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Review and perspectives of enhanced 
volatile fatty acids production from acidogenic 
fermentation of lignocellulosic biomass wastes
Jiachen Sun1, Le Zhang2,3 and Kai‑Chee Loh1,2,3*  

Abstract 

Lignocellulosic biomass wastes are abundant resources that are usually valorized for methane‑rich biogas via anaero‑
bic digestion. Conversion of lignocellulose into volatile fatty acids (VFA) rather than biogas is attracting attention due 
to the higher value‑added products that come with VFA utilization. This review consolidated the latest studies associ‑
ated with characteristics of lignocellulosic biomass, the effects of process parameters during acidogenic fermentation, 
and the intensification strategies to accumulate more VFA. The differences between anaerobic digestion technology 
and acidogenic fermentation technology were discussed. Performance‑enhancing strategies surveyed included (1) 
alkaline fermentation; (2) co‑digestion and high solid‑state fermentation; (3) pretreatments; (4) use of high loading 
rate and short retention time; (5) integration with electrochemical technology, and (6) adoption of membrane biore‑
actors. The recommended operations include: mesophilic temperature (thermophilic for high loading rate fermenta‑
tion), C/N ratio (20–40), OLR (< 12 g volatile solids (VS)/(L·d)), and the maximum HRT (8–12 days), alkaline fermenta‑
tion, membrane technology or electrodialysis recovery. Lastly, perspectives were put into place based on critical 
analysis on status of acidogenic fermentation of lignocellulosic biomass wastes for VFA production.

Highlights 

• Strategies to enhance acidogenic fermentation of lignocellulosic biomass presented.
• Optimal parameters for anaerobic digestion and acidogenic fermentation are compared.
• Challenges of electrochemical fermentation of lignocellulosic biomass are discussed.
• Membrane technology and its further optimization are effective for VFAs extraction.

Keywords: Volatile fatty acids, Acidogenic fermentation, Enhancing strategies, Lignocellulosic biomass wastes, 
Resource recovery
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Introduction
Lignocellulosic biomass wastes, comprising mainly agri-
cultural wastes, forest wastes and grass, are carbon-rich 
raw materials for that can be exploited for the production 
of clean biofuels and valuable chemicals. As reported by 
the World Bioenergy Association, right up to 2016, ligno-
cellulosic biomass wastes accounted for 97% of biomass 
supply, with the remaining 3% made up by other organic 
wastes, such as food waste and waste sludge (World 
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Bioenergy Association 2016). The same report also pro-
jected that the amount of agricultural and forest wastes is 
slated to increase significantly by 1040% and 60%, respec-
tively, by 2035. In face of such abundant unexploited bio-
mass, it is therefore essential for innovative technologies 
be developed to provide valorization of this biomass to 
unlock their potential bioenergy and bioresource.

Anaerobic digestion (AD) has been recognized as an 
effective technology to convert organic wastes into biom-
ethane (Zhang et al. 2019). Generally, AD consists of four 
stages, namely, hydrolysis, acidogenesis, acetogenesis, 
and methanogenesis (Tezel et  al. 2011). Under suitable 
operating conditions, for example a retention time of 
20–30  days (Mao et  al. 2015), AD can proceed to com-
pletion and the targeted product (biomethane) is pro-
duced and utilized as fuels. On the other hand, if the AD 
process were interrupted, for example before metha-
nogenesis, many intermediate compounds, like volatile 
fatty acids (VFA), hydrogen, and ethanol can be gener-
ated. VFA are regarded as a more valuable product than 
biomethane as they can be further converted into high 
value-added chemicals (e.g., bioplastic) and biofuels (e.g., 

biodiesel) (Kim et  al. 2013; Tu et  al. 2019; Zhang et  al. 
2021). Thus, the burden of a relatively long retention time 
and desire for more efficient lignocellulose valorization 
tend to encourage accumulation of more VFA rather than 
the eventual production of biomethane.

Figure  1 shows the annual publications in the scien-
tific literature on VFA production in the past decade. It 
can be seen that the number of publications on AD for 
biomethane production is sixfold higher than that of 
acidogenic fermentation for VFA production. Among 
the surveyed studies on acidogenic fermentation, half of 
them utilized sludge and food waste as feedstocks while 
the studies using lignocellulosic biomass wastes as feed-
stocks accounted for only 3.7% and 6.3%, compared to 
the total publications on VFA production and the pub-
lications on using sludge and food wastes as feedstocks 
for VFA production, correspondingly. This phenomenon 
is likely due to the fact that sludge and food wastes are 
relatively easier to degrade compared to the more recalci-
trant lignocellulosic biomass and that a shorter retention 
time for acidogenic fermentation also limits the hydroly-
sis and acidogenesis processes. Based on this, there are 

Fig. 1 Number of annual publications from 2010 to 2020 on “anaerobic digestion”, “volatile fatty acid OR acidogenic fermentation”, “volatile fatty 
acid OR acidogenic fermentation AND (food waste OR sludge)” and “volatile fatty acid OR acidogenic fermentation AND lignocellulos*” (based on 
search results in Scopus database)
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significant prospects to investigate conversion technolo-
gies for lignocellulosic biomass wastes into VFA instead 
of generating only biomethane.

In reviewing the literature, it is anticipated that much 
of what has been done to optimize AD for biomethane 
production, such as the optimization of parameters and 
operating conditions, as well as enhancing technologies 
can also be applied in the studies for VFA production. 
For example, it is normal to determine the maximum 
loading rate of feedstocks to avoid acidic inhibition in 
AD (Zealand et  al. 2017), naturally we can stride this 
threshold for higher VFA accumulation. Of course, the 
differences in the targeted products will definitely influ-
ence the operating parameters (Eryildiz and Lukitawesa 
2020; Zhang et al. 2005), product accumulation (Liu et al. 
2011; Wainaina et  al. 2019a), and product separation 
approaches (Aydin et al. 2018; Torri et al. 2019). Further-
more, although several previous reviews had reported on 
the topic of acidogenic fermentation mainly on sludge 
and food wastes, the current review focuses on promis-
ing strategies for sustainable utilization and valorization 
of lignocellulosic biomass wastes into VFA production, 
as well as insights on various parameter enhancement 
strategies against specific characteristics of acidogenic 
fermentation, such as the use of novel membrane biore-
actors for product extraction, and integration with elec-
trochemical pretreatment and in situ bioelectrochemical 
bioreactor.

This review will start with an analysis of the character-
istics of lignocellulosic biomass wastes followed by the 
typical metabolism pathways of acidogenic fermentation, 
with the hope of understanding the acidogenic processes 
from the perspective of the microorganisms involved 
in the process. Following that, the effects of operating 
parameters for VFA accumulation are summarized in 

“Factors influencing VFA production” section, in which 
the differences between acidogenic fermentation and 
AD are highlighted, and the parameter optimization 
strategies are summarized in “Optimization of operating 
parameters” section. Novel and cost-effective pretreat-
ments are then critically discussed in “Combination of 
effective pretreatments” section in order to overcome the 
recalcitrant barriers of lignocellulosic biomass wastes. 
Finally, some promising technologies are proposed as 
integration into acidogenic fermentation bioreactors to 
improve VFA yields and their respective applications are 
briefly discussed.

Acidogenic fermentation of lignocellulosic biomass 
wastes
Characteristics of lignocellulosic biomass wastes
Lignocellulosic biomass wastes mainly include wood, 
grass, energy crops, and agricultural and forest resi-
dues. Chemically, lignocellulosic biomass wastes com-
prise cellulose, hemicellulose, and lignin, trace amounts 
of extractive fractions (e.g., tannins, resins, fatty acid), 
and inorganic salts (Orfão et  al. 1999). Table  1 shows 
the compositions of some selected lignocellulosic bio-
mass wastes. In general, the cellulose, hemicellulose and 
lignin contents of lignocellulosic biomass wastes are 
30–50  wt%, 15–40  wt%, and 10–30  wt%, respectively. 
High cellulose, high hemicellulose contents and high C/N 
ratio are the three main characteristics of lignocellulosic 
biomass wastes. For the biodegradation of yard waste and 
horticultural waste, including grass, leaves, and woody 
twig, previous studies had usually mixed the three kinds 
of wastes as feedstocks according to the formulation of 
65% tree leaves, 33% grass, and 2% woody twigs (Pani-
grahi et  al. 2019; Sharma et  al. 2019). The C/N ratio of 
grass had been in the range of 20–40, while that of woody 

Table 1 Compositions of some surveyed lignocellulosic biomass wastes

a % on dry weight basis

Substrates Cellulosea Hemicellulosea Lignina C/N ratio References

Wheat straw 39 31 9 44 Liu et al. (2019c)

Corn straw 36 28 5 54 Wang et al. (2018)

Rice straw 38 29 15 43 Kainthola et al. (2019)

Yard waste 18 23 10 60 Zhang et al. (2018)

Grass clipping 42 35 7 – Wang et al. (2019a)

Wheat husk 19 18 10 50 Sun et al. (2019)

Leaves 30 27 13 37 Yao et al. (2017)

Napier grass 45.7 33.7 20.6 26 Reddy et al. (2012)

Giant reed 51.7 26.6 8.0 54.7 Corneli et al. (2016)

Sunflower stalk 34.0 20.8 29.2 – Monlau et al. (2012)

Hardwood birch 41.0 30.0 24.6 – Martínez‑Abad et al. (2018)

Softwood spruce 43.0 24.2 28.8 – Mohsenzadeh et al. (2012)
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chips could even reach above 100 (Tahboub et al. 2008). 
The effect of C/N ratio on acidogenic fermentation of 
lignocellulosic biomass is discussed in detail in “Waste 
characteristics” section.

