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Abstract 

Objectives:  Enzyme/metal-organic framework composites with high stability in protein denaturing solvents were 
reported in this study.

Results:  Encapsulation of enzyme in metal-organic frameworks (MOFs) via co-precipitation process was realized, and 
the generality of the synthesis was validated by using cytochrome c, horseradish peroxidase, and Candida antarc-
tica lipase B as model enzymes. The stability of encapsulated enzyme was greatly increased after immobilization on 
MOFs. Remarkably, when exposed to protein denaturing solvents including dimethyl sulfoxide, dimethyl formamide, 
methanol, and ethanol, the enzyme/MOF composites still preserved almost 100% of activity. In contrast, free enzymes 
retained no more than 20% of their original activities at the same condition. This study shows the extraordinary pro-
tecting effect of MOF shell on increasing enzyme stability at extremely harsh conditions.

Conclusion:  The enzyme immobilized in MOF exhibited enhanced thermal stability and high tolerance towards 
protein denaturing organic solvents.

Keywords:  Biocatalysis, Biomineralization, Immobilization

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Background
Enzymatic catalysis is one of the promising ways to 
achieve green industrial chemical processes. Immobi-
lized enzyme is the most frequently used form of enzyme 
at industrial scale (Kirk et  al. 2002; Bornscheuer et  al. 
2012). One of the important aims of enzyme immobili-
zation is to achieve high enzyme stability at harsh con-
ditions such as high temperature and organic solvents 
which often existe in industrial biocatalytic processes. 
Although immobilization may compromise the activity 
of enzyme, the greatly enhanced stability would enable 
the long-term and repeated use of enzyme and therefore 
a significantly reduced cost of enzyme (Liu et  al. 2015; 
Liang et al. 2016a; Ji et al. 2016; Novak et al. 2015). Metal-
organic frameworks (MOFs) have emerged as a new type 
of nanomaterials suitable for immobilization of enzyme 
(Feng et al. 2015; Lykourinou et al. 2011; Chen et al. 2012; 

Wen et  al. 2016) and other biomolecules (Zhang et  al. 
2016; Li et al. 2016a, b). One major advantage of MOFs is 
the high chemical and structural stability of the nanopo-
rous frameworks, which can offer a protective effect for 
encapsulated enzymes against adverse conditions while 
at the same time allow the transfer of small-molecule 
substrates/products.

Previous attempts in the preparation of enzyme-MOF 
composites have been majorly focused on the strategy 
of adsorbing protein molecules into pre-synthesized 
MOFs which have pore sizes similar to the dimensions 
of enzyme molecules (Feng et al. 2015; Lykourinou et al. 
2011; Li et al. 2016a, b). Covalently linking enzyme mol-
ecules on the surface of MOF particles (Shi et  al. 2016; 
Cao et  al. 2016) was reported as another effective way 
for enzyme immobilization on MOFs, where the enzyme 
molecules were conjugated to the carboxylate groups on 
the MOFs. Co-precipitation or biomimetic mineraliza-
tion (Lyu et al. 2014; Li et al. 2016a, b; Liang et al. 2015a, 
b, 2016b, c; Wu et al. 2015a, b; He et al. 2016; Shieh et al. 
2015), a self-assembly process to encapsulate bioactive 
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molecules within the protective exteriors, has been suc-
cessfully introduced to the synthesis of enzyme-MOF 
composites. Typically, in a biomimetic mineralization 
process, protein molecules in aqueous solution first binds 
with metal ions or organic ligands to form nanoscaled 
aggregates which induce the nucleation of MOF crys-
tals. Then, the MOF crystals grow as the shell of protein 
aggregates to encapsulate enzyme inside. The enzyme-
MOF composites have showed the great potential of 
increasing enzyme stability at high temperature (Liang 
et  al. 2015a). However, the stability of enzyme-MOF 
composites in organic solvents, especially in highly polar 
organic solvents such as dimethyl sulfoxide (DMSO), 
dimethyl formamide (DMF), methanol, and ethanol has 
not been well investigated.

Here, we report a biomimetic mineralization route to 
synthesize enzyme-MOF composites, using cytochrome 
c (Cyt c), horseradish peroxidase (HRP), and Candida 
antarctica lipase B (CALB) as model enzymes. After 
being encapsulated in MOFs, enzymes can retain almost 
all their activities even incubated in protein denaturing 
solvents including DMSO, DMF, methanol, and ethanol. 
In contrast, free enzymes lost almost all their activities at 
the same condition.

