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Abstract 

The highly acclaimed prospect of renewable lignocellulosic biocommodities as obvious replacement of their fossil-
based counterparts is burgeoning within the last few years. However, the use of the abundant lignocellulosic biomass 
provided by nature to produce value-added products, especially bioethanol, still faces significant challenges. One 
of the crucial challenging factors is in association with the expression levels, stability, and cost-effectiveness of the 
cellulose-degrading enzymes (cellulases). Interestingly, several recommendable endeavors in the bid to curb these 
challenges are in pursuance. However, the existing body of literature has not well provided the updated roadmap of 
the advancement and key players spearheading the current success. Moreover, the description of enzyme systems 
and emerging paradigms with high prospects, for example, the cell-surface display system has been ill-captured in 
the literature. This review focuses on the lignocellulosic biocommodity pathway, with emphasis on cellulase and 
hemicellulase systems. The paradigm shift towards cell-surface display system and its emerging recommendable 
developments have also been discussed. The attempts in supplementing cellulase with other enzymes, accessory 
proteins, and chemical additives have also been discussed. Moreover, some of the prominent and influential discover-
ies in the cellulase fraternity have been discussed.
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Background
The demand for cellulosic biocommodities as an alterna-
tive to fossil-based chemicals has surged within the last 
few decades. This burgeoning exploration could partly be 
attributed to the prevailing economic and environmental 
concerns of fossil-based chemicals. Lignocellulosic bio-
mass is one of the abundant, low-cost, and renewable/
sustainable feedstock for the production of biochemi-
cals (including biofuels) due to its rich cellulose content 
(Roedl 2010; Doherty et al. 2011; Gallezot 2012). Unfor-
tunately, the production of cellulosic biocommodities has 
been technically challenging owing to the recalcitrance 

of lignocellulose, which comprises hemicellulose (20–
30%), cellulose (30–40%), and lignin (20–30%) (Chang 
et al. 2011; Park et al. 2011). This recalcitrance has been 
identified as a major hindrance toward lignocellulose 
depolymerization. Technically, the resistance to enzy-
matic hydrolysis is ascribed to morphological and phys-
icochemical factors such as lignin content (Hendriks and 
Zeeman 2009), degree of crystallinity (Park et  al. 2010), 
degree of polymerization (Kim et  al. 2015b), hemicellu-
lose sheathing (Mosier et al. 2005), accessibility of inner 
microfibrils and porosity (Sharrock 1988), and moisture 
content and particle size of substrate (Chandra et  al. 
2007).

Also, the enzymatic hydrolysis of the cellulose and 
hemicellulose content of lignocellulosic biomass to their 
constituent monomeric sugars capable of use in the pro-
duction of biocommodities (e.g., bioethanol and other 
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value-added biochemicals) has been hindered in so many 
ways. The hydrolysis mostly requires multiple enzymes 
with different specificities to deconstruct the complex 
lignocellulosic structure (Boyce and Walsh 2015). Spe-
cifically, a synergetic action of lignocellulases—cellu-
lases, hemicellulases, lignases (ligninolytic enzymes) and, 
most recently, lytic polysaccharide mono-oxygenases 
(LPMO)—is required for an effective deconstruction 
activity. Remarkably, many efforts toward finding sus-
tainable means of producing significant quantities of cel-
lulosic biochemicals are in pursuance.

Consequently, various reviews focusing on ligno-
cellulose-degrading enzymes, structure, and mode of 
actions have been remarkably reported (Rabinovich et al. 
2002; Haki 2003; Ulrich et al. 2008; Wilson 2009; Juturu 
and Wu 2014; Bornscheuer et  al. 2014). There are also 
reviews on cellulase engineering and other in vitro strat-
egies towards improving the functionality of cellulases 
(Bayer et  al. 2008; Himmel et  al. 2010; Schoffelen and 
van Hest 2012). However, the fraternity still faces chal-
lenges in terms of robustness, hydrolysis efficiency, and 
cost of these crucial enzymes. Some exemplary accounts 
on cellulase improvement strategies have been reported 
(van den Burg 2003; Percival Zhang et  al. 2006; Beck-
ham et al. 2012; Elleuche et al. 2014). Nevertheless, these 
pronounced reviews individually could not provide an 
updated framework of the advancements and key players 
spearheading the current success. Moreover, the paradig-
matic shift from cell-free systems to robust surface dis-
play systems has been ill-captured in the literature. Thus, 
the recommendable achievements have been uncoupled 
with the roadmap of cellulose-degrading enzymes.

This review provides an overview of lignocellulases 
and discusses the roadmap of enzymes and enzyme sys-
tems in ensuring that high levels of reduced sugars are 
obtained from the lignocellulosic biomasses for industrial 
use. The attempts in supplementing cellulase with other 
enzymes, accessory proteins, and chemical additives have 
also been discussed. Herein, the sterling progress in the 
surface display of enzymes has been emphasized. Moreo-
ver, some of the prominent and influential discoveries in 
the cellulase fraternity have been discussed.

Cellulases and their functional properties
Cellulases are glycoside hydrolases (GHs) that decompose 
cellulose—a hydrophilic, water-insoluble polymer com-
posed of repeated units of d-glucose interlinked by β-1,4-
glycosidic bonds—into shorter chain polysaccharides such 
as cellodextrin, cellobiose, and glucose. They commonly 
have a catalytic domain (CD) that cleaves the glycosidic 
bond; carbohydrate-binding module (CBM) that targets 
the CD to the polysaccharide substrate; and, in many cases, 
additional types of ancillary modules such as FN3-like 

modules (Moraïs et al. 2012; Garvey et al. 2013). Cellulases 
are distinctly categorized into three (i.e., endoglucanases, 
exoglucanases or cellobiohydrolases, and β-glucosidases or 
cellobiases) as per their structure and function, but work 
collaboratively to enforce the hydrolysis of the complex 
cellulose microfibrils of the plant cell wall.

The endo- and exoglucanases functionally perform the 
same task—the hydrolysis of glycosidic bonds—but they 
differ structurally in terms of the site (loop) for cellulose 
binding (Juturu and Wu 2014). For instance, endoglu-
canases (E.C.3.2.1.4) are characterized by short loops, 
defining open active site clefts that can bind to any acces-
sible site (especially the amorphous sites) along cellulose 
chains to yield long-chain oligomers (Juturu and Wu 
2014; Wilson 2015). They exhibit rapid dissociation com-
pared with other cellulases, and their action on cellulose 
has been identified as the enzyme activity with greatest 
liquefaction ability that results in a decrease in the chain 
length and viscosity (Boyce and Walsh 2015).