Within the structure of lignocellulosic biomass, cel-
lulose refers to a linear polymer of β-1,4 glucan, which 
has the tendency to form intra- and inter-molecular 
hydrogen bonds through the hydroxyl groups, and aggre-
gate into their crystalline structure (Pu et al. 2008). The 
strong hydrogen bonds make cellulose highly insoluble 
in standard solvents (e.g., water) and resistant to enzy-
matic hydrolysis (Galbe and Zacchi 2012). Hemicellu-
lose is a complex structure of carbohydrates, including 
mainly xylose, arabinose, glucose, and some acids. Xylose 
is a dominant hemicellulose component in grass and 
hardwoods. Some pretreatments like alkali addition can 
destroy the xylan between cellulose and hemicellulose 
to accelerate the hydrolysis process (Kim et  al. 2016). 
Unlike cellulose, hemicellulose has a relatively lower 
degree of polymerization (Saha et al. 2019), and is highly 
hydrophilic and more amenable to hydrolysis. Lignin is 
a phenolic polymer and is regarded as the most recalci-
trant component of plant cell walls. Generally, softwood 
has a higher fraction of lignin than hardwood. In addi-
tion to cellulose crystallinity, linkage between cellulose 
and hemicellulose, and cementation and steric hindrance 
from lignin both increase the difficulty for enzymatic 
hydrolysis of cellulose (Zhang and Hu 2018). Neverthe-
less, lignocellulosic biomass, cellulose and hemicellulose 
are sugars-rich resources that can be harnessed for biofu-
els productions using anaerobic digestion/fermentation.

Acidogenic fermentation pathways of lignocellulosic 
biomass wastes
As previously mentioned, AD consists of four steps, i.e., 
hydrolysis, acidogenesis, acetogenesis, and methanogen-
esis, each of which involves the participation of different 
microorganisms (Fig. 2a). Firstly, lignocellulosic biomass 
wastes are solubilized and degraded into glucose and 
xylose during hydrolysis (generally considered the rate-
limiting step of AD). In order to enhance access to the 
various waste characteristics, pretreatments are required 
to accelerate hydrolysis, and enhance production yields. 
For example, supplementation with various microbial 
strains, such as Bacteroidetes, Proteobacteria and Fir-
micutes phylum contributed to lignocellulose hydrolysis 
(Sun et al. 2019). Incidentally, the hydrolysis of biomass 
had been positively correlated to the abundance of Bacte-
roidetes (Regueiro et al. 2012).

Hydrolyzed monosaccharides are then utilized by aci-
dogens and acetogens to generate VFA and ethanol. 
Acetic, butyric and propionic acids are dominant VFA 
components from the various lignocellulosic substrates 
(Mockaitis et  al. 2020; Wang et  al. 2019a). Acidification 
pathways can hence be classified into acetate–ethanol 
type, butyrate-type, and propionate-type, respectively 
(Fig.  2b). In the network of acidogenic metabolic path-
ways, pyruvate  (CH3COCOH) plays a crucial role as it 
can be converted into a range of products, like acetate, 
ethanol, propionate, and  H2 (Zhou et al. 2018). Acetate–
ethanol pathway refers to one that generates acetate 
and ethanol from acetyl-CoA  (CH3COSCoA) through 
acetyl-P and acetaldehyde, along with the production of 

Fig. 2 a Schematic flow of formation of VFA during anaerobic digestion; b typical metabolic pathways of acidogenic fermentation (Adapted from 
Zhou et al. (2018) with permission/license granted by the publisher)
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minuscule amounts of  CO2 and  H2 (Kandylis et al. 2016). 
The proportion of acetic acid could account for 40–88% 
of the total amount of VFA production under differ-
ent conditions (Lu et  al. 2018; Song et  al. 2019b), while 
ethanol contributed only around 10–25% (Song et  al. 
2019b). Accumulation of ethanol could also be toxic to 
the microorganisms and cause the loss of carbon sources 
when more of the carbon molecules got converted to 
ethanol rather than acids (Zhou et al. 2018). In addition, 
acetate could also be converted via syntrophic oxida-
tion of ethanol and long chain fatty acids (e.g., butyrate 
and propionate) at a longer retention time (Zhou et  al. 
2018). Butyrate-type pathway derives from pyruvate 
through acetyl-CoA to butyric acid along with  CO2 and 
 H2  (C6H12O6==CH3CH2CH2COOH +  2CO2 +  2H2) (Liu 
et  al. 2013), where the proportion of butyric acid was 
about 5–15% (Kim et al. 2013) (Lu et al. 2018; Wang et al. 
2019a). Propionate can be produced from both acetyl-
CoA and intermediate lactate by Propionibacterium spp. 
and many others   (3C H3 CH OHC OOH ==C H3COOH 
+  2CH3CH2COOH +  CO2 +  H2O) (Seeliger et  al. 2002), 
and its content were in the range of 0.2–3 g/L based on 
the different operation (Lu et  al. 2018; Mockaitis et  al. 
2020; Sawatdeenarunat et  al. 2017). The metabolism of 
the entire system associates with a great deal of enzymes 
and electron transfers.

pH control has been regarded as an essential operating 
condition to influence the progression of the fermenta-
tion processes. Acidic pH (below pH 6.5) has tradition-
ally been used to operate the bioreactor in continuous 
operation, while the neutral pH range was usually used 
to in batch with the help of methanogenesis inhibitors. At 
an initial low pH of 4–4.5, acetate–ethanol type fermen-
tation is predominant while pH of 4.5 is optimal for max-
imizing the yield of ethanol (Ren et  al. 1997). In terms 
of the microcosm composition, species Clostridium and 
Enterobacter that can produce acids (mainly like acetic, 
butyric, propionic, and lactic acids) are common in the 
fermentation reactor fed with lignocellulosic feedstocks 
(Kumar et  al. 2016). The abundance of Bifidobacterium 
thermacidophilium increased at pH 4, producing acetic 
and lactic acid (Zhu et al. 2003), and Lactobacillus acido-
philus, which also prefers low pH (below pH 5) producing 
acids from the sources of sugars (Sanders and Klaenham-
mer 2001). A pH range of 5–6, tends to facilitate the 
propionate-type fermentation, and a pH of higher than 
6 is therefore suggested for the acidogenic operation in 
order to avoid a high propionic yield. Genus Veillonella 
gazogenes and Clostridium propionicum are two popular 
species in mixed cultures during propionate-type fer-
mentation (Khanal et al. 2004). Finally, butyrate-type fer-
mentation takes place at a pH lower than 5 and higher 
than 6, during which genus Clostridium butyricum and 

Butyrivibrio function for butyric acid production. The 
key enzyme controlling butyrate formation was higher in 
concentration in the cells at pH 6.3 (Zhu and Yang 2004). 
An increase of propionate production in the range of pH 
5–6 also led to the decrease of butyric acid, thus, butyric 
acid-type fermentation tended to convert to propionate-
type fermentation due to the pH variation. Alkaline pH 
has also been investigated; it has been found that acetate 
production increased with judicious pH control and yield 
of butyric acid was highly enhanced at pH 12 (Liu et al. 
2012).

Factors influencing VFA production
Figure 3 presents the effects of operating parameters dur-
ing acidogenic fermentation, including waste characteris-
tics, pH, temperature, organic loading rate, and hydraulic 
retention time. Methane inhibition and the available 
enhanced strategies were also involved.