Experimental section
Materials
Horseradish peroxidase (HRP) (reagent grade), Candida 
antarctica lipase (CALB), 2-methylimidazole, phosphate 
buffer saline (1×), 1,2,3-trihydroxybenzene (THB, ACS 
reagent), and 4-nitrophenyl butyrate (p-NPB) were pur-
chased from Sigma-Aldrich. Zinc nitrate hexahydrate 
(99.998%) and hydrogen peroxide (29–32% wt) were pur-
chased from Alfa Aesar. Cytochrome c from horse heart 
was purchased from Biodee Corporation. All the other 
reagents are of analytic grade.

Synthesis of the enzyme/ZIF‑8 composite
HRP, CALB, Cyt c water solution (5 mg/mL, 4 mL), and 
Zn(NO3)2 water solution (92.5 mg/mL, 4 mL) were added 
into 2-methylimidazole water solution (4.1  g dissolved 
in 40 mL water), followed by stirring for 30 min at room 
temperature. The mixture turned milky almost instantly 
after mixing. After aged at room temperature for 12  h, 
the product was collected by centrifugation at 6000 rpm 
for 10  min, washed with DI water for three times, and 
used for further characterization.

Transmission electron microscopy (TEM)
Methanol solution of ZIF-8 and enzyme/ZIF-8 compos-
ite was placed on the carbon-coated support grid and 
dried at room temperature for TEM measurement and 

energy dispersive X-ray spectrometry (EDS) analysis on a 
JEOL JEM-2010 high-resolution TEM with an accelerat-
ing voltage of 120 kV.

XRD analysis of ZIF‑8, enzyme/ZIF‑8 composite
Powder X-ray diffraction (XRD) patterns were conducted 
using a Bruker D8 Advance X-Ray diffractometer with a 
Cu Kα anode (λ = 0.15406 nm) at 40 kV and 40 mA.

Thermogravimetric analysis of ZIF‑8, enzyme/ZIF‑8 
composites
Samples were heated from room temperature to 600 °C at 
a rate of 10 °C/min under air atmosphere on a TA Instru-
ments TGA 2050 Thermogravimetric Analyzer.

Activity assay of enzyme/ZIF‑8 composite and its free 
counterpart
The activity of HRP was determined by measuring the 
rate of decomposition of hydrogen peroxide with THB, 
which can be converted to a yellowish product, purpuro-
gallin, detectable at 420  nm. In a typical experiment, 
HRP/ZIF-8 was added to a solution containing H2O2 
(9  μM) and THB (16  mM) in phosphate buffer saline. 
After reaction for 10  min, the solution was centrifuged 
for 2  min at 12,000  rpm. And the absorbance of the 
supernatant was recorded at 420 nm on a UV–Vis spec-
trophotometer. The activity of free HRP was measured 
using the same procedure.

For the enzymatic activity determination of Cyt c/
ZIF-8 and free Cyt c, similar procedure was followed by 
shortening the reaction time to 3 min.

For the activity assay of CALB/ZIF-8, p-NPB was first 
dissolved in acetone and then diluted with phosphate 
buffer (50  mM, pH 7.0) containing 1.25% (w/v) Triton 
X-100. The composite of CALB/ZIF-8 was added to the 
phosphate buffer containing 4-nitrophenyl butyrate 
(p-NPB) (0.5 mM) to initiate the reaction. After reaction 
for 3  min, the solution was centrifuged at 12,000  rpm 
for 2 min. The absorbance of the supernatant was deter-
mined at 400 nm by using a UV/Vis spectrophotometer.

Enzyme stability in denaturing organic solvents
Enzyme/ZIF-8 composites and corresponding free 
enzyme powders were incubated in water, dimethyl sul-
foxide (DMSO), dimethyl formamide (DMF) at 80 °C and 
in boiling methanol and ethanol for 1 h. Tiny amount of 
the enzyme solution was taken out and diluted to appro-
priate concentration and subjected to the above enzy-
matic assays. The relative activity of enzyme/ZIF-8 was 
calculated as the ratio of the activity of treated enzyme/
ZIF-8 exposing to high temperature and organic sol-
vents after required immersion time and activity of the 
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untreated enzyme/ZIF-8 (Eq.  1). The activity of the 
untreated enzyme/ZIF-8 was set as 100%. The relative 
activity of free enzyme was calculated in the same way.

