.

The overexpression of genes associated with efflux
pumps has yielded positive results in the production
of monoterpenes, sesquiterpenes, and diterpenes (Niu
et al. 2018; Wang et al. 2013). Replacing the native pro-
moter of acrAB in E. coli with the Py, strong promoter
ensured improved tolerance to pinene (Niu et al. 2018).
The cytotoxic effect of terpenoids and their precur-
sors may be due to the damage to organelles, denatura-
tion of proteins, disruption of biological processes, and
damage to DNA and the lipid membrane (Nicolaou
et al. 2010). Microorganisms have therefore developed a
range of defensive strategies to react to these cytotoxic
stresses, including overexpression of efflux pumps, acti-
vation of stress response genes, and changes in mem-
brane structure (Ramos et al. 2002; Schalck et al. 2021).
To build tolerant cell factories, evolutionary adaptation,
whole-genome hybridization, genome shuftling, or ran-
dom mutagenesis may be used, preceded by screening
for enhanced variants under the appropriate conditions
(David and Siewers 2015; Jullesson et al. 2015) (Fig. 5A).
Adopting this strategy to improve the tolerance level of
E. coli BL21 for the bicyclic monoterpene, sabinene, the
strain was subjected to a gradually increasing concen-
tration of sabinene to drive the evolution process. The
mutant strain exhibited an 8.43-fold increase in sabinene
production with total production reaching 191.76 mg/L.
Transcriptome analysis revealed the overexpression of
the genes methyl malonyl-CoA mutase (scpA), the pro-
tein that codes for the inner membrane (ygiZ), and the
DLP12 prophage family (ybcK) that have been touted to
enhance terpene tolerance (Wu et al. 2020a). Bu et al.
adopting both comparative proteomics and transcrip-
tional analysis identified five suitable ABC transporters
that efficiently transport B-carotene in Saccharomyces
cerevisiae. This ensured a 4.04- and 1.33-fold increase in
the secretion and intracellular production of -carotene,
respectively (Bu et al. 2020).

In the process to develop solvent tolerance, Gram-
negative bacteria develop: (i) an effective change in the
composition of membrane fatty acids and phospholipid
headgroups; (ii) vesicles containing toxic substances and
(iii) toxic organic solvents are exported to the extracel-
lular environment through a resistance-nodulation-
cell division (RND) family, an active efflux pump that is
energy-dependent (Ramos et al. 2002). The inability of
industrial microorganisms to excrete metabolites hinders
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normal cellular function, which further affects productiv-
ity. The biosynthesis of hydrophobic compounds poses
a major threat to cell physiological functioning. Carot-
enoids are large hydrophobic molecules that are not
easily excreted by microbial transport systems resulting
in intracellular accumulation. An artificial membrane
vesicle transport system (AMVTS) was constructed that
utilizes membrane lipids to transport hydrophobic com-
pounds. The application of the AMVTS in a -carotene
hyper-producing strain led to a 24-fold increase of
secreted [(-carotene and a 61% increase in specific pro-
duction from 27.7 to 44.8 mg/g DCW (Wu et al. 2019).
The plasma membrane ABC efflux system is one of the
many promising areas for building suitable cell factories
for industrial application. To improve the biosynthesis
of terpenoids, an improvement in terpenoid-associated
transporters must be considered. Moreover, the efflux
system is known to be broadly ranged. However, solvent-
specific exporters are also known to exist. Hence, it is
imperative to carefully study the efflux system to eluci-
date how they recognize and transport molecules to help
engineer product-specific pumps.

Chromosomal integration

Plasmids have been used as an expression system for
both endogenous and exogenous pathway genes as it is
easy to use or manipulate and incorporate into the host
strain, portable, and high copy numbers per cell (Gu
et al. 2015; Karim et al. 2013). However, they come with
segregational and structural instability, aside from the
requirement of antibiotics and sometimes inducer chem-
icals, resulting in a high cost of production (Friehs 2004).
The plasmid-mediated expression system also tends to
increase the metabolic burden, especially when using
high-copy plasmids. This is due to the channeling of
energy towards the keeping and replication of plasmids
resulting in poor growth of host cells, leading to low pro-
ductivity (Wu et al. 2016). Genomic integration provides
a way to stably insert pathway genes in the chromosome
of desired hosts, which could function with or with-
out antibiotics and inducers. Capitalizing on its stable
expression of pathway genes, chromosomal integration
was used to enhance geraniol production when a trun-
cated geraniol synthase was integrated into S. cerevisiae’s
genome. This resulted in a 23% increment in production,
236.34 mg/L (Jiang et al. 2017).