Waste characteristics
As indicated in “Characteristics of lignocellulosic bio-
mass wastes” section, the total content of cellulose, 
hemicellulose and lignin accounts for 50–90% of ligno-
cellulosic biomass wastes. As only cellulose and hemicel-
lulose can be converted into biofuels using AD, higher 
contents of cellulose and hemicellulose means higher 
potential of VFA yield. Hardwoods possess more cel-
lulose and hemicellulose than softwoods. Table  1 also 
shows that lignocellulosic biomass wastes usually have 
a C/N ratio higher than 40. Generally, a C/N ratio of 
20–30 has been regarded as an amiable environment, 
which could balance carbon and nitrogen nutrients nec-
essary for microbial growth (Wang et  al. 2012). A low 
C/N ratio could release excessive ammonia, and the 
accumulated ammonia would lead to an increase of pH 
and an unbalance nutrient composition, which were 
regarded to inhibit the methanogens in AD (Shi et  al. 
2017). Although acidogens could survive in the moder-
ate alkaline environment, it has been reported that the 
VFA yield from C/N ratio of 20, 25 and 30 increased 70%, 
140% and 160%, correspondingly compared to C/N ratio 
of 15 (Liu et al. 2008). Conversely, a moderately high C/N 
ratio could cause the decrease of pH and favor VFA accu-
mulation. Acidogenic fermentation could tolerate high 
C/N ratio up to 40, VFA yield of which was found to be 
equivalent to that acting on a C/N ratio of 20 (Liu et al. 
2021). It is reasonable to expect that acidogens acting in 
acidogenic fermentation using most lignocellulosic bio-
mass as feedstocks to be rather adaptable to various C/N 
ratios. Table 2 shows acidogenic fermentation with vari-
ous types lignocellulosic biomass wastes and the adopted 
operating parameters. Generally, pretreatments, operat-
ing conditions, and VFA yield are frequently dependent 
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on the type of the lignocellulosic biomass wastes. In par-
ticular, when it comes to yard waste and energy crops, 
the cellulose and hemicellulose contents are also affected 
by the climate and environment (Song et al. 2019a).

pH
pH has been recognized as one of the most important 
factors for VFA production as it affects the competition 
between acidogens and methanogens. The optimal pH for 
methanogenesis is in the range of 6.6–7.5, whereas acido-
gens are more adaptable to a pH between 3 and 12 (Latif 
et  al. 2017). Thus, methanogenesis can be interrupted 
by pH control (Cabrera et  al. 2019; Jankowska et  al. 
2017). pH shift from neutral to less than 6.5 is a com-
mon approach to avoid methane generation and obtain 
higher VFA yields due to the fact that the VFA accumu-
lation during fermentation would spontaneously reduce 
the pH and inhibit methane formation without extrane-
ous supplementation of methanogenesis inhibitors. It has 
also been reported that overload VFA accumulation can 
lead to self-inhibition. Many previous studies showed 
that an optimal VFA production could be obtained under 
initial acidic or neutral conditions (Jankowska et  al. 
2015; Zhang et al. 2005). Zhang et al. (2005) investigated 
kitchen waste hydrolysis and acidogenesis under pH of 5, 
7, 9 and 11. They found that pH 7 led to the highest solu-
bilization percentage of carbohydrate, protein and lipid 
as well as the highest VFA yield. pH 5.5 was considered 
optimal for waste sludge to generate VFA at an acidic 
environment (i.e., pH below 7) (Latif et  al. 2017). Due 

to the VFA consumption for methane under neutral pH 
(6–8) (Jankowska et al. 2015), in batch operation, metha-
nogenesis inhibitors were usually used, while in continu-
ous reactors, VFA accumulation was usually achieved at 
least after the pH has decreased from neutral value to 
less than 6.5 (Latif et al. 2017; Xu et al. 2021).

Given that the survival pH range for acidogens is wider 
than that of methanogens, an increase in pH to above 
7.5 is another option for VFA production and preven-
tion of the consumption of the produced VFA for meth-
ane formation (Jankowska et  al. 2017). Cabrera et  al. 
(2019) reported that fermentation of olive mill waste at 
pH 9 was 30% more effective than that at pH 5. Similarly, 
Wang et al. (2017) found that the efficiencies of disinte-
gration, acidogenesis, and acetogenesis processes during 
sludge fermentation increased by 53%, 1030%, and 30%, 
respectively, by increasing the pH from 7 to 10. With 
regard to the contradicting views that both acidic and 
alkaline conditions could favor the acidogenic fermen-
tation, another significant result reported by Jankowska 
et  al. (2017) showed that only maize silage manifested 
optimal VFA production at an alkaline condition when 
they used maize silage, microalgae biomass and whey 
to produce VFA at pH 5, 7 and 11, respectively. These 
results sufficiently demonstrated that alkaline fermenta-
tion could enhance VFA yields from lignocellulosic bio-
mass exclusively.

pH has also been confirmed to affect the distribution 
of VFA during acidogenic fermentation (Lee et al. 2014); 
however, no clear distribution rule has been observed 

Fig. 3 Workflow for optimization of operating parameters during acidogenic fermentation



Page 7 of 21Sun et al. Bioresour. Bioprocess.            (2021) 8:68  

Ta
bl

e 
2 

A
ci

do
ge

ni
c 

fe
rm

en
ta

tio
n 

fro
m

 v
ar

io
us

 ty
pe

s 
of

 li
gn

oc
el

lu
lo

si
c 

bi
om

as
s 

w
as

te
s 

an
d 

th
e 

op
er

at
in

g 
pa

ra
m

et
er

s

Su
bs

tr
at

es
Pr

et
re

at
m

en
ts

Ch
em

ic
al

 
co

m
po

si
tio

ns
Re

ac
to

r
O

pe
ra

tio
n 

m
od

e
VF

A
 y

ie
ld

s
Pr

od
uc

t 
co

m
po

si
tio

ns
M

ai
n 

ba
ct

er
ia

l 
ch

ar
ac

te
ri

st
ic

s
Re

fe
re

nc
es

G
ra

ss
 c

lip
pi

ng
U

ltr
as

ou
nd

‑C
a(

O
H

) 2
4 

an
d 

32
 g

/g
 v

ol
at

ile
 

so
lid

s 
(V

S)
 g

lu
co

se
 

an
d 

xy
la

n 
re

le
as

ed

25
0 

m
L,

 3
5 

°C
, 

12
0 

rp
m

Ba
tc

h 
12

d
57

8 
m

g/
g 

vo
la

til
e 

so
lid

s 
(V

S)
, i

nc
re

as
e 

11
6%

82
%

 a
ce

tic
, 4

%
 

pr
op

io
ni

c 
an

d 
4%

 
bu

ty
ric

 a
ci

ds

Ba
ct

er
ia

 c
la

ss
: 

Cl
os

tr
id

ia
 a

nd
 

Ba
ct

er
oi

di
a

W
an

g 
et

 a
l. 

(2
01

9a
)

G
ra

ss
Ca

rb
id

e 
sl

ag
Re

du
ce

d 
6%

 li
gn

in
 

an
d 

8%
 h

em
ic

el
‑

lu
lo

se

25
0 

m
L,

 3
5 

°C
Ba

tc
h

22
0 

m
g/

g 
vo

la
til

e 
so

lid
s 

(V
S)

, i
nc

re
as

e 
38

%

78
%

 a
ce

ta
te

, 4
%

 
pr

op
io

na
te

 a
nd

 8
%

 
bu

ty
ra

te

Cl
os

tr
id

iu
m

, B
ac

te
-

ro
id

es
Ta

o 
et

 a
l. 

(2
01

9)

N
ap

ie
r g

ra
ss

M
ill

in
g

–
25

0 
m

L 
fla

sk
s, 

37
 °C

, 
10

0 
rp

m
, m

ic
ro

  O
2,

Ba
tc

h
10

7.
25

 m
g/

g 
vo

la
til

e 
so

lid
s 

(V
S)

50
–7

0%
 a

ce
tic

 a
nd

 
20

–5
0%

 p
ro

pi
on

ic
 

ac
id

s

–
Sa

w
at

de
en

ar
un

at
 e

t a
l. 

(2
01

7)

Ja
pa

ne
se

 c
ed

ar
Vi

br
at

io
n 

m
ill

in
g

–
2 

L,
 3

9 
°C

, 3
0–

40
 rp

m
, 

pH
 6

.5
Se

m
i‑c

on
tin

uo
us

76
 m

g/
g 

vo
la

til
e 

so
lid

s 
(V

S)
37

%
 a

ce
tic

 a
nd

 6
0%

 
pr

op
io

ni
c 

ac
id

s
F. 

su
cc

in
og

en
es

 (c
el

‑
lu

lo
ly

tic
 b

ac
te

‑
riu

m
), 

P. 
ru

m
in

ic
ol

a 
(s

yn
er

gi
st

ic
al

ly
 

w
ith

 c
el

lu
lo

ly
tic

 
ba

ct
er

ia
), 

S.
 ru

m
in

is 
(p

ro
pi

on
at

e‑
pr

o‑
du

ci
ng

)

A
ge

m
at

u 
et

 a
l. 

(2
01

7)

Fa
lle

n 
le

av
es

Li
m

e 
pr

et
re

at
m

en
ts

–
25

0‑
m

L 
fla

sk
s 

w
ith

 
10

%
 in

oc
ul

um
, 

37
 °C

, p
H

 8

Ba
tc

h 
5d

1.
06

 g
/g

 v
ol

at
ile

 
so

lid
s 

(V
S)

, i
nc

re
as

e 
16

0%

70
%

 a
ce

tic
 a

nd
 2

0%
 

bu
ty

ric
 a

ci
ds

–
Ki

m
 e

t a
l. 