For exoglucanases, they have long loops and affinity for 
the crystalline sites along cellulose chains and yield pri-
marily cellodextrin (Segato et  al. 2014). Most often, the 
loops form a tunnel around the catalytic residues; there-
fore, substrates usually are directed from the end of the 
tunnel to encounter the active site of the enzyme (Juturu 
and Wu 2014). Exoglucanases are in two forms—the 
reducing end (E.C.3.2.1.176) and non-reducing end (E.C. 
3.2.1.91) cellobiohydrolases—but act uni-directionally on 
the long-chain oligomers (Juturu and Wu 2014). These 
classifications are based on the portion of the oligosac-
charide chain each enzyme favorably attacks; however, 
they work “processively” to ensure the breakdown of the 
polysaccharide. For example, Trichoderma reesei cello-
biohydrolases (Cel7A and Cel6A) progressively hydrolyze 
cellodextrin from the reducing and non-reducing chain 
ends, respectively (Wahlström et al. 2014). On the other 
hand, β-glucosidases possess a rigid structure with active 
site residing in a large cavity, called the active site pocket, 
which favors the entry of disaccharides (Nam et al. 2010); 
even though β-glucosidases are also capable of hydro-
lyzing soluble cellodextrins with degree of polymeriza-
tion ≤6 (González-Candelas et al. 1989; Zhang and Lynd 
2004). The active site pocket is encased in four hydro-
phobic loops with different conformations to enhance 
substrate binding (Czjzek et  al. 2000; Nam et  al. 2010). 
Like exoglucanase, β-glucosidases are classified into two 
sub-families, namely: sub-family A and sub-family B. 
Sub-family A includes plant and non-rumen prokaryotic 
cellobiases, and sub-family B includes fungal cellobiases 
(e.g., Trichoderma reesei, Aspergillus niger, and A. acu‑
leatus) and rumen bacteria cellobiases, for example, from 
the anaerobic bovine symbiotic Butyrivibrio fibrisolvens 
(Park et al. 2011).
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The complementary functions of these cellulases are 
crucial for efficient cellulose deconstruction. The classi-
cal hydrolysis theory explains that endoglucanases cata-
lyze random deconstruction of cellulose chains along 
the amorphous regions through the cycles of adsorption 
and desorption, producing mainly cellodextrin; cello-
biohydrolases processively hydrolyze the crystalline cel-
lulose regions either from the reducing or non-reducing 
end, liberating cellobiose as their main product; and 
β-glucosidases finally hydrolyze the released soluble 
cello-oligomers to glucose (Wahlström et  al. 2014). The 
cascading depolymerization activity is governed by (1) 
synergism, (2) processivity, and (3) substrate-channeling 

ability of the enzyme, and the catalytic mechanism 
(Fig. 1) follows the classical acid-catalyst hydrolysis model 
(Garvey et al. 2013). Two critical amino acid residues—
one as a proton donor and the other as a nucleophile—
facilitate the enzymatic cleavage of glycosidic bonds by 
the stereochemical modification (i.e., retention or inver-
sion) of the anomeric carbon configuration (Koshland 
1953; Garvey et  al. 2013). It is worth noting that the 
products of both endo- and exoglucanases can inhibit the 
respective enzyme in a process, called feedback inhibi-
tion. For this reason, exoglucanases and β-glucosidases 
are essentially required to relieve endo- and exoglu-
canases, respectively, from feedback inhibition. Similarly, 
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Fig. 1  The two major catalytic mechanisms of GHs, namely: the inversion (a) and retention (b) mechanisms. These two mechanisms lead to the 
effective hydrolysis of cellulosic substrates. The reader is referred to Zechel and Withers (2000) and Koshland (1953) for a detailed review
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β-glucosidases also face glucose inhibition and, thus, the 
search for glucose-tolerant β-glucosidases is developing.

Recent insights have revealed oxidative enzymes, lytic 
polysaccharide mono-oxygenases (LPMOs), as key play-
ers in biomass decomposition. According to reports, 
LPMOs complement the functionality of the canonical 
cellulases by improving substrate accessibility and intro-
ducing chain breaks in the cellulose strand by oxidative 
means (Vaaje-Kolstad et al. 2010; Horn et al. 2012). The 
emergence of these auxiliary enzymes has critically dis-
puted the classical concept of carbohydrate polymer sac-
charification and, thus, has provided additional insight 
into how saprophytes effectively attack cellulosic sub-
strate (Hemsworth et al. 2013a). LPMOs have been fur-
ther discussed in “Lytic polysaccharide mono-oxygenases 

(LPMOs).” Figure  2 describes the contemporary under-
standing of cellulose degradation.

Common and developing sources of cellulases
Cellulases have been commonly sourced from differ-
ent organism, mainly fungi, bacteria, and protozoans, 
although plant and animal cellulases are known (Kim 
and Kim 2012). Among the organisms, fungi and bacteria 
express functionally diverse multiple isoforms of cell wall 
degrading enzymes as a result of genetic redundancy, dif-
ferential mRNA processing, or post-translational modifi-
cation (Badhan et al. 2007). Therefore, fungi and bacteria 
have become the focus of the recent cellulase industry. 
Table 1 displays some cellulolytic fungi and bacteria with 
their sources.
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Fig. 2  Cellulase hydrolysis theory. a The non-reducing end; b the reducing end. Endoglucanase cleaves amorphous sites of cellulose to yield long-
chain oligomers; exoglucanase processively attacks crystalline sites to produce cello-oligomers; and β-glucosidase hydrolyzes cellobiose to ferment-
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Fungi sources
Currently, fungi are the most studied group of cellulose-
degrading microorganisms, owing to their high protein 
secretion capabilities and multi-component, synergetic, 
cellulolytic, enzyme activity (Ulrich et  al. 2008; Juturu 
and Wu 2014). The most extensively studied cellulo-
lytic enzymes are T. reesei cellulases because of their 

application in commercial cellulase preparations (Wahl-
ström et  al. 2014). The cellulase mixtures of T. reesei 
(the ‘gold standard’) consist predominantly of exoglu-
canases, which contribute up to 80% of the total protein; 
endoglucanases (up to 15% of the total protein); and 
lesser amounts of enzymes with other hydrolytic activi-
ties (Garvey et al. 2013). According to Parisutham et al. 

Table 1  Some cellulolytic microbes and their sources. Modified from: Himmel et al. (2010)

a  Most Cellulomonas and Bacillus strains are facultative anaerobes that can also grow anaerobically

Bacteria Fungi

Species Source Species Source

Aerobes (free, non-complexed cellulases)

 Mesophilic bacteria  Mesophilic fungi

  Bacillus brevisa Termite gut   Aspergillus nidulans, A. niger, A. oryzae Soil, wood rot

  B. thuringiensisa Caterpillar gut

  Bacillus cereusa, B. subtilisa Soil, rumen   Agaricus bisporus Compost

  Cellulomonas fimia Soil   Coprinus truncorum Soil, compost

  Cellvibrio japonicas Soil   Geotrichum candidum Soil, compost

  Cytophaga hutchinsonii Soil, compost   Penicillium chrysogenum Soil, wood rot

  Paenibacillus polymyxa Compost   Phanerochaete chrysosporium Compost

  Pseudomonas fluorescens Soil, sludge   Rhizopus oryzae Soil, dead organic matter

  Pseudomonas putida Soil, sludge   Trichocladium canadense Soil

  Saccharophagus degradans Rotting marsh grass   Trichoderma reesei Soil, rotting canvas

  Sorangium cellulosum Soil   Trichoderma longibrachiatum Soil

 Thermophilic bacteria  Thermophilic fungi

  Acidothermus cellulolyticus Hot spring   Chaetomium thermophilum Soil

  Thermobifida fusca Compost   Corynascus thermophilus Mush compost

  Paecilomyces thermophile Soil, compost

  Thielavia terrestris Soil

Anaerobes (complexed or free, non-complexed cellulases)

 Mesophilic bacteria  Mesophilic fungi

  Acetivibrio cellulolyticus Sewage   Neocallimastix patriciarum Rumen

  Bacteroides cellulosolvens Sewage   Orpinomyces joyonii Rumen

  Clostridium cellulolyticum Compost   Orpinomyces PC-2 Rumen

  Clostridium cellulovorans Wood fermenter   Piromyces equi Rumen

  Clostridium josui Compost   Piromyces E2 Feces

  Clostridium papyrosolvens Mud (freshwater)

  Clostridium phytofermentans Soil

  Fibrobacter succinogenes Rumen

  Prevotella ruminicola Rumen

  Ruminococcus albus Rumen

  Ruminococcus flavefaciens Rumen

 Thermophilic bacteria

  Anaerocellum thermophilum Hot spring

  Caldicellulosiruptor
Saccharolyticus

Hot spring

  Clostridium thermocellum Sewage, soil, manure

  Clostridium stercorarium Compost

  Thermotoga maritima Mud (marine)

  Rhodothermus marinus Hot spring
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(2014), T. reesei also possesses intracellular β-glucosidase 
to avoid effects of cellobiose feedback inhibition during 
cellulose hydrolysis. However, the levels of β-glucosidases 
are mostly low and, thus, require supplementation from 
other sources such as Aspergilli.