Plasmid-free cell factories have also been employed
in the production of astaxanthin (Lemuth et al. 2011),
B-carotene (Li et al. 2015), and many other terpenoids
found in Table 3. However, in most cases, the total yield
does not meet the industrial requirements. To enhance
the expression of pathway genes on the chromosome,
several strategies including (Ou et al. 2018): (i) increasing
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Fig. 5 Schematic illustration of adaptive laboratory evolution (ALE), atmospheric and room-temperature plasma (ARTP), and modular co-culture.
A Microorganisms are exposed to a desired selective mechanism and or environment for an iterative period enabling natural selection to optimize
variants with enhanced fitness. Genome sequencing and transcriptome can be used to analyze mutant variants. B Modular co-culture engineering.
Segregating pathway into modules ensures a holistic assessment of each part for efficient optimization and improvement

copy numbers of the target gene; (ii) chromosomal loci
for integration, and (iii) optimization of the target gene on
the chromosome through static and dynamic regulators,
have been adopted. The ability to support the expres-
sion of pathway genes differs significantly from differ-
ent chromosomal loci, and these loci ought to be highly
expressed, conserved, well-characterized as well as non-
essential (Bryant et al. 2014; Yin et al. 2015). To accom-
plish this, different strategies and methods have been
used to stably integrate target genes into chromosomal
loci while addressing the issue of copy numbers. To con-
struct an industrial strain for the production of zerum-
bone, a multicopy integration of the pathway enzymes
including cytochrome P450 and a type III membrane

protein (ICE2) were integrated into the S. cerevisiae chro-
mosome resulting in a 134-fold 8-hydroxy-a-humulene
production. A subsequent multicopy integration of
the zerumbone synthase variant (ZSDIS'**) vyielded
20.6 mg/L of zerumbone and 40 mg/L in a 5-L bioreac-
tor (Zhang et al. 2018a). Being a precursor for the biosyn-
thesis of isoprenoids (Liu et al. 2019; Marsafari and Xu
2020), mevalonate is also an important industrial compo-
nent (Xiong et al. 2014). To alleviate the metabolic bur-
den and genetic instability associated with the plasmid
expression system while reducing the cost of production
to ensure industrial application, two copies of the meva-
lonate pathway (atoB—mvaS—mvaFE) under the expression
of a strong constitutive promoter was integrated into E.
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coli chromosome to replace the adhE and ldhA genes for
mevalonate production. Coupled with another pathway
engineering (the deletion of sucA and atpFH genes), the
final strain produced 30 g/L of mevalonate from 61 g/L
glucose in a fed-batch fermentation (Wang et al. 2016).
The flippase from the yeast 2-um plasmid was effectively
used to increase the product output and stability using
chromosomal integration of gene(s) with multiple cop-
ies (CIGMC) (Gu et al. 2015). Another novel strategy
involving A and ¢80 bacteriophage site-specific recom-
bination and integration systems have also been used
to insert operons of 7.5 and 14 kb into the chromosome
with subsequent duplication of target genes (Igonina
et al. 2020). Other strategies include chemically inducible
chromosomal evolution (CIChE) system (Tyo et al. 2009),
clonetegration—a one-step cloning and chromosomal
integration of DNA (St-Pierre et al. 2013), a homolo-
gous recombination-based method that involves a lin-
ear DNA fragment flanked by homologous arms (Storici
et al. 2003). A delta integration CRISPR—Cas9 method
that ensures a multicopy, highly efficient, one-step and
marker-less integration of DNA constructs at the delta
sites of the S. cerevisiae chromosome was also developed.
This method ensures that fragments spanning from 8 to
24 kb are seamlessly integrated (Shi et al. 2016).