(2
01

3)

So
rg

hu
m

 s
ta

lk
s

M
ill

in
g 

an
d 

ac
id

H
em

ic
el

lu
lo

se
 

de
gr

ad
ed

 b
y 

60
%

13
5 

m
L,

 5
5 

°C
,

Tw
o 

st
ep

s
42

4 
m

g/
g 

vo
la

til
e 

so
lid

s 
(V

S)
, i

nc
re

as
e 

84
%

 a
ce

ta
te

 a
nd

 
11

6%
 b

ut
yr

at
e

2.
17

 g
/L

 a
ce

tic
 a

nd
 

2.
07

 g
/L

 b
ut

yr
ic

 
ac

id
s

–
Is

la
m

 e
t a

l. 
(2

01
8)

Co
rn

 s
ta

lk
A

ci
d 

pr
et

re
at

m
en

t
H

em
ic

el
lu

lo
se

 
re

du
ce

d 
by

 1
2%

, 
ce

llu
lo

se
 in

cr
ea

se
d 

by
 1

5%

50
0 

m
L 

fla
sk

, 5
0 

°C
, 

15
 d

ay
s, 

pH
 7

Ba
tc

h
15

0 
m

g/
g 

vo
la

til
e 

so
lid

s 
(V

S)
0.

86
 g

/L
 fo

rm
ic

, 
0.

59
 g

/L
 a

ce
tic

, 
0.

62
 g

/L
 b

ut
yr

ic
 

an
d 

0.
64

 g
/L

 la
ct

ic
 

ac
id

–
G

uo
 e

t a
l. 

(2
01

1)

Co
rn

 s
to

ve
r

H
yd

ro
th

er
m

al
Li

gn
in

 re
m

ov
al

 o
f 8

%
50

0 
m

L,
 3

5 
°C

Ba
tc

h
1.

4 
g/

g 
vo

la
til

e 
so

lid
s 

(V
S)

, 3
.5

 ti
m

es
 

hi
gh

er

20
%

 e
th

an
ol

, 6
6%

 
ac

et
ic

, 8
%

 is
o‑

bu
ty

ric
 a

ci
d

–
So

ng
 e

t a
l. 

(2
01

9b
)

Co
rn

 s
to

ve
r

W
et

‑e
xp

lo
de

d
–

3 
L,

 3
7 

°C
, 1

50
 rp

m
, 

pH
 6

.5
Ba

tc
h

1.
14

 g
/g

 v
ol

at
ile

 
so

lid
s 

(V
S)

50
–7

0%
 a

ce
ta

te
, 

20
–4

5%
 p

ro
pi

on
‑

at
e

–
M

ur
al

i e
t a

l. 
(2

01
7)

Ri
ce

 s
tr

aw
1%

 N
aO

H
–

6.
5 

L,
 p

H
 6

, H
RT

 8
, 

9 
da

ys
Se

m
i‑c

on
tin

uo
us

1 
g/

g 
vo

la
til

e 
so

lid
s 

(V
S)

40
–6

0%
 a

ce
ta

te
, 

20
–3

3%
 p

ro
pi

on
‑

at
e,

 1
2%

 b
ut

yr
at

e

Pr
ed

om
in

an
t c

la
ss

: 
Cl

os
tr

id
ia

, B
ac

te
-

ro
id

ia
, B

ac
te

ro
i-

de
te

s_
va

di
n 

H
A1

7 
an

d 
D

el
ta

pr
ot

eo
-

ba
ct

er
ia

Lu
 e

t a
l. 

(2
01

8)



Page 8 of 21Sun et al. Bioresour. Bioprocess.            (2021) 8:68 

Ta
bl

e 
2 

(c
on

tin
ue

d)

Su
bs

tr
at

es
Pr

et
re

at
m

en
ts

Ch
em

ic
al

 
co

m
po

si
tio

ns
Re

ac
to

r
O

pe
ra

tio
n 

m
od

e
VF

A
 y

ie
ld

s
Pr

od
uc

t 
co

m
po

si
tio

ns
M

ai
n 

ba
ct

er
ia

l 
ch

ar
ac

te
ri

st
ic

s
Re

fe
re

nc
es

W
he

at
 s

tr
aw

7.
4%

 C
a(

O
H

) 2
Re

le
as

e 
0.

16
 g

 
H

em
ic

el
lu

lo
se

/g
 

vo
la

til
e 

so
lid

s 
(V

S)

60
0 

m
L,

 3
5 

°C
Ba

tc
h

22
3 

m
g/

g 
vo

la
til

e 
so

lid
s 

(V
S)

60
 m

g/
g 

vo
la

til
e 

so
lid

s 
(V

S)
 a

ce
tic

, 
15

0 
m

g/
g 

vo
la

til
e 

so
lid

s 
(V

S)
 b

ut
yr

ic
 

ac
id

–
Re

ill
y 

et
 a

l. 
(2

01
4)

W
he

at
 s

tr
aw

–
–

6 
L,

 le
ad

 b
ed

 re
ac

to
r, 

37
 °C

, s
ol

id
‑s

ta
te

Ba
tc

h
56

0 
m

g/
g 

vo
la

til
e 

so
lid

s 
(V

S)
–

–
Ro

uc
he

s 
et

 a
l. 

(2
01

9)

Pa
lm

 fr
ui

t b
un

ch
Cu

tt
in

g
–

40
 L

 le
ac

h 
be

d 
re

ac
‑

to
r, 

so
lid

‑s
ta

te
Se

m
i‑c

on
tin

uo
us

19
6.

5 
m

g/
gT

S
–

–
Sa

rit
po

ng
te

er
ak

a 
et

 a
l. 

(2
01

5)

Xy
lo

se
A

ci
di

c 
an

d 
th

er
m

al
 

pr
et

re
at

m
en

ts
–

50
0 

m
L,

 p
H

 6
.5

, 3
0 

°C
Ba

tc
h

12
4 

g/
g 

vo
la

til
e 

so
lid

s 
(V

S)
, i

nc
re

as
e 

18
7%

A
ce

ta
te

 h
ig

he
r t

ha
n 

85
%

D
om

in
an

t: 
Cl

os
tr

id
ia

, 
re

la
te

d 
w

ith
 

ac
id

og
en

ic
 a

nd
 

so
lv

en
to

ge
ni

c 
pr

oc
es

se
s

M
oc

ka
iti

s 
et

 a
l. 

(2
02

0)



Page 9 of 21Sun et al. Bioresour. Bioprocess.            (2021) 8:68  

due to the non-homogeneous characteristics of the dif-
ferent feedstocks. Generally, acetic acid, propionic acid 
and butyric acid account for more than 90% percentage 
of the total VFA compositions. Alkaline pH was found 
to favor the acetic-type fermentation. Chen et al. (2012) 
reported the proportion of acetic acid in the range of 
50–75% at pH from 6 to 9 when using wetland plants as 
feedstocks, however, this percentage reached higher than 
90% at strong alkaline conditions (pH 10–12). Zhang 
et al. (2012) reported that the total VFA yield from corn-
stalks increased by 23% and 130% when adjusted pH 
from 7 to 8 and 9 correspondingly, however, the enhance-
ment only concentrated on the acetic acid yield. Similar 
results were also reported by Cabrera et  al. (2019) that 
the VFA production at pH 9 was twofold higher than that 
of pH 5, while the increment only concentrated on acetic 
acid. Under neutral and acidic conditions, the production 
of propionic acid and butyric acid could be enhanced 
at individual optimal pH as well as acetic acid. Xu et al. 
(2021) investigated the VFA yields from corn stover at 
acidic pH from 5 to 8, and found a decrease of acetic acid 
proportion but an increase of propionic acid, although 
the acetate production still dominated and accounted for 
higher than 80% of the total VFA. Ai et al. (2014) found 
that a pH range of 6–6.5 contributed for butyric acid pro-
duction from rice straw, with about threefold than that of 
pH 5–6. Jankowska et al. (2015) investigated the effect of 
low pH and found no significant composition variations 
from pH 4 to 5, regardless of a 30% increase of VFA yield. 
These inconsistent results could be attributed to the use 
of different feedstocks that required different optimal pH 
values for VFA production and distribution. Currently, 
more research is needed to summarize a VFA distribu-
tion discipline using lignocellulosic biomass as sub-
strates. In addition, elongating the chains of VFA could 
achieve increase in the value-add of the VFA (Wu et al. 
2019). Therefore, it is essential to explore VFA compo-
nent rules under different pH and corresponding optimal 
conditions for VFA production. Thus, it is significant to 
determine the targeted acids and compositions under dif-
ferent pH values.