The emergence of filamentous fungi of the genus Asper‑
gillus as one of the key cellulase-producing organisms 
has made an outstanding impact in bioprocessing. For 
example, Aspergillus oryzae (Chandel et al. 2011; Begum 
and Alimon 2011), A. unguis (Rajasree et  al. 2013), A. 
tubingensis (Decker et al. 2001), A. fumigatus (Watanabe 
et al. 1992; Anthony et al. 2003; Soni et al. 2010; Sherief 
et al. 2010; Liu et al. 2011; Das et al. 2013), and the most 
pronounced A. niger (Kang et al. 2004; Hanif et al. 2004; 
Varzakas et al. 2006; Sohail et al. 2009; Sakthi et al. 2011; 
Bansal et al. 2012; Oberoi et al. 2014) have been studied 
for their cellulolytic benefits. The Aspergillus species pro-
duce different isoforms of enzymes such as cellulases, 
xylanases, laccases, and other accessory proteins neces-
sary for biomass depolymerization. The multiplicity is 
due to the presence of diverse protein encoding genes, 
differential glycosylation of common polypeptide chains, 
and post-translational modification disparities (Willick 
and Seligy 1985; Decker et  al. 2001). Moreover, physi-
cal and nutritional factors may also account for reported 
differences in enzyme expression and expression levels. 
Enzymes from Aspergilli are mostly reported to exhibit 
low total cellulase activity (Falkoski et al. 2013); however, 
their high β-glucosidase expressing levels have made 
them relevant game changers for industrial applications. 
One remarkable property of the species in the genus is 
their tolerance against osmotic gradients. For example, 
the high glucose-tolerance of β-glucosidases from Asper‑
gillus sp. has been reported (Riou et al. 1998; Günata and 
Vallier 1999; Rajasree et al. 2013; Das et al. 2015), and this 
revelation has been vital in the roadmap to the ‘green’ 
future.

Yeast has also had its use in cellulolytic investigations. 
Foreseeably, yeast found its application as a common 
expression platform for enzyme systems because of its 
robustness. Interestingly, a recombinant yeast has been 
able to express three copies each of endoglucanase and 
exoglucanase, and one copy of β-glucosidase for cellulose 
depolymerization (Matano et al. 2013; Parisutham et al. 
2014). According to Juturu and Wu (2014), yeast provides 
numerous advantages when used as a host for recom-
binant protein expression. The benefits include: (1) the 
ability to perform eukaryotic post-translational modifi-
cations; (2) the ability to secrete recombinant proteins; 
(3) the ability to grow to very high cell densities; (4) the 
wide availability of yeast strains for recombinant pro-
tein expression; and (5) the relatively toxin-free nature 
of yeast cells in comparison with endotoxin-associated 

bacterial strains, whose products may require purifica-
tion (if ingestible or injectable). The unending stream of 
science has more to uncover regarding fungal cellulases, 
owing to their capabilities of producing copious amounts 
of enzymes.

Bacteria sources
Although much of the cellulases used for lignocellulosic 
biomass hydrolysis are derived from fungi, yet the isola-
tion and characterization of novel carbohydrate-degrad-
ing enzymes from bacteria are now widely exploited. 
This is because of the efficient heterologous production, 
high specific activity, and less stringent pH requirement 
of bacterial systems. The most effective natural cellulo-
lytic system known is produced by bacteria (Stern et al. 
2015). Well-known genera for bacteria-based cellulolytic 
enzymes are mostly Bacillus, Cellulomonas, Streptomy‑
ces, Cytophaga, Cellvibrio, and Pseudomonas. Although 
many types of proteins have been produced by Escheri‑
chia coli, there is no report on natural cellulolytic E. coli 
in the past several years (Yamada et al. 2013). However, 
through metabolic engineering E. coli are made tractable 
such that they can be endowed with an efficient cellulo-
lytic system capable of producing high-value compounds 
from lignocellulosic biomass.

In bacteria, cellulases are mostly present as extracellu-
lar aggregated structures attached to the cells (Juturu and 
Wu 2014). However, the expression of highly active cel-
lulases of fungal origin in bacterial expression platforms 
has been a persisting challenge, with many resulting in 
diverse expression inefficiencies (Garvey et  al. 2013). E. 
coli remains the most commonly used system for recom-
binant cellulase protein production, particularly for the 
expression and characterization of novel cellulolytic 
proteins, including those from extreme habitats or ani-
mal guts (Garvey et al. 2013). The high protein secretion 
capacity of Bacillus subtilis, with its high-activity endo-
glucanase, has also been used to engineer recombinant 
cellulase strains that thrive on cellulose as a sole carbon 
source without any other organic nutrient (Zhang 2011).

Remarkably, the future of cellulolytic enzyme sources is 
gradually shifting toward bacterial sources. The discovery 
of the exceptional cellulolytic properties of bacteria from 
the genera Clostridium and Thermotoga has contributed 
to the gradual shift from the dominant fungi sources to 
that of bacteria. The nature of cellulases from these spe-
cies are thermostable and optimally active at elevated 
temperatures between 60 and 125 °C (Vieille and Zeikus 
2001; Schiraldi and De Rosa 2002; Haki 2003); thus, mak-
ing them essential candidates for improving the techno-
economics of biomass saccharification (Parisutham et al. 
2014). Notably, running enzymatic hydrolysis at higher 
temperatures has the penchant to (1) promote biomass 
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disorganization; (2) increase substrate solubility; (3) 
improve rheological properties (e.g., viscosity); and (4) 
reduce the risk of microbial contamination (Vieille and 
Zeikus 2001; Boyce and Walsh 2015). Bacteria from the 
genera Clostridium and Thermotoga also produce self-
assembled scaffolded multimodular enzyme systems, 
termed cellulosomes, to efficiently hydrolyze the complex 
and rigid structure of cellulose (Brunecky et  al. 2012). 
The extreme stabilities (e.g., pH and thermal) and mul-
tifunctional nature of enzymes produced by these cellu-
losome-expressing bacteria have revolved the attention 
of scientist on to understanding the structure and func-
tion of their genetic makeup in order to mimic the innate 
abilities. On account of the obvious benefits reported in 
the literature, scientists have consistently investigated 
the gene (Yagüe et  al. 1990; Zverlov et  al. 2003; Koeck 
et  al. 2013), fusion/modification of enzymes (Ciolacu 
et al. 2010; Lee et al. 2010; Ye et al. 2010; Lee et al. 2011; 
Nakashima et  al. 2014), and the optimal growth (Islam 
et al. 2013; Reed et al. 2014) of these useful microbes to 
harness their inherent benefits. For example, the bio-
chemical and biophysical characteristics of multimodu-
lar enzymes from Clostridium thermocellum (Zverlov 
et  al. 2005; Tachaapaikoon et  al. 2012; Brunecky et  al. 
2012; Hirano et al. 2013; Yuan et al. 2015) and Thermo‑
toga maritima (Chhabra et al. 2002; Carvalho et al. 2004; 
Pereira et al. 2010; Wu et al. 2011) have been reported.