Results and discussion
As shown in Fig.  1, in this study, using cytochrome c 
(Cyt c), horseradish peroxidase (HRP), and Candida 
antarctica lipase B (CALB) as model enzymes, the syn-
thesis of enzyme-MOF composites was carried out by 
mixing 4 mL of enzyme solution (5 mg/mL), 4 mL of zinc 
nitrate water solution (310 mM), and 40 mL of 2-meth-
ylimidazole water solution (1.25  M). The synthesis was 
conducted in water solution at room temperature for 
30 min. Protein induced the nucleation of zeolitic imida-
zolate frameworks-8 (ZIF-8), and ZIF-8 framework grew 
around enzyme molecule providing a protective shell. 
After aging at room temperature for 12  h, the product 
was collected by centrifugation at 6000 rpm for 10 min, 
followed by removing the adsorbed protein by three 
cycles of washing and centrifugation.

As shown in Fig.  2 and Additional file  1: Figures S1, 
S2, the scanning electron microscope (SEM) images 
and transmission electron microscope (TEM) images of 
HRP, CALB, Cyt c/ZIF-8 nanocomposites showed simi-
lar morphologies to that of pure ZIF-8, with sizes rang-
ing from ~100 to ~800 nm. It seemed that the size of the 
enzyme/MOF composites was widely distributed due to 
the rapid nucleation and diverse growth of the crystals. 
The X-ray diffraction (XRD) patterns of the enzyme/

(1)

Relative Activity

=

Activity of Enzyme/ZIF-8 treated

Activity of Enzyme/ZIF-8 untreated
× 100%.

ZIF-8 composites agreed well with the patterns of simu-
lated ZIF-8 and pure ZIF-8 (Fig. 3a), which verified that 
the incorporation of enzyme did not affect the crystallin-
ity of ZIF-8.

The Fourier transform infrared spectroscopy (FTIR) 
spectra (Fig.  3b, 1640–1660  cm−1 corresponding to 
amide I band mainly from C=O stretching mode) proved 
the presence of protein in the composites. The thermal 
gravity analysis (TGA) in air also confirmed the presence 
of protein in the composites (Additional file  1: Figure 
S3). The loading percentages of protein in the compos-
ites interpreted from TGA curves were 10, 5, and 10% for 
HRP, CALB, and Cyt c, respectively, which is consistent 
with the result of size exclusion chromatography.

To further confirm that enzymes were embedded in 
ZIF-8 instead of adsorbing on the external surface, con-
trol experiments were carried out by physically mix-
ing the as-prepared pure ZIF-8 crystals with enzyme 
solutions to form the enzyme-adsorbed ZIF-8 samples. 
After the same washing step, both the enzyme-embed-
ded ZIF-8 (enzyme/ZIF-8) and enzyme-adsorbed ZIF-8 
(enzyme@ZIF-8) samples were digested by acetic acid, 
followed by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE, Additional file 1) performed 
on an analytic polyacrylamide (12%) gel. As shown 
in Additional file  1: Figure S4, in SDS-PAGE, protein 
bands corresponding to respective molecular weights of 
enzymes (12  kD for Cyt c, 38  kD for CALB, and 44  kD 
for HRP) appeared on the gel for both free enzymes and 
enzyme/ZIF-8 samples (lane 1 and lane 2, respectively). 
In contrast, no obvious bands were observed for all three 
types of enzyme@ZIF-8 samples (lane 3). The result dem-
onstrated that the embedded enzymes in ZIF-8 scaffolds 

Fig. 1  Scheme of the green synthesis of enzyme-MOF composites exhibiting tolerance for denaturing solvents and heat
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cannot be removed by simple washing step but only can 
be released out from ZIF-8 scaffolds once the ZIF-8 was 
digested by acetic acid. In contrast, the enzyme mole-
cules adsorbed on the external surface of ZIF-8 crystals 
were completely removed in the washing step.

The specific activities of the synthesized enzyme/ZIF-8 
composites were determined at the same protein con-
centration as native enzymes (Additional file  1). HRP/
ZIF-8 and CALB/ZIF-8 retained 12 and 5% of activity 
compared to native enzymes. Please note that the small 
aperture size of ZIF-8 is 3.5 Å, indicating the transport 
of substrate such as 4-nitrophenyl butyrate through the 
small aperture must be very difficult. However, pre-
vious studies showed that enzyme was embedded in 
ZIF-8 crystals in the form of protein aggregates with size 
around 20–30  nm (Lyu et  al. 2014). The relatively large 
cavities localizing protein aggregates were presented in 
both the surface and inside of enzyme-MOF composites, 
and these cavities were partially connected (Lyu et  al. 