Temperature
Temperature is an important parameter during aci-
dogenic fermentation due to its direct involvement 
in microbial growth and enzyme activities. Generally, 
anaerobic microorganisms can function at three different 
temperature ranges, including psychrophilic (optimally 
below 20  °C), mesophilic (optimally at 35–40  °C), and 
thermophilic (optimally at 50–65 °C). Wang et al. (2019b) 
investigated the effect of temperature on VFA produc-
tion from wetland plants using 5  °C as a space from 10 
to 55  °C in batch operation and found that mesophilic 

condition was optimal for VFA generation although the 
production under thermophilic conditions could also be 
achieved by extending the fermentation period. Cavinato 
et  al. (2017) compared the acidogenic co-fermentation 
from cow manure and maize silage at mesophilic and 
thermophilic conditions, and found fermentation at 37 °C 
range leading to 30% higher VFA production while about 
50% higher solubilization yield at 55 °C range. However, 
due to this enhanced hydrolysis ability at higher temper-
ature, thermophilic condition was found in favor of the 
fermentation with solid-state or high solid concentration, 
i.e., 30  g volatile solids (VS)/L (Achinas and Euverink 
2020; Shi et al. 2013).

Organic loading rate and retention time
Organic loading rate (OLR) refers to the amount of sub-
strate fed into the reactor per day per working volume. 
A moderate increase of OLR definitely improves VFA 
productivity, and an excessively high OLR tends to lead 
to VFA accumulation, inhibiting both the methanogenic 
and acidogenic microorganisms. Jiang et al. (2013) inves-
tigated the effects of three different OLR, namely, 5, 11, 
and 16 gTS/(L·d). They found that VFA yields increased 
from 11 g/L to 17 and 22 g/L, respectively, during the first 
week at each OLR. However, while VFA production con-
tinued for OLR of 11 gTS/(L·d), that for OLR of 16 gTS/
(L·d) slumped from day 10. Upon decreasing the OLR 
from 16 to 10 gTS/(L·d), the reactor returned to a stable 
VFA production of 14 g/L. A common OLR range of 1.2–
12 g volatile solids (VS)/(L·d) for AD could also provide 
some guidance to perform the acidogenic fermentation 
(Li et  al. 2015). The optimal OLR, however, might vary 
with the substrates, temperature, and hydraulic retention 
time. For instance, a higher OLR could yield more VFA 
at a higher temperature (Gou et al. 2014). Lignocellulose 
acidogenesis tended to burden a higher OLR than food 
waste or sludge due to the lower viscosity of the fermen-
tation broth (Wainaina et al. 2019a).

Hydraulic retention time (HRT) is the duration that the 
feedstock is kept within the reactor. It is an important 
parameter for continuous reactor and pilot-scale opera-
tions. In acidogenic fermentation, VFA production could 
dramatically increase during the first 10  days and then 
reach a steady-state production state (Jiang et al. 2013). 
On the other hand, an HRT of approximately 8–20 days 
was required for methanogenesis (Wikandari and Taher-
zadeh 2019). Thus, 8–12  days could be an appropriate 
HRT for considerable VFA production and avoiding its 
bioconversion into methane. While there is no doubt that 
a longer HRT could lead to more soluble organic matters, 
Wainaina et al. (2019a) reported that an increase of HRT 
to 20–30 days did not further improve VFA production, 
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even though the higher HRT slightly increased the per-
centage of butyrate and acetate.

Methanogenesis inhibitors
Another option to prevent VFA consumption for meth-
anogenesis is to deactivate the methanogens using 
chemical inhibitors and coenzyme M analogs, including 
2-bromoethanesulfonate (BES), 2-mercaptoethanesul-
fonate (MES), and lumazine. Coenzyme M is involved in 
the terminal step of methane synthesis, where the methyl 
group carried by coenzyme M is reduced to methane by 
reductase (Liu et  al. 2011). Inhibitor analogs competi-
tively function to inhibit the methyl transfer and inter-
rupt the methane-forming process from  CO2/H2 and 
acetate. Typically, a varying concentration of 10–50 mg/L 
BES has been reported to inhibit methanogenesis (Liu 
et al. 2011). Although it seems that pH control could also 
work in tandem with the addition of inhibitors to inhibit 
the formation of methane, typically inhibitors were 
used in reactors without pH control (initial neutral pH) 
(Jankowska et  al. 2017). Eryildiz and Lukitawesa (2020) 
observed that under an acidic condition with a pH of 
4–6, the addition of chemical inhibitors did not make a 
significant change in the amount of VFA produced. On 
the other hand, it is important to recognize that the usage 
of methanogenesis inhibitors would inevitably increase 
the operating cost of the process. For example, if we 
adopt Jankowska’s experimental methods as reference 
(Jankowska et al. 2017), the cost using BES inhibitors is 
about 0.252 USD/g volatile solids (VS) with 0.44 gVFA/
gCOD yield, and the cost using alkaline fermentation is 
about 0.076 USD/g volatile solids (VS) with 0.70 gVFA/
gCOD yield. Other cost-effective methanogenesis inhibi-
tions like pH control and wash-out of methanogens are 
discussed in “Alkaline fermentation” and “High OLR but 
short HRT” sections, respectively.

Proposed strategies for VFA production
Optimization of operating parameters
Alkaline fermentation
To maximize VFA production, it is necessary to enhance 
VFA accumulation and simultaneously prevent its con-
sumption by judiciously controlling the pH. As previ-
ously mentioned in “pH” section, there have been some 
disputes in the optimal pH for acidogenic fermentation. 
Specifically, both acidic and alkaline conditions were 
found effective to improve the VFA yield during fermen-
tation of sludge, waste water, and food waste. Jankowska 
et  al. (2017) used maize silage, microalgae biomass and 
whey to produce VFA at pH 5, 7 and 11, respectively, 
and found that only maize silage manifested optimal 
VFA production at an alkaline condition (pH 11). Simi-
lar enhanced results were observed from fermentation of 

olive mill waste at pH 9 compared to pH 5 (Cabrera et al. 
2019). Park et  al. (2014) demonstrated that the alkaline 
pH improved the hydrolysis of organic matter and further 
provided soluble substrates for the acidogenic microor-
ganisms for the production of the VFA. Based on these 
findings, it seems that alkaline conditions favor VFA 
production especially for lignocellulosic biomass wastes 
because of its composition and recalcitrant structure 
against hydrolysis. Thus, due to the different characteris-
tics among varieties of feedstocks, it is essential that pH 
control be individually evaluated to facilitate acetogen-
esis. Although the initial pH strongly affected the VFA 
production, the starting alkaline pH did not sustain and 
always tended to drop to neutral level unless the pH had 
been controlled (Jankowska et al. 2017). For semi-contin-
uous or pilot-scale demonstrations, NaOH and Ca(OH)2 
were usually used to adjust the pH to maintain alkaline 
conditions during fermentation (Gao et al. 2011; Li et al. 
2011). Several pilot-scale and full-scale applications using 
sludge as feedstocks can be found (Da Ros et al. 2020; Li 
et  al. 2011; Liu et  al. 2018). Currently, since most stud-
ies focused on batch-mode fermentation rather than 
semi-continuous or continuous fermentation, the effect 
of extra alkali on the microbes remains unclear. Usage of 
alkali to adjust reactor pH would concomitantly increase 
operating cost. To minimize operating cost, a combina-
tion of alkaline fermentation and alkaline pretreatment 
might be an option.

Co‑digestion and solid‑state fermentation
C and N elements are important nutrition for the metab-
olism of microbes. A high C/N ratio of lignocellulosic 
biomass wastes could not supply adequate N nutrition for 
microorganisms, which limits the fermentation rate and 
even causes insufficient consumption of the C source. 
An appropriate C/N ratio is essential to maintain the 
nutrition balance within the reactor. A C/N ratio of 25 
has been considered optimal for anaerobic fermentation 
(Wang et al. 2012). In this case, co-digestion of lignocellu-
losic biomass wastes with others biomass wastes with low 
C/N ratios, like animal manure, food waste, and sludge 
(Mu et al. 2020; Wang et al. 2018; Zhang et al. 2018), to 
adjust the C/N ratio could significantly enhance micro-
bial activities and VFA production. Macias-Corral et  al. 
(2008) investigated co-digestion of agricultural waste and 
cattle manure, and obtained around 20% higher solu-
ble COD increased from 27,000 to 34,000  mg/L, 60% 
higher VFA yield increased from 8 to 13 g/L. Zhang et al. 
(2018) added equivalent food waste into yard waste for 
co-digestion and also obtained an enhanced SCOD pro-
duction from 16,000 to 35,000  mg/L in the first week. 
Indeed, food waste augmentation is a common approach 
in co-digestion. It had been reported that lignocellulose 
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tended to release carbon sources slowly and limited the 
start-up phase, while food waste rapidly got acidified and 
provided available carbon for fermentation (Wang et al. 
2018). On the other hand, mono-digestion of food waste 
could result in the decrease in pH to around 3.5 (Zhang 
et al. 2017). The acids generated during hydrolysis facili-
tated acid hydrolysis pretreatment of the lignocellulosic 
biomass wastes within the fermenter. Furthermore, co-
digestion is also popular in practical biogas or fermen-
tation plant due to its low cost and simple operation 
(André et al. 2019; Lansing et al. 2019).