Most currently, the main interest of the biobased 
industries has been on the application of extremozymes 
(Demirjian et  al. 2001; Egorova and Antranikian 2005). 
These enzymes derived from extremophilic microorgan-
isms (acidophiles, alkaliphiles, halophiles, thermophiles, 
psychrophiles, and piezophiles) are rich sources of natu-
ral tailored enzymes, which are functionally more supe-
rior over their mesophilic counterparts for applications 
at extreme/harsh conditions that were long thought to 
be destructive to proteins (van den Burg 2003; Elleuche 
et  al. 2014). Extremozymes are capable of catalyzing 
their respective reactions in non-aqueous environments, 
water/solvent mixtures, at extremely high pressures, 
acidic and alkaline pH, at temperatures up to 140 °C, or 
near the freezing point of water (Schiraldi and De Rosa 
2002; Elleuche et al. 2014). The outstanding prospects of 
these enzymes have created a surge in their investigation 
for use in biotechnological and industrial applications. 
In conformity with industrial demands, the cellulolytic 
prospects of the anaerobic extremophile, Caldicellulo‑
siruptor bescii (formerly Anaerocellum thermophilum, 
isolated from a geothermally heated pool), have been 
exemplified in literature (Yang et  al. 2009; Kanafusa-
Shinkai et  al. 2013). The C. bescii and some of its rela-
tives in the same genus secrete free (non-cellulosomal) 
biomass-degrading enzymes rich in CBMs (specifically 

CBM3 family) that target the enzymes to crystalline cel-
lulose, but show high degree of multi-modularity (Har-
ris et  al. 2014). This Gram-positive, non-spore-forming, 
neutrophilic, cellulolytic/hemicellulolytic bacterium 
grows in a temperature range of 40–90 °C, with an opti-
mum temperature of 72–80  °C, and efficiently degrades 
crystalline cellulose, xylan, and non-pretreated plant bio-
mass such as Napier grass, switch grass, and hardwood 
poplar (Yang et  al. 2009; Kanafusa-Shinkai et  al. 2013). 
For example, the C. bescii CelA (comprising a GH family 
9 and a family 48 CD, as well as three type-III CBMs) and 
its fragments can depolymerize lignocellulosic biomass 
to glucose, cellobiose, and xylose via a combined surface 
ablation and cavity-forming mechanism without the help 
of accessory proteins (Brunecky et al. 2012). These abili-
ties of C. bescii make it a potential candidate for thor-
ough investigation and implementation. Table 2 shows a 
list of some industrially relevant thermostable cellulases 
that have been isolated and characterized.

Developing practices for improving the production 
and performance of cellulases
Some cellulase improvement techniques
Recently, there have been several attempts to acquire 
highly efficient cellulases with improved cellulolytic 
activity and stability (di Lauro et  al. 2006; Mesas et  al. 
2012; Jagtap et  al. 2013). Various improvement meth-
ods including rational design and directed evolution in 
complementation with techniques like DNA family shuf-
fling and error-prone polymerase chain reaction (PCR) 
have been prominent. For example, Wang et  al. (2014) 
have reported the application of random mutagenesis 
followed by genome shuffling to improve the cellulase 
production of Trichoderma koningii D-64. Also, struc-
ture-based protein design has been successfully used to 
increase thermal resistance and modify substrate speci-
ficity of glucosidases (Lee et  al. 2012). The uses of ran-
dom insertion domain strategies to allosterically modify 
enzymes have also been reported (Ribeiro et  al. 2015). 
These allosteric enzymes present spatially distinct loca-
tions for regulation and catalysis and offer oligomeric 
states where tertiary and quaternary structural changes 
are transmitted across protein–protein interfaces to facil-
itate the communication between effector binding and 
modulation of catalytic activity (Ribeiro et al. 2015). The 
random insertion strategy has been relevant for curbing 
the hindrance of inhibition. However, the very large and 
costly nature of random insertion libraries, and associ-
ated bias towards certain insertion points have been 
challenging; therefore, the design of smaller high-quality 
libraries using a semi-rational approach is developing. 
Convincingly, the application of metagenomic techniques 
to exploit the functional genes in uncultured natural 
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microorganisms could help in overcoming the limit of 
pure cultivation methods (Chang et al. 2011). Moreover, 
harnessing glycosylation—a form of post-translational 
modification—to improve cellulase activity looks promis-
ing (Easton 2011; Beckham et al. 2012).

Cellulase supplementations
The supplementation of cellulases with additives (biologi-
cal and non-biological) for lignocellulose saccharification 
has been witnessed. This developing practice is based on 
the understanding that the effective degradation of the 
complex structure of lignocellulose requires not only cel-
lulases, but also supplementary enzyme blends of ligni-
nases (laccases), hemicellulases, and accessory proteins, 
depending on the morphological characteristics of the 
lignocellulosic biomass. Chemical additives have also 
been used to improve the functionality of cellulases.

Biological additives
Laccases  Laccases (benzenediol: oxygen oxidoreduc-
tase; EC 1.10.3.2) are multi-copper oxidases, capable of 
catalyzing one-electron oxidation of various substrates 
such as phenolic and non-phenolic subunits of lignin 
(Lahtinen et al. 2009; Dwivedi et al. 2011; Chandel et al. 
2013). Laccases have four copper atoms present in their 
active sites which are distributed at three different cop-
per centers, namely: Type-1 (blue copper center), Type-2 
(normal copper), and Type-3 (coupled binuclear copper 
centers) (Dwivedi et al. 2011). These copper atoms serve 
as a catalytic metal and reducing agent for the oxidation 
of various carbons (C-1, C-4, and C-6) in the polymeric 

structure (Segato et al. 2014). Ascorbate oxidase, ferroxi-
dases, ceruloplasmin, and bilirubin oxidases are examples 
of members in the multi-copper protein family.