2014). In addition, in the biomimetic mineralization, 
structural defects of crystals usually formed due to the 
presence of protein in the crystallization process. These 
cavities and structural defects in composites could pos-
sibly serve as the major routes for transferring substrates. 
Moreover, studies also demonstrated that the pores of 
MOFs have a “breathing” effect which could enlarge the 
aperture size to some extent to allow the transferring 
of molecules (Serre et  al. 2002). All these evidence and 
results provided the possible mechanism for substrate 
transportation inside the enzyme-MOF composites. The 
low activity was possibly due to the activity loss during 
the immobilization process and/or the hindered mass 
transfer caused by the ZIF-8 framework, which was com-
monly observed in most cases of immobilized enzymes 
(Kim et al. 2008; Brady and Jordaan 2009; Hanefeld et al. 
2009). However, Cyt c embedded in ZIF-8 showed a six-
fold increase in activity compared to free Cyt c in solu-
tion. The control experiment confirmed that the pure 

Fig. 2  SEM images of a HRP/ZIF-8, b CALB/ZIF-8, c Cyt c/ZIF-8, and d ZIF-8. Scale bars 1 μm
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ZIF-8 had no catalytic activity towards the substrate. 
The high activity of Cyt c in ZIF-8 was possibly due to 
the increased substrate affinity resulted from a conforma-
tional change of Cyt c to expose its heme group (Ono and 
Goto 2006) in the appropriate microenvironment created 
by ZIF-8. Moreover, the interaction between the embed-
ded Cyt c and Zn2+ in ZIF-8 crystals also might contrib-
ute to the enhancement of the catalytic activity of Cyt c 
(Lyu et  al. 2014; Ge et  al. 2012). The mechanism of the 
increased activity of Cyt c in MOF has been investigated 
elsewhere (Lyu et al. 2014).

The thermal stability of enzymes embedded in ZIF-8 
was evaluated by comparing the residual activity of free 
enzymes and enzyme/ZIF-8 composites after incubat-
ing in phosphate buffer saline solution at high tempera-
tures (70  °C for Cyt c, 50  °C for HRP, 40  °C for CALB). 
As shown in Fig. 4, after 6-h incubation all enzyme/ZIF-8 
composites maintained over 90% of their original activi-
ties while free enzymes lost 60 and 30% of their original 
activities for HRP and CALB, respectively. The greatly 
enhanced stability of enzyme/ZIF-8 composites can be 
attributed to the rigid structure and the confinement 
effect of MOF scaffolds that repress protein conforma-
tional transition or unfolding at high temperatures. As 
an exceptional case, free Cyt c itself had a good stability 
in water solution at 70  °C, with almost no loss of activ-
ity during the 6 h incubation (Fig. 4e). For Cyt c/ZIF-8, 
an increased activity up to 450% was observed during 
the incubation at 70  °C, which might be caused by the 
increased accessibility of heme group in Cyt c at high 
temperature which has been discussed previously (Lee 
et  al. 2005; Pace and Hermans 1975; Fujita et  al. 2007). 

Long-term storage stability is important for immobilized 
enzyme. As shown in Additional file  1: Figure S5, the 
HRP/ZIF-8 retained half of its original activity even after 
4-day incubation at room temperature. We attributed the 
retention of the activity to the protecting effect from the 
rigid structure of ZIF-8 for maintaining the conformation 
of encapsulated enzyme. We evaluated the recyclability of 
HRP/ZIF-8. As shown in Additional file 1: Figure S6, the 
activity of HRP/ZIF-8 was decreased by 50% at the third 
cycle of reusing. The loss of activity might be ascribed to 
the difficulty of recovering all the nano-sized composites 
during the centrifugation process in the recovery.