The creation of chromosomally engineered strains is
suitable for commercial production, but the relatively low
expression on the chromosome has sometimes resulted
in inefficient production of target chemicals. However,
the expression of exogenous pathway genes using chro-
mosomal integration is highly stable compared to the
plasmid-mediated expression system. In line with devel-
oping highly efficient platforms for terpenoid production
for industrial usage, targeted chromosomal engineering
can be coupled with pathway optimization for a precur-
sor supply and an efficient dynamic regulatory system.

Modularization of synthetic pathways

Metabolic pathways involving a large number of genes
are notably associated with flux imbalance. Grouping
the pathway into suitable modules represents an efficient
solution to addressing this issue (Pfleger and Prather
2015; Smanski et al. 2014). Modular co-culture engineer-
ing, which involves the partition of pathways into mod-
ules and integrating them into separate expression hosts,
has also been used to synthesize compounds (Fig. 5B).
This system has some advantages of (i) lowering each
host metabolic burden; (ii) delivering a variety of cellu-
lar conditions in which the various regulatory genes can
act; (iii) limiting unintended interaction between vari-
ous pathways; (iv) adjusting the strain-to-strain ratio to
balance the biosynthetic pathway among independ-
ent pathway modules; (v) maximizing the performance
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of complex structures with multiple active substrates;
and (vi) facilitating the biosynthesis of a variety of tar-
get compounds in a plug-and-play manner (Zhang and
Wang 2016). The terpenoid pathway involves several
multi-step enzymatic reactions. Hence, constructing cell
factories often requires extensive metabolism regula-
tions to ensure an enhanced synthesis of the desired end
products. To achieve this goal, several impediments such
as (i) tuning the metabolic flux towards target products;
(ii) balancing and coordinating corresponding pathways
and enzymes to prevent pathway perturbations; (iii)
increasing the supply of precursors especially if the strain
is growing on glucose to prevent the Crabtree effect; (iv)
implementing strategies to optimize the entire pathway
(Qin et al. 2015), have to be addressed. To enhance the
biosynthesis of isoprene, the isoprene synthetic pathway
was divided into two modules; the upstream endogenous
MEP pathway and the downstream isoprene pathway
made up of the isoprene synthase. An intra-module pro-
tein engineering strategy was used to improve the rate-
limiting dxs/dxr/idi, while inter-module engineering
involving promoter replacement and inducer adjustment
was conducted to enhance isoprene synthesis. The final
strain achieved a 4.7-fold increment in isoprene as com-
pared to the wild-type strain (Lv et al. 2016a).

In a multi-enzyme synthetic pathway, simple over-
expression of rate-limiting enzymes is often associated
with an imbalanced pathway that results in the accu-
mulation of toxic intermediate metabolites (Sivy et al.
2011). Recently, a multi-modular engineering approach
involving alleviating feedback inhibition, and other path-
way engineering strategies were adopted for tyrosol and
salidroside overproduction in S. cerevisiae (Liu et al.
2020b). The multidimensional heuristic process (MHP)
is a modular pathway optimization approach that assem-
bles and screens multiple repositories of clearly defined
transcription factors as well as main enzyme variants in
a high-dimensional combinatorial approach to create
high-producing strains (Zhang et al. 2018b). This system
was used to produce nerolidol, linalool, and astaxan-
thin from E. coli by partitioning the pathway into three
and four modules, respectively (Zhang et al. 2018b). In
another related study, the complete B-ionone pathway
was divided into three modules: module one responsible
for enhancing acetyl-CoA supply comprises the exoge-
nous phosphoketolase from Bifidobacterium bifidum and
phosphotransacetylase from Bacillus subtilis; module
two contains the endogenous MVA pathway; while the
module three consists of the exogenous B-ionone mod-
ule made up of phytoene dehydrogenase (carB), phytoene
synthase/lycopene cyclase (carRP) and carotenoid cleav-
age dioxygenase (ccD1I). These modules were sequen-
tially divided into Yarrowia lipolytica. After pathway
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optimization augmented with medium and fed-batch
optimization, 0.98 g/L of B-ionone was produced after
17 days (Lu et al. 2020). In other instances, in the yeast
cells, terpenoid pathways have been segregated into the
mitochondria, peroxisomes, endoplasmic reticulum, and
cytoplasm compartments to ensure precursor availability
for target product synthesis. Table 3 lists several conven-
tional modular approaches that have been used in devel-
oping industrial microorganisms.