The primary substrate of laccases is lignin, an amor-
phous, complex cross-linked polymer consisting of phe-
nylpropane units (Claus 2004; Moilanen et  al. 2011). In 
general, laccases break down lignin into less harmful 
products, using electron transfer and hydrogen atom 
transfer mediators. Laccases are widely distributed in 
plants, fungi, and bacteria and exhibit diverse functions 
and stability, depending on their source organism and 
physiology. Molecular structure elucidations and the 
electrochemical assessment of laccases have resulted 
in three classifications, namely: high, medium, and low 
redox potential laccases (Mot and Silaghi-Dumitrescu 
2012; Mate and Alcalde 2015). Plant and bacterial lac-
cases belong to the low redox potential category, whereas 
fungal laccases are categorized as either high or medium 
redox potential laccases. The magnitude of the redox 
potential correlates with the substrate range and oxida-
tion capacity of the enzyme (Mate and Alcalde 2015). 
As a result, fungal laccases exhibit high wood depolym-
erization activity and are widely distributed in ascomy-
cetes, deuteromycetes, and basidiomycetes; the most 
efficient species known is the white-rot fungus (Dwivedi 
et  al. 2011; Pandiyan et  al. 2014). Bacterial laccases are 
also active lignin degraders, but with high thermal and 
pH stability compared with fungal laccases, and hence 
more compatible with almost all industrial processes 
when immobilized (Dwivedi et al. 2011). Some examples 
of bacterial laccase sources are Azospirillum lipoferum, 

Table 2  Some thermostable cellulases of industrial significance

NA not analyzed

Cellulase Source/organism Maximum/optimum activity Stability (T1/2) References

Cellulase Desulfurococcus fermentans 
(Hyperthermophilic archaea)

80–82 °C (pH 6) 85 °C, >3 days (Perevalova 2005)

Endoglucanase (GH5) Hyperthermophilic archaea 109 °C (pH 6.8) 100 °C, 5 h (Graham et al. 2011)

Endoglucanase (GH5) Dictyoglomus thermophilum 50–85 °C (pH 5) 70 °C, 336 h (Shi et al. 2013)

β-Glucosidase (GH1) Thermotoga thermarum DSM 
5069T

90 °C (pH 4.8) 90 °C, 2 h (Zhao et al. 2013)

β-Glucosidase (GH1) Hydrothermal spring metage-
nome

90 °C (pH 6.5) 90 °C, >1.5 h (Schröder et al. 2014)

β-Glucosidase (GH1) Alicyclobacillus acidocaldarius 65 °C (pH 5.5) 65 °C, >3 h (di Lauro et al. 2006)

β-Glucosidase (GH3) Thermofilum pendens 90 °C (pH 3.5) 90 °C, >2 h (Li et al. 2013)

β-Glucosidase (GH3) Pholiota adiposa SKU0714 65 °C (pH 5) 65 °C, 23 h (Jagtap et al. 2013)

β-Glucosidase Pyrococcus furiosus 102–05 °C (pH 5) 100 °C, 85 h (Kengen et al. 1993)

β-Glucosidase Oenococcus oeni ST81 40 °C (pH 5) 40 °C, 50 days (Mesas et al. 2012)

β-Glucosidase Sphingopyxis alaskensis 50 °C (pH 5.5) NA (Shin and Oh 2014)

CMcellulase Bacillus pumilus S124A 50 °C (pH 6.0) NA (Balasubramanian and Simões 
2014)

Multi-domain (Hemi)cellulase Caldicellulosiruptor bescii 72–80 °C (pH 5–6) NA (Kanafusa-Shinkai et al. 2013)
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Bacillus subtilis, Anabaena azollae, Streptomyces cya‑
neus, and Streptomyces lavendulae. Contrary to fungal 
and bacterial laccases which accelerate lignin degrada-
tion and aid in bioremediation, plant laccases typically 
facilitate the biosynthesis of lignin in the plant cell wall 
(Lahtinen et al. 2009). Some sources of plant laccases are 
Rhus vernicifera, Rhus succedanea, Populus eurameri‑
cana, Nicotiana tobacco, and Zea mays.

Remarkably, the complex plant cell wall lignin depo-
lymerization property of laccases (fungi and bacteria) has 
been vital in the deconstruction of residual lignin that 
may be present after pretreatment. For instance, the pres-
ence of lignin oxidases (laccases) in cellulose hydroly-
sis boosts cellulase activity by liberating cellulases from 
unproductive binding sites on lignocellulosic substrates 
to increase the effective concentration of free cellulases 
in solution (Berlin 2013). Also, laccases could possibly 
address issues regarding phenolic compound inhibition 
of cellulases. For example, Hyeon et  al. (2014) achieved 
2.6-fold increase in the yield of reduced sugar from pre-
treated barley straw using cellulase–laccase blends. 
Moilanen et  al. (2011) employed blend of commercial 
cellulases and laccases on pretreated spruce and obtained 
12% increase in hydrolysis yield. Furtado et al. (2013) and 
Ribeiro et al. (2011) have also demonstrated the improve-
ment in synergy and catalytic performance of fused lac-
cases–(hemi)cellulase complex for biomass hydrolysis.

Hemicellulases  Hemicellulases commonly share similar 
activities with cellulases because of the common β-1,4-
glycosidic bonds in the backbone of the hemicellulose 
component of plant biomass (Chang et  al. 2011). The 
hemicellulose substrate is a complex carbohydrate struc-
ture consisting of different easy hydrolysable polymers 
such as pentoses (e.g., xylose and arabinose), hexoses 
(e.g., mannose, glucose, and galactose), and sugar acids 
(Hendriks and Zeeman 2009). Pretreated lignocellulosic 
biomass hydrolysis is strongly affected by the presence 
of hemicellulose—the most thermo-chemically sensi-
tive among cellulose, hemicellulose, and lignin—which 
connects lignin to cellulose fibers and gives the whole 
cellulose–hemicellulose–lignin network more rigidity 
(Hendriks and Zeeman 2009). For instance, xylans—the 
dominant component of hemicellulose from hardwood 
and agricultural plant—and xylooligomers putatively 
have a direct inhibitory effect on cellulases (Hendriks and 
Zeeman 2009; Harris et al. 2014); hence, the need for its 
depolymerization to reduce the burden on cellulases and 
improve sugar yields.

Hemicellulases are mostly modular proteins possess-
ing CDs, CMBs, and other functional modules to facili-
tate the cleavage of either glycosidic or esterified acid side 
groups (Shallom and Shoham 2003; Decker et al. 2008). 

For instance, α-glucuronidases, α-arabinofuranosidases, 
α-d-galactosidases, and mannanases attack glycosidic 
bonds whereas acetyl or feruloyl esterases hydrolyze 
ester bonds of acetate or ferulic acid side groups in the 
plant cell wall structure. In most cases, hemicellulases 
are employed in concert with cellulases in the depolym-
erization of lignocellulosic biomass to fermentable sug-
ars. Relative to the theoretical sugar content, Gao et  al. 
(2011) reported recommendable quantities of reduced 
sugars from corn stover pretreated by ammonium fiber 
expansion (99% glucose and 55% xylose), dilute acid (97% 
glucose and 68% xylose), and ionic liquid (88% glucose 
and 53% xylose) using cellulase–hemicellulase cocktail. 
Since hemicellulose presents a rich source of carbon, its 
successful hydrolysis improves the yield of fermentable 
sugars.

Lytic polysaccharide mono‑oxygenases (LPMOs)  LPMOs 
are copper-dependent enzymes mostly found in sapro-
phytic fungi (e.g., Thermoascus aurantiacus, Gloeophyl‑
lum trabeum, Lentinus similis, Pichia pastoris, Neuros‑
pora crassa) and bacteria (e.g., Bacillus amyloliquefaciens, 
Enterococcus faecalis) (Quinlan et al. 2011; Phillips et al. 
2011; Beeson et al. 2012). They were previously grouped 
among GHs because of their weak endocellulase activi-
ties (Karlsson et al. 2001; Karkehabadi et al. 2008). How-
ever, modern understanding of their characteristics has 
resulted in their reclassification as auxiliary activity (AA) 
family enzymes. Based on mainly structural differences, 
bacterial (AA10; formerly CBM33) and fungal (AA9; 
formerly GH61) LPMOs have been studied and classi-
fied. Moreover, a supportive classification based on Pep-
tide Pattern Recognition sequencing has recently been 
reported (Busk and Lange 2015). Nevertheless, their func-
tional distinctions and associated mechanisms are yet to 
be fully elucidated to help exploit their maximum bene-
fits. Accordingly, studies focusing on the structure (Harris 
et al. 2010; Aachmann et al. 2012; Hemsworth et al. 2013b; 
Borisova et al. 2015; Frandsen et al. 2016) and interactions 
(Isaksen et al. 2014; Eibinger et al. 2014; Courtade et al. 
2016; Kracher et al. 2016) of LPMOs are surfacing.