Initial feedstock concentration has also been regarded 
as a factor to affect fermentation performance. In con-
ventional AD, 6–8% TS is usually regarded as the optimal 
initial substrate concentration for methane production 
(Holliger et  al. 2016). To improve organic loading and 
shorten the fermentation period, solid-state AD with a 
TS above 15% had been suggested. However, solid-state 
AD had revealed several disadvantages such as low meth-
ane yields and relatively high process instability due to 
the fact that high TS contents could limit the methano-
genesis and led to VFA accumulation (Yang et al. 2015). 
In such case, solid-state AD might be expected to be an 
enhancing strategy to convert lignocellulose into VFA 
rather than methane. Rouches et  al. (2019) investigated 
the impact of substrate/inoculum ratio of 1.2, 2.0, 3.6 and 
8.5, and the ratio of 8.5 group obtained highest yield of 
10 g/L while the VFAs of other groups declined for meth-
ane formation. In another study, Fang et  al. (2018) also 
reported successfully using lignocellulosic solid diges-
tate for VFA production in solid-state fermentation (TS 
of 15%), and obtained the VFA yield of 250  mgCOD/g 
volatile solids (VS). Taken together, high solid-state fer-
mentation seems a feasible way to convert lignocellu-
losic biomass wastes into VFA. A concerned problem 
associated with solid-state fermentation might be VFA 
extraction and application. In fact, TS in solid-state fer-
menter were usually 15%, thus, the broth is close to fluid. 
Rouches et al. (2019) designed a leachate tank at the bot-
tom in the solid-state fermenter to collect VFA, which 
could successfully work at solid/inoculum ratio from 1.2 
to 8.5. Similar pilot-scale reactor could also be seen in 
other publications (Puyuelo et al. 2010; Saritpongteeraka 
et  al. 2015). These reports sufficiently indicated that a 
liquid-phase reservoir at the base of reactors could col-
lect the VFA and even recycle the leachate. However, 
the results of solid-state acidogenic fermentation remain 
inadequate. Meanwhile, the enhancement of reactor sta-
bility during long-term fermentation also needs to be 
investigated in the future.

High OLR but short HRT
Given that pH during fermentation would inherently 
drop and increased OLR would aggravate the acidifica-
tion (Jankowska et  al. 2017), proper OLR control could 
reduce pH to less than 6.5 and successfully enhance the 
VFA yields. Besides, growth of methanogens is slower 
than acidogens. Hence, a shorter HRT could also achieve 
the wash-out of methanogens, avoid consumption of 
VFA and improve the treatment capacity. This approach 
was used to investigated co-fermentation of maize silage 
and cow manure, and found that the VFA yield reached 
150, 183 and 162 gCOD/kg volatile solids (VS) at HRT of 
2, 4 and 6  days, respectively (Cavinato et  al. 2017). The 
same article also indicated the lower soluble COD, which 
could be interpreted as the consumption for methane. 
Similarly, an HRT of 10 days was also adopted to investi-
gate the acidogenic fermentation of sugarcane filter cake 
in semi-continuous operation, and the VFA yield could 
reach 320  mg/g volatile solids (VS) in steady stage. A 
shorter HRT of 1.5 days was used to investigate the effect 
of pH during wash-out operation (Cysneiros et al. 2012). 
The results showed that the VFA yield of experimental 
group without pH buffer was lower than controlled group 
(no wash-out), which could be explained by a possible 
wash-out of acidogens in the leachate and the growth 
rate of acidogens did not compensate for the wash-out 
rate; but, the experimental group with pH buffer (pH 6.5) 
enhanced VS degradation and VFA yield by 15% and 32%, 
respectively. Additionally, the process of inoculum wash-
ing-out incredibly led to the decrease of  NH4-N, which 
could serve to buffer the reactor’s pH and balance the low 
nitrogen solubilization from lignocellulosic substrates 
(Janke et  al. 2016). After nitrogen supplementation, the 
pH value increased from 5.2 to 6.7, but the VFA produc-
tion decreased to the lowest level due to the consumption 
of methanogenesis at HRT of 5 days (Janke et al. 2016). 
Moreover, a high OLR and a short HRT frequently cause 
insufficient degradation of lignocellulose and a low mass 
transfer rate. Thus, an appropriate OLR and HRT should 
be experimentally determined associated with pH and 
various lignocellulosic feedstocks.

Combination of effective pretreatments
Feedstock pretreatment is one of the most effective ways 
to enhance fermentation performance, especially for lig-
nocellulosic biomass wastes due to their obstinate struc-
tures for hydrolysis. But the single cost of pretreatments 
is approximately as high as other production processes 
(Soltanian et al. 2020). Thus, it is essential to seek cost-
effective pretreatments to balance pretreatment cost and 
VFA production. Typically, mono-pretreatment is not 
the most effective and economic method in AD. Instead, 
a combination of two or multiple pretreatment methods 
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to pretreat the feedstocks is usually adopted. As VFA 
are intermediate compounds during AD, it is reasonable 
that the pretreatment methods on AD can be applied 
for acidogenic fermentation. Previously, we had sum-
marized the pretreatments on organic wastes for biogas 
production via AD (Zhang et al. 2019). In this review, we 
intend to highlight some novel and cost-effective meth-
ods with a focus on co-pretreatments. Pretreatments are 
usually classified into four categories, including physical, 
chemical, biological pretreatments, and co-pretreatments 
(Table  3). Concerning the characteristics of lignocel-
lulosic biomass wastes, size reduction is usually neces-
sary before several chemical or biological pretreatments. 
After biomass harvest or collection, the size of the lig-
nocellulosic biomass is typically large and consequently 
present unfavorable area-to-mass ratio for hydrolysis. 
Previous studies showed that researchers are accustomed 
to mill the biomass into less than 2 mm or even smaller, 
which may not be economical and practical for large-
scale feedstocks. To mill or cut lignocellulosic biomass 
into 1 cm size usually could be achieved in biogas plants, 
but the energy needed for further particle size decrease 
would be multiple folds and not cost-effective (Vidal 
et al. 2011). For example, energy of 28–35 and 14 kWh/t 
were required to mill corn stover with hammer to 3.2 and 
1.6  mm, respectively, however, the digestibility had no 
difference with dilute alkali pretreatment when the par-
ticle size was less than 2 mm (Vidal et al. 2011). Similarly, 
Sun et al. (2019) used liquid digestate to pretreat wheat 
husk with different particle sizes of 2  mm, 5  mm and 
8 mm and found this negligible effect of particle reduc-
tion when increased pretreatment time from 3 to 5 days. 
The maximum biomass sizes which no further increase 
in pretreatment effectiveness might vary with the co-
pretreatment approaches (Vidal et al. 2011). In addition 
to milling, shearing and cutting are good alternative to 
size reduction since the structures of lignocellulose will 
not be damaged. Thus, acceptable pretreatments, param-
eter optimization or co-pretreatments could off-set the 
cost-intensive particle size reduction process for treating 
large amounts of feedstocks. Among physical pretreat-
ment technologies, the use of microwave energy, which 
relies on an applied electromagnetic field to generate 
heat is popular. Microwave heating was more rapid and 
less energy intensive compared to convection heating 
and could favorable enhance the lignocellulosic structure 
amenable to hydrolysis (Hu and Wen 2008).

It has been known that alkali addition [e.g., NaOH 
and Ca(OH)2] is the most effective chemical pretreat-
ment and it has been confirmed in industrial applica-
tions, regardless of their known disadvantages of land 
pollution. Thus, co-pretreatment of microwave and 
alkali addition has also been investigated, even though 