Modularization of pathways results in a targeted rec-
tification of bottlenecks. Segregating the multi-gene
pathway is an efficient way to optimize the expression
of a biosynthetic pathway. This provides an effective way
to manipulate individual expression levels as it reduces
pathway complexity and provides avenues for future
uncertainties.

Future perspective for designing efficient microbial
platforms

Synthetic biology and metabolic engineering and have
demonstrated great capability in ensuring the engi-
neered platforms for the biosynthesis of terpenoids and
other essential compounds. The tremendous structural
diversity of terpenoids resulting in the vast chemicals
for various industries can be linked to terpene synthases’
promiscuous behavior (Fig. 1). Taking into account the
biochemical and physiochemical properties of terpe-
noids, process engineering is a requisite factor when
designing cell factories for isoprenoids production. This
will allay the inhibitory and toxic effects of isoprenoids
and their precursors. Terpenoids inhibition effect is a
result of metabolite cytotoxicity in production strains
above its threshold. High concentrations of terpenoids
and their intermediate products impede cell growth with
a subsequent effect on total production. Hence, a suitable
method to remove the metabolites at lower concentra-
tions is to enhance the productivity of the biocatalyst.
In situ product removal (ISPR) has enhanced higher
titers as it prevents product accumulation in culture
media and interactions with cells (Alonso-Gutierrez et al.
2013; Brennan et al. 2012; Dong et al. 2020b; Rolf et al.
2020; Schewe et al. 2015). Hence, the need to investigate
suitable ISPR mechanisms. The implementation of ISPR
is a technical approach to tackling toxicity-associated
low productivity and minimizing product loss (Freeman
et al. 1993; Salas-Villalobos et al. 2021). Compounds’
hydrophobicity, molecular weight, charge, volatility, and
specific binding properties play a major factor in the
choice of a compound for the ISPR approach (Freeman
et al. 1993). In the two-liquid phase system, one com-
mon separation method, two aqueous solutions form a
fine emulsion which is correlated to the agitation speed
of the reactor. Since the receiving phase is a hydrocarbon,
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its biocompatibility or toxic effect on the cell factory
should be considered. This can be computed with its
log P, (Laane et al. 1987). To expedite the downstream
extraction of astaxanthin while taking into considera-
tion the techno economic analysis, an alternative method
was established in Haematococcus pluvialis that involves
extraction with ethyl acetate from zoospores when
growth conditions are restored. This method yielded an
85% extraction rate with 3.5 g of astaxanthin oleoresin
produced (Bauer and Minceva 2021). Recently, a pulsed
electric field technology, an electroporation method of
treating cell biomass before subsequent treatment with
traditional solvents or supercritical carbon dioxide was
applied to improve the extraction of carotenoids (Mar-
tinez et al. 2018, 2020; Saini and Keum 2018). In the
downstream processing of industrial-scale bioprocesses,
the organic phase becomes a significant practical con-
cern. Microorganisms can also be engineered to enhance
their resilience on these hydrophobic chemicals or
through the use of solvent-tolerant microbes.