According to structural discussions, the active sites of 
LPMOs are held in the center of an extended flat face 
structure—unlike the tunnel-shaped structures hous-
ing the active sites of canonical hydrolases (i.e., endo- 
and exoglucanase)—for an efficient interaction with 
substrates such as cellulose (including cello-oligosac-
charides) and chitin (Hemsworth et  al. 2013a; Isaksen 
et al. 2014). Technically, the active site is said to possess 
a monomeric type II copper ion (Cu2+) aligned by an 
N-methylated N-terminal histidine in a network, termed 
histidine brace, to help the enzyme interact with sub-
strates (Quinlan et al. 2011; Hemsworth et al. 2013b).
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The LPMO substrate catalysis is a consequence of the 
binding of active oxygen molecule from the atmosphere 
to the monomeric Cu2+, which culminates in the inter-
action of the active site with available chains within the 
polysaccharide matrix (substrate). LPMOs assist in the 
biomass decomposition process by oxidatively attacking 
the most accessible and most reactive C–H bonds (i.e., 
C-1 and C-4) along the cellulose strand using molecu-
lar oxygen, an external electron donor and, putatively, 
CBM (Hemsworth et al. 2013a; Walton and Davies 2016). 
In other words, the enzymes promote the abstraction 
of hydrogen atoms and assist in the scission of β-1,4-
glycosidic linkages between C-1 and C-4 of the cellulose 
chain.

The role of LPMOs is dependent on substrate dynam-
ics and process conditions. Practically, the overall sac-
charification yield increases when LPMOs are combined 
with the three common cellulases, especially in the pro-
cessing of dry matter with relevant remnants of lignin 
(Cannella and Jørgensen 2014). Jung et al. (2015) inves-
tigated LPMO from Gloeophyllum trabeum in concert 
with cellulases and xylanase. Though no significant indi-
vidual LPMO activity was observed, the work reported 
an accelerated synergistic degradation of pretreated 
kenaf and oak (Jung et  al. 2015). Also, Müller et  al. 
(2015) studied the activity of LPMOs with Celluclast® on 
lignocellulosic biomass of high dry matter concentration 
and reported an improved product generation. However, 
their work revealed the need to reconsider process con-
ditions to favor the oxygen and free electron demands 
of LPMOs (Müller et  al. 2015). Nevertheless, West-
ereng et  al. (2015) showed that the lignin component 
of lignocellulosic substrates provides a reserve of elec-
trons capable of promoting the activity of LPMOs. The 
effects of divalent cations on LPMO effectiveness was 
previously stressed by Harris et  al. (2010). Also, Can-
nella et al. (2012) have unveiled the possible inhibition of 
β-glucosidase activity by the LPMO products (e.g., cel-
lobionic and gluconic acids).

‘Non‑hydrolytic’ accessory proteins  The common non-
hydrolytic proteins known are expansins and swollenins. 
Expansins are phytoproteins capable of loosening the 
plant cell wall and disrupting the cellulose crystal struc-
ture, whereas swollenins are expansin derivatives from 
fungi (e.g., T. reesei, Aspergillus fumigatus, etc) and bac-
teria (e.g., Bacillus subtilis). Swollenin also exhibits crys-
tal-disruption activity on cellulosic materials (Nakashima 
et  al. 2014). There are proofs that these non-hydrolytic 
accessory proteins can enhance cellulase activity through 
their ability to disrupt hydrogen bonds to reduce cellu-
lose crystallinity while increasing cellulase accessibility to 
enzymes (Harris et al. 2014).

In response to the known benefits, researchers are 
investigating the enhancing effects of these non-hydro-
lytic accessory proteins on cellulose degradation, espe-
cially in a reaction mixture. Nakatani et  al. (2013) 
demonstrated, for the first time, the synergetic effect of 
co-displayed cellulase and expansin-like protein on a 
Saccharomyces cerevisiae cell surface, and they reported 
2.9-fold higher degradation activity on phosphoric acid-
swollen cellulose (PASC) compared with the activity of 
cellulase-expressing strain only. Nakashima et  al. (2014) 
also studied fused Bacillus subtilis expansin and Clostrid‑
ium thermocellum endoglucanase for the degradation 
of highly crystalline cellulose and reported about 35% 
digestibility by the fused proteins. The use of these acces-
sory enzymes in cellulase blends for industrial appli-
cations is liable to improve the level of reduced sugar 
obtainable from lignocellulosic substrates, thus, requires 
more investigation.

Chemical additives
Chemical additives have been used with cellulases to 
provide enzymatic process enhancement in the form 
of metal cofactors or activators. These activators come 
in the form of metal ions and chelating agents, yielding 
significant effects on enzymatic activities by assisting in 
the biochemical transformations. Some of these addi-
tives (e.g., surfactants) are effective for lignocellulose 
depolymerization, in that they putatively prevent enzyme 
denaturation and inactivation by reducing the unproduc-
tive adsorption of enzymes onto the substrate via hydro-
phobic interactions with lignin (Eriksson et al. 2002). For 
a quick example, Fontes and Gilbert (2010) explained that 
calcium is pivotal for dockerin (a facet of most enzyme 
structures) stability and function, and in the presence 
of ethylenediaminetetraacetic acid (EDTA, a chelating 
agent), dockerins are unable to interact with cohesins 
(another facet of most enzyme structures).

Boyce and Walsh (2015) studied the effect of various 
additives, such as CaCl2, EDTA, MgCl2, Tween 20, and 
Triton X-100, on Alicyclobacillus vulcanalis endoglu-
canase activity by adding specified concentration of these 
additives to the enzyme sample and immediately measur-
ing their influence on the enzyme activity. Relative to the 
control (enzyme without additives), they reported that 
CaCl2 (10 mM) and EDTA (2 mM) yielded, respectively, 
97 and 98% activities; whereas MgCl2 (10  mM) yielded 
86%, but exhibited a slight inhibitory effect on the activ-
ity of the endoglucanase. They further reported that the 
inclusion of 0.1% Tween 20 or 0.5% Triton X-100 in the 
enzyme solution improved the enzyme thermal stabil-
ity while enhancing the enzyme activity with 124 and 
126%, respectively. They attributed the significant benefi-
cial effect of Tween 20 and Triton X-100 to (1) reduced 
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unproductive adsorption of enzymes to lignin; (2) 
changes in the enzyme reaction milieu, and (3) reduced 
enzyme denaturation as a result of the surfactant binding 
on enzyme secondary and tertiary structures.