the augmentation with microwave did not exhibit the 
synergistic effect anticipated with co-alkaline pretreat-
ment compared to mono-alkaline pretreatment. More 
specifically, co-pretreatment could effectively accelerate 
the hydrolysis process, but could not further enhance 
VFA production (Elalami et  al. 2020). Hydrothermal 
pretreatment, previously operated at 170–230  °C (Saha 
et al. 2013) and negatively regarded due to its high energy 
input demand, has recently attracted more interest due to 
the fact that the enhancement of hydrothermal pretreat-
ment at a lower temperature has been observed. Xiang 
et al. (2021) used hydrothermal pretreatment to pretreat 
rice straw at 90–130 °C for 15 min and enhanced the VFA 
yield by 38%. Even a low temperature (i.e., 50  °C) pre-
treatment with a prolong pretreatment time of 24 h led 
to a 31% of enhancement (Yuan et  al. 2019). Due to its 
advantages of simple operation, involving only water, and 
no waste generation, hydrothermal pretreatment is gain-
ing more traction. The use of  H2O2 was also adopted for 
pretreatment on varieties lignocellulosic biomass wastes, 
like wheat straw, corn stover, and rice straw (Gould 1984; 
Kocher et  al. 2017; Liu et  al. 2019a). It was touted as a 
potential pretreatment method because of the genera-
tion of zero residues from the degradation of  H2O2. The 
use of  H2O2 pretreatment has also been combined with 
microwave and alkaline pretreatment methods. Dur-
ing the alkaline  H2O2 pretreatment,  H2O2 played the 
role of an oxidant and the alkali functioned to reduce or 
remove 30–40% lignin and acetyl in the hemicellulose, 
so that the accessibility and digestibility of the hemicel-
lulose was enhanced by 30% (Sun et  al. 2015). On the 
other hand, the lignin-oxidizing species was a highly 
reactive hydroxyl radical  (HO·), formed during the deg-
radation of  H2O2 in the reaction with the hydroperoxyl 
anion (HCOO−), where hydroperoxyl and hydroxyl 
radicals were both responsible for solubilizing hemicel-
luloses (Perendeci et  al. 2018). Microwave pretreatment 
with  H2O2 could increase decomposition of  H2O2 into 
 HO· radical under more acceptable heating temperature 
(< 100  °C), therefore enhancing the oxidation of  H2O2 
(Liu et al. 2016b). The results showed the synergetic pre-
treatments at 100 °C released the double soluble sugars, 
and the synergetic effect at 80 °C was equivalent to that 
of mono-microwave pretreatment at 120  °C (Eskicioglu 
et  al. 2008). Similarly,  H2O2 had been reported to com-
bine with UV, leading to a delignification rate of 76.6% 
and reducing the  H2O2 charge of 0.4 g/g substrates, com-
pared with alkaline  H2O2 pretreatment when using sisal 
waste as feedstocks (Yang et al. 2018).

Among biological pretreatments, liquid digestate has 
been investigated for enhancement of lignocellulosic 
biomass wastes for biofuel production (Sun et  al. 2019; 
Zhang et  al. 2018). Liquid digestate, which refers to 
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sludge discharged from digesters, is considered a bio-
logical pretreatment medium due to that it contains both 
anaerobic microbes and ammonia that can specifically 
degrade or acidify the substrates. Liu et al. (2019c) found 
a decrease of cellulose and hemicellulose contents from 
39 to 26% and from 31 to 24%, respectively, when using 
liquid digestate to pretreat wheat straw for 5 days. They 
had argued that it was ammonia in the liquid digestate 
that played a major role in such a pretreatment process. 
Indeed, they used liquid digestate and ammonia solution 
with the same ammonia concentration to pretreat wheat 
straw and obtained similar enhanced yields.

At present, lignocellulosic biomass valorization, which 
involved the conversion of cellulose and hemicellulose 
into biofuels or chemical materials, lignin valorization 
has largely been unexplored. For example, lignin could 
be further used as composites, plastics, and chemicals 
(Ragauskas et  al. 2014). It might be possible to separate 
hemicellulose and cellulose for acidogenic fermenta-
tion while lignin separated be used for other high value-
added conversions. Available approaches in this regard 
are divided into two ways, namely, hydrolysis of poly-
saccharides and subsequent recovery of lignin or ini-
tial solubilization of lignin, leaving sugars as the solid 
residue for acidogenic fermentation (Azadi et  al. 2013; 
Garedew et  al. 2020). Song et  al. (2019b) used alkaline-
oxygen pretreatment to solubilize lignin as adsorbents 
while cellulose and hemicellulose were then hydrolyzed 
for fermentation sugars. Dilute acid hydrolysis could 
solubilize the polysaccharides to their monomeric con-
stituents while the lignin would exist in the solid fraction 
to achieve the fractionation (Azadi et  al. 2013). Lignin 
was also reported to be separated from lignocellulosic 
biomass wastes at 200  °C with hydrothermal pretreat-
ment and hydrogen catalyst (Azadi et al. 2012). Overall, 
appropriate pretreatments should be selected on account 
of their operation costs, enhancement efficiencies, and 
desired final products (Table 3).

Reactor upgrading
Coupled electrochemical technologies with AD
Extracellular oxidation reduction potential (ORP) is an 
important parameter because it could influence intra-
cellular ORP and  NAD+/NADH ratio in microbial 
cells, affecting gene expression and enzyme synthesis 
for overall metabolic activity. In this regard, electri-
cal current supply can regulate ORP and the  NAD+/
NADH ratio to further enhance microbial activi-
ties. An electrochemical system usually consists of an 
anode and cathode that are separated by an ion selec-
tive membrane to form two individual chambers (De 
Vrieze et  al. 2018). Electrochemical fermentation is 
microbe-derived rather than current-derived, thereby 

requiring a relatively low current density (0.001–10 A/
m2) (Sturm-Richter et  al. 2015). For example, it has 
been reported that 99.8% electrons originated from 
the substrate while only 0.2% electrons were supplied 
from external power (Choi et  al. 2015). Furthermore, 
chain elongation of fatty acid via electrochemical fer-
mentation with increased value of VFA had also been 
observed (Jiang et al. 2020).

Ion exchange membrane (IEM) was used to sepa-
rate the reactor into two or even several chambers, 
while lignocellulosic biomass wastes as the substrate 
was placed both in the cathode chamber for reduc-
tion and the anode chamber for oxidation (Jiang et  al. 
2019) (Fig.  4). VFA or off-gas recycle system could be 
coupled to the reactor to enhance VFA production 
and extraction. Andersen et al. (2014) designed a recy-
cle system where VFA could flow through an anion 
exchange membrane from a cathode chamber into an 
anode chamber, and then the aqueous carboxylic acid 
concentrate reacted with added alcohol in a water-
excluding phase to generate volatile esters in order to 
achieve VFA extraction. Zhou et  al. (2019) recycled 
by-product  CO2 and  H2 generated in an anode cham-
ber to a cathode chamber where the off-gas could fur-
ther form acetic acid. This arrangement increased VFA 
production and alleviated inhibition due to excess  H2 
pressure. Furthermore, the use of two IEM in a reac-
tor can form another extraction chamber to achieve 
in situ VFA extraction and avoid VFA accumulation. In 
general, the working- and counter-electrodes and their 
respective reactions can take place in either single or 
separated chambers. If the counter-reaction products 
are compatible with the purity of the working-reaction 
products, the single-chamber reactor is ideal, and the 
simple incorporation of traditional fermenters with 
electrodes can act as electrochemical fermentation sys-
tems (Rago et  al. 2019). Commonly used materials for 
the electrodes are carbon and graphene materials due 
to their high conductivity, good chemical stability, and 
relatively low costs. To improve electron transfer effi-
ciency, carbon rod had been substituted with carbon 
felts or brush to facilitate biofilm formation (Guo et al. 
2017; Zhou et  al. 2019). The use of horizontally ori-
ented electrodes in upflow anaerobic bioreactors with 
built-in electrochemical system had also been inves-
tigated. It has been found that the optimal design in 
such a case occurred when the working electrode was 
placed at the bottom (Gao et al. 2020). However, most 
of current researchers only focused on lab-scale reac-
tors (e.g., volume less than 500 mL) (Jiang et al. 2019) 
and only wastewater, glucose or food waste have been 
utilized as substrates to perform electrochemical fer-
mentation (Jiang et  al. 2020; Liu et  al. 2019b; Zhou 
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et al. 2019). The effectiveness of the AD–electrochemi-
cal integrated system fed with lignocellulosic biomass 
wastes remains unclear and needs to be investigated. 
Moreover, performance of large-scale reactors should 
also be investigated operated under continuous mode.

VFA recovery
The shortage of industrial VFA-based processes is partly 
attributed to the difficulty in recovering the VFA from 
digestate and low product yields. All of the literature 
reviewed above had focused on optimizing the oper-
ating conditions with regards to VFA production. It is 

also well-known that high VFA accumulation could also 
inhibit the activity of acid-producing bacteria. Membrane 
technology has been the most researched VFA recovery 
techniques. The membrane setup can be placed either 
within or outside of the bioreactors (Musa et  al. 2018). 
Based on a driving force characterization, the membrane 
bioreactor setup can be classified as pressure-driven, 
such as the use of microfiltration and nanofiltration 
membranes, electrically driven, such as electrodialy-
sis, or vapor pressure difference/concentration gradient 
driven. Currently, the inbuilt gas diffuser reactors were 
widely researched for membrane cleaning (Wainaina 

Table 3 Pretreatment of lignocellulosic biomass

Pretreatment Substrates Conditions Conclusion Advantages and 
suggestion

References

Mill and liquid digestate 
soaking

Wheat husk 2–8 mm, soaked for 
1–5 days

The yields were similar 
of different size‑reduc‑
tion for 5‑day soaking

Co‑pretreatment to off‑
set the cost for particle 
size reduction

Sun et al. (2019)

Microwave‑alkali Olive 200–700 W for 2 min, 4% 
NaOH for 4 h

Co‑pretreatment short‑
ened the hydrolysis, 
but not further 
enhanced VFA yield

Feasible for short HRT 
fermentation

Elalami et al. (2020)