Because all essential information is derived via experi-
mental data rather than meticulously obtained and intro-
duced by domain specialists, a machine learning-based
technique allows for the speedier construction of predic-
tive pathway dynamics models. Machine learning (ML),
the application of data-driven algorithms could be used
to predict the contribution of each particular gene to a
specific trait that may be used to analyze, optimize, and
develop metabolic or neural networks (Lawson et al.
2021; Mowbray et al. 2021), to improve microbial growth
and product synthesis. For several terpene synthases, pre-
nyltransferases that lack structural data, molecular mod-
eling via ML could be used to predict the 3D structures
of enzymes, which can then be combined with enzyme—
substrate docking studies to enhance several properties
such as stability, activity, and specificity (Mazurenko
et al. 2020; Singh et al. 2021; Yang et al. 2019). ML can
be useful in analyzing the effectiveness of microbial fac-
tories via transitional genome-scale modeling, predicting
cell phenotypes, and characterizing cell growth (Culley
et al. 2020). ML-based modeling has the potential to suc-
cessfully help design efficient cell factories in the future
without knowing comprehensive metabolic regulation
pathways. Nevertheless, high-quality quantitative data in
multiple situations are required to help address the issues
of enzyme engineering, transcription factor binding sites,
translation control, ribosomal binding sites, and growth
optimization (Helmy et al. 2020).

Analysis of metabolic flux is a significant indicator of
productive cells. However, cellular metabolites are mainly
measured through LC-MS and or GC-MS, a time-
consuming throughput for screening in microbial engi-
neering. The inability to precisely quantify and regulate
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metabolite concentration-related genetic variants espe-
cially for most terpenoids, becomes a bottleneck in meta-
bolic engineering (Liu et al. 2017). Metabolite biosensors
have gained tremendous recognition in metabolic engi-
neering as these RNA sensors or genetically encoded
proteins interact with metabolites to generate detectable
phenotypes through the modulation of protein expres-
sion (Liu et al. 2015). In addition, due to their quick, pre-
cise, and effective mode of action and ease of processing
and engineering, biological sensors can respond to differ-
ent environmental stimuli creating a molecular network.
Transcriptional factor-based biosensors are power-
ful tools that can be used as a high-throughput screen-
ing method to develop high-producing strains (Yu et al.
2019) as they present otherwise-obscured intracellular
states to a screenable output (Fig. 6B). One such example
is a riboswitch which can be turned on and off to regulate
expression (Page et al. 2018) (Fig. 6A). In a recent related
study, the carotenoid biosynthesis regulator, crtR, in C.
glutamicum was engineered to measure the intracellular
GGPP concentration during growth (Henke et al. 2020).
These sensors could be employed as a high-throughput
to screen for isoprenoid-producing strains. Not only
do biosensors serve as a high-throughput screening
method, but they can also be engineered to function as
a dynamic tool. Though it has found its application in
developing strains for terpenoid production, adaptive
laboratory evolution (ALE), a laboratory “natural selec-
tion” process as well as UV and atmospheric and room-
temperature plasma (ARTP) holds a brighter prospect of
improving cell’s performance, product and intermediates
tolerance, and growth rate (Fig. 5A). This random muta-
tion and selection process causes a global disturbance in
the genome that will provide additional insights into the
regulatory and metabolic circuitry, subsequently provid-
ing a platform for developing high-performing strains.
Mutants can then be thoroughly screened by a suitable
high-throughput method.

An emerging synthetic pathway that is demonstrating
as a promising alternative to the inherently constrained
native MVA and MEP pathways termed isopentenyl uti-
lizing pathway (IUP) is gaining grounds. This non-canon-
ical pathway that utilizes isopentenol isomers or prenols
as substrate is made up of four genes for monoterpenes
synthesis as against the lengthy enzymatic MVA-MEP
pathways (Ward et al. 2019). This pathway has been
implicated in cell free synthesis of mono-, sesqui-, di-
terpenes (Ward et al. 2019). IUP has also been employed
in the biosynthesis of various types of terpenoids includ-
ing linalool (Ferraz et al. 2021), geraniol (Clomburg
et al. 2019), nerol, citronellol, lycopene (Chatzivasileiou
et al. 2019; Lund et al. 2019; Luo et al. 2020). In addi-
tion, a lepidopteran mevalonate (LMVA) pathway has
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been constructed in E. coli by linking the LMVA path-
way with the promiscuous phosphate, NudB. Deletion
of the endogenous thiolase genes yielded 390 mg/L of
Cé-isoprenol (Pang et al. 2021). Likewise, construction
of a pyruvate dehydrogenase (PDH) by-pass coupled with
gene deletions for enhanced acetyl-CoA flux through the
MVA pathway resulted in 2.23 g/L limonene production
in S. cerevisiae from a fed-batch shake-flask fermenta-
tion (Zhang et al. 2021a). Employing Acinetobacter baylyi
ADP1 that catabolizes lignin-derived aromatic substrates
couple with gene inactivation and fermentation optimiza-
tion, Arvay et al. (2021), were able to produce 1014 mg/L
of mevalonate through the p-ketoadipate pathway.