Also, Kim et  al. (2015a) analyzed the effects of metal 
ions and a chelating agent on the activity of xylanase–
cellulase fusion protein (Xyl10g GS Cel5B) and reported 
that the endoglucanase and xylanase activities increased 
by 39 and 15%, respectively, in the presence of 1  mM 
CoCl2. They, however, reported a complete inhibition of 
activity of the fused protein by HgCl2.

Moreover, in an experiment to characterize a 
β-glycosidase (Aab-gly) from the thermoacidophilic 
bacterium (Alicyclobacillus acidocaldarius), Lauro et  al. 
(2006) reported that divalent cations, namely: Mg2+, 
Mn2+, Ca2+, Zn2+, Co2+, Cu2+, and Ni2+ (each at 5 mM, 
65  °C, and on 2  mM 2NP-β-Glc) had significant activa-
tion effect on Aab-gly. However, Zn2+ and Co2+ inhib-
ited the enzyme by 33 and 96%, respectively. Mesas et al. 
(2012) examined the effects of chloride salts (MgCl2, 
MnCl2, FeCl2, ZnCl2, CoCl2, CaCl2, and CuCl2) on the 
activity of β-glucosidase from Oenococcus oeni ST81 and 
reported that only Mn2+ seemed to slightly increase the 
enzyme activity; whereas Cu2+, Fe2+, Zn2+, and Co2+ 
clearly reduced the catalytic activity of the enzyme from 
8 to 54%, depending on the identity and concentration of 
the metal ion. There are more other interesting additive-
effect observations reported in literature (Kengen et  al. 
1993; Schülein 2000; Li et al. 2013; Zhao et al. 2013; Jag-
tap et al. 2013; Balasubramanian and Simões 2014).

The major concern of additive experiments has been 
the ill-explained discrepancies of the data obtained. The 
discrepancies in enzyme-additive reportage reinforce the 
phenomenon of enzyme selectivity in the use of cofac-
tors. Interestingly, even cations of the same valency have 
yielded different results. The discrepancy could be associ-
ated with the charge density of the additive and the size of 
the active site pocket of the enzyme, but this point should 
be proved experimentally. It is rational to conclude that 
the effects of these metal cofactors are enzyme and/or 
organism depended, and hence thorough studies should 
be focused on this to consolidate existing understanding.

The chronology of cellulolytic GH systems
Lignocellulosic substrates require several enzymatic 
strategies, even after pretreatment, to ensure significant 
generation of fermentable sugars and subsequent pro-
duction of biochemicals. These strategies may be con-
ducted separately or in combination, and they involve 
the following dominant microbial paradigms: cell-free 
enzyme systems, multi-enzyme (cellulosome) complexes, 
and multifunctional enzyme systems. These underlined 
systems have their associated pros and cons, and hence 

require continual studies and improvement. Figure  3 
shows the common configurations of microbial cellulase 
systems.

GH cell‑free systems
The concept of cell-free enzymes was presented by Buch-
ner in 1897, where he claimed that biological processes 
could be carried out without living cells (Khattak et  al. 
2014b). Typically, cell-free systems are used for cofac-
tor-independent reactions, and often exhibit reaction-
rate-limited kinetics, resulting from the direct access 
to substrate in solution (Smith et  al. 2015). Cell-free 
enzymes have been exploited both in single (Kengen et al. 
1993; Kim et al. 2010; Böhmer et al. 2012) and multiple 
domain systems (Kanafusa-Shinkai et  al. 2013). Several 
immobilization practices have been reported (Kazen-
wadel et al. 2015). The general concept of immobilization 
has been highlighted in a subsequent section.

Among the numerous microorganisms known for their 
cellulolytic potentials, few has been identified to pro-
duce significant quantities and a complete set of cell-free 
lignocellulases in  vitro (Patagundi et  al. 2014). Accord-
ing to Khattak et  al. (2014a), GH cell-free systems are 
considered as possible solution for surmounting all com-
plexities and shortcomings associated with conventional 
enzyme hydrolysis by providing the following advan-
tages: (1) well-regulated, continuous, and prolonged 
processing of substrate conversion; (2) easy evaluation of 
the effect of additional cofactors; and (3) no consump-
tion of reduced sugar for cell energy requirement. Cell-
free system dramatically reduces the time and effort 
needed to obtain proteins since it does not require gene 
transfection and extensive purification procedures (Kim 
et al. 2010). Moreover, it provides flexible reaction con-
ditions for the introduction of several additives (such as 
chaperones, detergent, and affinity tags) into the reac-
tion mixture as compared to in vivo systems (Kim et al. 
2010).

Interestingly, the cell-free system has grabbed a tre-
mendous interest in the production of various biocom-
modities, not only reduced sugars but also recombinant 
proteins, proteinaceous antibiotics, vaccines, hormones, 
and dihydrofolic acid reductase, etc. (Rollin et  al. 2013; 
Khattak et  al. 2014b). However, numerous limitations 
have confronted cell-free systems, especially when a 
mixture of enzymes constituting cascade of reactions is 
employed to produce bioproducts. Some of these short-
comings are the subjects of instability, reusability, and 
inactivation during biochemical processes (Khattak et al. 
2014b). Problems of overall cellulase viability in the pres-
ence of high substrate and product concentration are also 
possible (Khattak et al. 2012, 2014b). The development of 
synthetic cell-free enzyme systems, with reprogrammed 
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or newly constructed metabolic pathways to produce 
high-volume reduced sugars, are believed to be much 
more efficient due to reasons including the absence of 
external barriers (Percival Zhang 2010). Well-established 
approaches for the development of synthetic cell-free 
enzyme pathways include micro-compartmentalization, 
ionic channeling, co-polymerization, and protein fusion. 
Notably, the synthetic cell-free enzyme systems favor 
maximum enzyme–substrate interaction, product-ori-
ented substrate utilization, and a higher concentration of 
biocatalyst (Khattak et al. 2014b). However, factors such 
as cofactor balance, thermodynamics, reaction equilib-
rium, and product separation and purification still need 
to be addressed (Zhang 2011).

GH whole‑cell systems
The whole-cell biocatalyst system was developed to over-
come the cost and complexities associated with enzyme 
purification via intracellular and extracellular localization 
of enzymes. In the former, the microorganism provides the 
most favorable working environment for the enzymes by 
(1) availing all necessary cofactors and regeneration net-
works; and (2) providing sufficient protection of enzymes 
from effects such as destabilization and degradation, while 
allowing both the substrate and product to cross the mem-
brane barrier (Jose et  al. 2012). On the other hand, the 
extracellular localization of enzymes involves the display 

of enzymes on the surface of the microorganism (thus, 
the designation “cell-surface display”) to avoid possible 
substrate–product transport complexities across the cell 
membrane (Schüürmann et al. 2014).

The advent of whole-cell systems has helped to over-
come some of the challenges faced by cell-free systems. 
The whole-cell systems convey several advantages such as 
stability, resistance, lower cost, reusability, and reduced 
labor, while providing products with high purity (Brault 
et  al. 2014; Kim et  al. 2014; Khattak et  al. 2014b). The 
reduced proneness to cell injury; improved resistance to 
physiological and environmental factors, such as varia-
tion in pH, elevated temperature, and system inhibition; 
high metabolic productivity; and reduced incubation 
time make the whole-cell system more promising for bio-
technological implementation.