To examine the tolerance of enzyme/ZIF-8 composite 
to polar and hydrophilic solvents at high temperature, 
the enzyme/ZIF-8 composites were incubated in water, 
DMF, DMSO at 80  °C and in boiling methanol, boiling 
ethanol for 1 h. As shown in Fig. 4, by using 4-nitrophe-
nyl butyrate and 1,2,3-trihydroxybenzene as substrate, 
native CALB was almost fully deactivated in all the above 
conditions and native HRP retained no more than 20% 
of its original activity. In contrast, at the same condition, 
the activity of CALB/ZIF-8, HRP/ZIF-8, and Cyt c/ZIF-8 
remained almost unchanged, demonstrating the unprec-
edented protecting effect of the framework. In the case 
of free Cyt c, an enhancement of 50–450% was observed 
after incubation in these solvents. The exceptional activ-
ity can again be ascribed to the exposure of heme in 
Cyt c under the condition where the active sites of Cyt 
c became more accessible to substrates, which facilitates 
the catalysis process (Ono and Goto 2006). When Cyt c 
was encapsulated in ZIF-8, the protecting effect of the 
framework resisted the protein configuration change in 

Fig. 3  a XRD patterns of ZIF-8, Cyt c/ZIF-8, HRP/ZIF-8, CALB/ZIF-8, and simulated ZIF-8. b FT-IR spectrum of ZIF-8, Cyt c/ZIF-8, HRP/ZIF-8, CALB/ZIF-
8, and HRP
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denaturing organic solvents, which resulted in almost 
unchanged of activity (Fig. 4f ).

These organic solvents including DMF, DMSO, metha-
nol, and ethanol are recognized as very effective denatur-
ing reagents for most proteins, because they can seriously 

destroy the structure of protein due to their high polarity 
and solubilization capability. It has been investigated that 
protein molecules in such denaturing solvents quickly 
lost the tertiary and secondary structures, presenting 
as unfolded or partially unfolded configurations (Desai 

Fig. 4  a, c, e Stability of CALB/ZIF-8, HRP/ZIF-8, Cyt c/ZIF-8 incubated in water for 6 h at 40, 50, and 70 °C, respectively. b, d, f Comparison of stabili-
ties of enzymes and corresponding enzyme-MOF composites in water, DMF, DMSO at 80 °C and in boiling methanol and boiling ethanol. Enzymes 
and corresponding enzyme-MOF composited were incubated in the above solvents for 1 h and taken out for enzymatic assays
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and Klibanov 1995; Xu et  al. 1997). The deactivation of 
enzyme induced by denaturing solvents is irreversible. 
Because of the serious denaturing effect, almost no free 
enzyme is reported to retain reasonable activity after 
incubating in these pure organic solvents (DMF, DMSO, 
methanol, and ethanol). Protein engineering (including 
direct evolution and random or site-directed mutagen-
esis) which is a very effective tool for improving enzyme 
stability under various circumstances also found its dif-
ficulty in solving this problem. Protein engineering has 
only been proven to be effective for increasing enzyme 
stability in aqueous-denaturing solvent mixtures. For 
example, random mutagenesis resulted in more stable 
subtilisin, which can only increase its stability in 60% 
DMF (Chen and Arnold 1991). Therefore, the retention 
of activity in these anhydrous denaturing organic solvents 
was still far from enough since these solvents such as 
DMSO and DMF usually served as commonly used sol-
vents for the synthesis of polysaccharides (Ferreira et al. 
2002), peptide (Nilsson and Mosbach 1984), etc. (Bor-
dusa 2002). Recent studies on enzyme-MOF composites 
demonstrated the capability of improving enzyme cata-
lytic performance in aqueous solutions (Feng et al. 2015; 
Lykourinou et al. 2011; Chen et al. 2012). In this study, we 
showed that the confinement of enzyme in ZIF-8 frame-
work provided an effective way to increase enzyme sta-
bility in denaturing organic solvents. The confinement 
of ZIF-8 can prevent the encapsulated protein molecules 
from conformational changes and therefore retain the 
protein structure integrity, while the free enzyme was 
directly exposed to the denaturing organic solvents lead-
ing to serious change of protein configuration and loss of 
activity.

Conclusions
Enzyme/ZIF-8 composites were prepared by the biomi-
metic mineralization process. The one-step synthesis 
was carried out in aqueous solution at room temperature 
within 30  min. The structural rigidity and confinement 
of MOF scaffolds greatly enhanced the thermal stabil-
ity of embedded enzymes. In protein denaturing organic 
solvents including DMF, DMSO and boiling methanol 
and ethanol, free enzymes were almost fully deactivated, 
while enzyme/ZIF-8 composites retained all its original 
activity after incubation in these solvents for 1  h. This 
study demonstrated a green chemistry way of preparing 
immobilized enzymes based on MOFs to achieve high 
enzyme stability at harsh conditions.

Additional file

Additional file 1. Additional information.
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