Hydrothermal Corn stover 170–230 °C for 5–60 min Highly rely on tem‑
perature than duration 
time

Low temperature hydro‑
thermal was feasible, 
but longer duration 
needed

Saha et al. (2013)

Hydrothermal Rice straw 90–130 °C for 15 min VFA yield improved by 
38%; low temperature 
hydrothermal was 
effective

Xiang et al. (2021)

Hydrothermal Corn stover 50 °C for 24 h 31% yield enhancement; 
low temperature 
hydrothermal was 
effective

Yuan et al. (2019)

Alkaline  H2O2 Crop stalks 1–5%  H2O2 at pH 11.5 Remove 30–40% lignin 
and increase 8% 
digested fraction

Clean pretreatment and 
Zero residues

Sun et al. (2015)

Microwave‑  H2O2 Forest waste 2.5 M  H2O2 at 400 W Increase 12% cellulose 
release compared to 
mono‑  H2O2 pretreat‑
ment

Camani et al. (2020)

UV‑H2O2 Sisal waste 0.1 g  H2O2/g Substrate, 
UV for 6 h

Led to delignification 
rate of 76.6%, increas‑
ing by 25% than 
mono‑H2O2 pretreat‑
ment

Yang et al. (2018)

Liquid digestate soaking Wheat husk Soaked for 5 days, open 
air

Increased 30% yield Cost‑saving, digestate 
recycle

Sun et al. (2019)

Liquid digestate soaking Wheat straw Soaked for 5 days, open 
air

Ammonia in digestate 
functioned

Liu et al. (2019a)

Lignocellulose fractioni‑
zation

Wood pellets 18% (w/w) alkali, 100psi 
 O2 for 6 h

Remove 52% lignin Lignocellulose fractioni‑
zation for valorization

Song et al. (2019a, b)

Deep eutectic solvents Wood 120 °C for 2 h Remove high to 78% 
lignin

Alvarez‑Vasco et al. (2016)

Deep eutectic solvents Wheat straw 110 °C for 2 h Hydrolyzed 90% cellu‑
lose and 71% xylan

Liu et al. (2019b)

Deep eutectic solvents Wood shavings 130 °C for 3 h Remove 79% lignin Tian et al. (2020)
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et  al. 2019b). Due to the lower viscosity of lignocellu-
losic particles compared with sludge, membrane foul-
ing might be further alleviated. Wainaina et  al. (2019b) 
designed an immersed membrane reactor incorporat-
ing 12 inbuilt gas diffusers to achieve in situ VFA recov-
ery and robust cleaning capacities. Khan et  al. (2019) 
also investigated pH effect on acidogenic fermentation 
in a membrane reactor and found that acid and alka-
line conditions tended to cause membrane fouling. Liu 
et  al. (2016a) invented a self-form dynamic membrane 
formed by the precipitation of microorganisms and their 
metabolites during the filtration of activated sludge, with 
advantages of low filtration pressure and cheap mem-
brane materials. Aydin et al. (2018) used vapor permea-
tion membrane contactors to drive unionized VFA flow 
from feed solution into permeate solution, where alkaline 
conditions could dissociate VFA into their ionic forms, 

thereby creating zero pressure in in the permeate side of 
the membrane. In addition, liquid membranes based on 
lipophilic amines and biodiesel have also been proposed 
because some organic extractants could selectively sepa-
rate VFA (Torri et al. 2019). In the long run, membrane 
technology has the potential for continuous anaerobic 
fermentation. Reduction of membrane costs and fouling 
are two major operating issues that need to be solved.

Appropriate VFA recovery technologies are associ-
ated with the fermentation operation, product com-
positions and final target. Free acid form (pH < pKa) 
favors membrane recovery, so that longer chain acids, 
i.e., butyric acid trend to be sustain and recovered 
(Ramos-Suarez et al. 2021). In terms of specific alkaline 
fermentation of lignocellulosic feedstocks, electrodial-
ysis technology was made available for recovering the 
acids in the dissociated form (pH > pKa). Electrodialysis 

Fig. 4 Possible electrochemical fermentation reactors: a single chamber without membrane separation; b membrane‑separated chambers; c 
reactor with off‑gas recycle, and d reactor with membrane extraction chamber (IEM: ion exchange membrane)
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technology also demonstrated a preference towards 
acetic acid recovery compared to other VFAs (Pan et al. 
2018). This would be advantageous for VFA recovery 
from alkaline fermentation, for that acetic acid domi-
nated the VFA compositions in alkaline pH.

Techno‑economics and industrial perspectives
In anaerobic fermentation, there are more diverse prod-
ucts derived from VFA than biogas, opening new markets 
for value-added chemicals and achieving lignocellulose 
valorization. Regardless of the derivatives, the prices of 
acetic acid, propionic acid and butyric acid are in the 
range of (USD/tonne) 500–850, 1500–2300 and 1800–
1900  USD/t, respectively, while the price of methane is 
only about 150–600 USD/tonne (Baumann and Wester-
mann 2016). One concerned problem is the cost associ-
ated with extraction and purification of the mixed VFA 
broths. The maximum purification cost might be about 
15  USD/m3 (Ramos-Suarez et  al. 2021). One economic 
assessment for food waste fermentation had indicated 
that acidogenic fermentation could potentially produce 
more revenues than biogas upgrading, and the highest 
profit could be as high as 296 USD/tVS compared to only 
19 USD/tVS for anaerobic digestion (Bastidas-Oyanedel 
and Schmidt 2018). No analysis and results about ligno-
cellulosic acidogenic fermentation are found in the litera-
ture to date. The economics will also vary depending on 
the specific process operation, acidogenic efficiency and 
the market.

The minimum selling price of the mixed VFAs from 
brown algae was calculated at about 384  USD/t, which 
was lower than the market price for (petrochemical) ace-
tic acid (Fasahati and Liu 2014). VFA downstream puri-
fication is therefore quite essential for profitability. At 
present, the most researched VFA applications are not 
limited to bioplastics, bio-oil (biodiesel), chain elonga-
tion, electric power and biological nutrients removal 
(Lee et  al. 2014). To date, the reported full-scale VFA 
applications only focus on biological nutrients removal 
with sludge or waste water as feedstocks (net profit 
of 9.12  USD/t) (Liu et  al. 2018; Andalib et  al. 2017). 
The possible reason might be attributed to the present 
uncompetitive revenues. The techno-economic analysis 
of bioplastic (PHB) production from VFA showed that 
the routine is not yet competitive with those for the pet-
rochemical counterparts (Fernández-Dacosta et al. 2015). 
The results on lignocellulose fermentation are rare. But 
still, the wish of green economy encourages us to explore 
and optimize our operating processes.

Conclusions and recommendations for future work
In this review, we have identified the characteristics of 
lignocellulosic biomass wastes and their typical metabo-
lism pathways of acidogenic fermentation. Following 
that, the effects of several key operating conditions were 
discussed and some available parameter optimization 
approaches were presented. In addition, parameter opti-
mization and effective enhancing strategies have also 
been discussed, including pretreatments, electrochemical 
fermentation, and membrane bioreactors. Main conclu-
sions and the related recommendations for future work 
included:

1. A workflow chart for parameter optimization and 
enhancing strategies to guide the operation of aci-
dogenic fermentation. Appropriate parameter regu-
lation requires acceptable particle size, mesophilic 
temperature (35–40  °C), C/N ratio (20–40), OLR 
(< 12 g volatile solids (VS)/(L·d)), and the maximum 
HRT (8–12 days);

2. Consideration of acidic, neutral and alkaline pH 
conditions to enhance VFA production with various 
feedstocks. In particular, alkaline fermentation car-
ries high potential for lignocellulosic biomass fer-
mentation. pH regulation through appropriate pH 
control and gradual increase of OLR can be a prom-
ising way to prevent VFA conversion to methane;

3. Co-pretreatments can be adopted to avoid the cost-
intensive particle size reduction process. Combina-
tion with chemical pretreatments using alkali,  H2O2, 
and digestate is beneficial for lignocellulosic biomass 
hydrolysis, as well as separation of cellulose and 
hemicellulose from the lignin structures;

4. Electrochemical fermentation is a novel technology 
which has been demonstrated using wastewater, glu-
cose, and sludge as substrates. Currently, the studies 
of electrochemical fermentation with lignocellulosic 
biomass as feedstocks remain lacking, but definitely 
worth exploring;

5. Membrane technology plays an important role in 
extraction of the accumulated VFA and the use of 
several membrane bioreactors has been reported. In 
addition to membrane bioreactors, other in situ and 
ex situ VFA extraction technologies deserve more 
exploration in the future.

Abbreviations
VFA: Volatile fatty acids; AD: Anaerobic digestion; OLR: Organic loading rate; 
HRT: Hydraulic retention time; ORP: Oxidation reduction potential.
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