Other key strategies include the identification of key
regulatory enzymes that could ensure the upregula-
tion of key pathway enzymes for the accumulation of
metabolites. This strategy was used in the overproduc-
tion of astaxanthin in Xanthophyllomyces dendrorhous
when 6-benzylaminopurine was overexpressed (Pan et al.
2020). Also, overexpression of key pathway enzymes have
yielded a 1.16-fold increment of sabinene in S. cerevisiae
(Jia et al. 2020), 731.18 mg/L of squalene in Y. lipolytica
(Tang et al. 2021) and 180 mg/L of bisabolene in Syne-
chocystis sp. PCC 6803 (Rodrigues and Lindberg 2021).
Pathway engineering via deletion of competing pathways
in the central carbon pathway for acetyl-CoA accumu-
lation while increasing the availability of NADPH has
also proven positive as seen in [B-carotene production
(Wu et al. 2020b). Also, a reduction in lipid biosynthe-
sis through the inactivation of diacylglycerol acyltrans-
ferases produced 22.8 g/L of B-farnesene in Y. lipolytica
(Shi et al. 2021a), whereas inactivation of phytoene syn-
thase (dr0862) in Deinococcus radiodurans vyielded
3.24+0.2 mg/L of pinene (Helalat et al. 2021). Optimiza-
tion of fermentation parameters, fermentation medium,
and terpenoid pathway could improve biomass produc-
tion while increasing the synthesis of target metabolites
(Dai et al. 2021; Liu et al. 2020c, d; Lv et al. 2020; Walls
et al. 2020). More so, microorganisms or host organisms
with endogenous high-flux isoprenoid pathways, as well
as highly tolerant strains like P. putida (Ramos et al. 2015)
that have stringent responses to organic solvents could be
explored for the biosynthesis of terpenoids (Ankenbauer
et al. 2020; Mishra et al. 2020).

Conclusion

Enormous advances have been accomplished in the
past decade to engineer microbial platforms for terpe-
noid biosynthesis; however, these strains still face chal-
lenges owing to the intricacy of the terpenoid pathway
and tight regulatory networks. Here, we demonstrate
the viable approaches for improving the biosynthesis of
terpenoids. Overall, efforts towards ensuring suitable



Fordjour et al. Bioresources and Bioprocessing

A
!

(2022) 9:6 Page 24 of 33

(A) (i)

Transcription ON Transcription OFF

(iii) (iv)

Ribosome

/

é RBS AUG

Translatlon ON

+@®

Translation OFF
(B) (i)

Translation OFF

e . .
o (iiiy e e
® o ° ® ¢ ® oo
° oo’ *° hd
° ?csome ° : @bosome
%9
°

Fig. 6 Mechanism of action of riboswitches. A (i, ii) Binding of ligand to a riboswitch triggers the formation of a hairpin loop that terminates
transcription. A (iii, iv) Binding of ligand to a riboswitch generates the formation of a helix that sequesters the RBS to inhibit the translational
process. B (i, ii, iii) Application of riboswitches as biosensors. Riboswitches can be linked to colorimetric reporters (for example GFP) to screen for
high-producing strains depending on the concentration of the compound of interest. There is a high expression of the reporter gene when the
concentration of a ligand is high (B ii) and vice versa

microbial platforms have been discussed here for the

industrial production of terpenoids. We urge meta- .
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bolic engineers and synthetic biologists that with the
increasing developments in the field, more progress
should be made in designing chassis for the biosynthe-
sis of terpenoids.
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