Currently, the introduction of new knowledge and 
techniques, including genetic engineering, peptide engi-
neering, and metabolic engineering, with specializations 
such as system and synthetic biology, has successfully 
improved the whole-cell system in various ways (Turner 
2003; de Carvalho 2011; Pearsall et al. 2015). For example, 
the whole-cell biocatalyst system has been enhanced to 
immobilize the enzymes and improve substrate–enzyme 
contact, while increasing the catalytic potential of the 
enzymes by extending their overall lifetime (Kisukuri and 
Andrade 2015).

CELL 

IMMOBILIZATION

GH ENZYME 

SYSTEMS

GH CELL-FREE 
SYSTEMS

GH WHOLE CELL 
SYSTEMS

MULTIFUNCTIONAL 
ENZYME SYSTEMS

CELLULOSOME 
SYSTEMS

CELL-SURFACE 
DISPLAY

MULTIPLE ENZYME 
SYSTEMS

SINGLE ENZYME 
SYSTEMS

ENZYME
IMMOBILIZATION

Fig. 3  Developments in GH systems. Pioneer systems in red; systems under continual improvement in blue; and emerging systems in green. The 
immobilization of both cell-free systems and whole-cell biocatalyst is trending
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Immobilized and co‑immobilized systems
Conventional enzyme immobilization is the practice 
of restraining the movement of enzymes, for example, 
by direct cross-linking, covalent coupling, entrapment, 
micro-encapsulation, and tethering onto a solid sup-
port to improve technical performance, usability, and 
industrial process economy. The technical performance 
includes enzyme stability, substrate specificity, enanti-
oselectivity, and reactivity (Mateo et al. 2007; Schoffelen 
and van Hest 2012). The target of most immobilization 
practices is mainly to achieve fewer side reactions, high 
tolerance of structural variation of the substrates, high 
productivity and space–time yield, and high durability of 
the biocatalyst (Cao et al. 2003).

Immobilization is widely practiced in both cell-free and 
whole-cell systems. However, concerns regarding ther-
mal instability at elevated temperatures, ineffective sub-
strate utilization, by-product formation, and downstream 
industrial processing cost of end-product make the con-
ventional immobilized system an ineffective approach for 
process industrialization (Khattak et  al. 2014b). These 
consequences possibly result from intrinsic alterations 
in the catalytic activity, the overall stability, and the mor-
phological structure of the individual enzymes in the new 
microenvironment. However, the use of efficient catalyst 
base; the use of hydrophilic and inert spacer arms; and 
the careful selection of the enzyme residues involved in 
the immobilization are some of the strategies toward 
curbing the steric obstacles. For example, the use of 
affinity tags (e.g., histidine tag) to selectively immobi-
lize enzymes onto surfaces like cells, DNA scaffolds, and 
chelating supports is microbiologically practicable.

Cell‑surface display systems
The cell-surface display system is the practice whereby 
whole cells are empowered to extracellularly degrade 
substrates and, sometimes, internalize resulting prod-
ucts to produce value-added end-products. Regardless 
of the host organism, surface display systems often have 
three core features in common. These are: (1) a signal 
peptide to direct the protein of interest toward the secre-
tory pathway; (2) an endogenous surface protein pliable 
to recombination (i.e., insertion, deletion, and fusion) 
to facilitate a stable surface anchorage of the target pro-
tein; and (3) an epitope tag to facilitate the detection of 
successful surface display (Smith et al. 2015). In the sur-
face display system, the amount of cellulase displayed is 
strictly dependent on the cell surface area, unlike cell-
free systems, where there are no such limits (Yamada 
et al. 2013).

The cell-surface display system serves as an inherent 
biological platform for immobilizing enzymes, and thus 
offers three main advantages: (1) no protein diffusion 

into surrounding media; (2) enhanced biomass hydroly-
sis stemming from the close proximity, and induced syn-
ergy of enzymes present; and (3) easy recoverability and 
reusability by simple sedimentation or centrifugation. 
According to Yamada et al. (2013), the low diffusion rate 
of cell-surface displayed enzymes, owing to its insolubil-
ity in the substrate, is however a disadvantage. Arguably, 
when these surface displayed enzymes are aligned coop-
eratively to work synergistically, there would be a more 
efficient hydrolysis via substrate channeling, resulting in 
high enzymatic activity with high monomer yields. Com-
mon surface display systems that have been explored are 
cellulosomal (multi-enzyme) systems and multifunc-
tional enzyme systems. The most recent subset is the 
autotransporter display (autodisplay) system, which is 
described in subsequent section.

Cellulosomal (multi‑enzyme) systems  Cellulosomes can 
be described as one of nature’s most elegant and elaborate 
nanomachines (Fontes and Gilbert 2010). They are organ-
ized multi-enzyme complexes consisting of carbohydrate-
binding modules (CBMs), catalytic domains (CDs), and 
scaffoldin subunits, which selectively integrate different 
CDs of enzymes in close proximity onto their individual 
unified complexes through a cohesin–dockerin interac-
tion. The embedded enzymes work cooperatively and 
synergistically to ensure efficient depolymerization of the 
cellulose material.

The cellulosome phenomenon is a mimicry of interest-
ing in vivo activities involving co-localization of enzymes 
for cascading reactions. Many crucial cellular functions 
such as biosynthesis (e.g., Krebs TCA cycle) and cellu-
lar signaling are controlled in living organisms by multi-
step simultaneous enzymatic reactions with excellent 
efficiency and specificity. A key characteristic of these 
highly efficient enzyme pathways is the cooperative and 
spatial organization of enzymes to ensure the sequential 
conversion of substrates (Fontes and Gilbert 2010; Park 
et al. 2014). The effect of this systematic organization of 
enzymes is very distinct, in that it enhances the overall 
efficiency of molecular activities by increasing the local 
enzyme–substrate concentrations and channeling inter-
mediates between consecutive enzymes to avoid compe-
tition with other reactions present in the cell (Park et al. 
2014).

The genesis of cellulosomal enzymes in microbes is 
linked to the discovery of Clostridium thermocellum and 
its potentials, which initiated the call to investigate the 
cellulosome genomics and metagenomics: cellulosomics 
(Bayer et al. 2008). The cellulosome architecture (Fig. 4) 
is dictated by a primary scaffoldin subunit, consist-
ing of repeating units of cohesin (type I) modules that 
engage in high specificity and or affinity protein–protein 
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interaction (KD < 10−9 M) with type I dockerin-contain-
ing enzyme, allowing the assembly of multiple enzymes 
in a spatially defined manner (Park et al. 2014; Stern et al. 
2015). Most scaffoldins contain 6–9 different cohesins, 
which can bind up to 26 different cellulosomal enzymes 
(Juturu and Wu 2014). The primary scaffoldin interacts 
by means of type II cohesin–dockerin interaction with 
an anchoring scaffoldin to enforce cellulosome attach-
ment to the cell surface via an S-layer homology (SLH) 
module (Stern et  al. 2015). However, the intermodular 
cohesin–dockerin interaction dictates the assembly of 
the cellulosome complex; hence, granting the possibil-
ity of expressing different cellulosomes within a single 
organism, depending on the enzyme subunit composi-
tions (Moraïs et al. 2012; Juturu and Wu 2014).

The CBM has multiple roles in the hydrolysis of cellu-
lose: (1) to increase the concentration of cellulase close to 
the substrate; (2) to target the CD of the enzyme to spe-
cific sites on the substrate; and (3) to disrupt the crystalline 
structure of the substrate all through hydrophobic interac-
tion between the three hydrophobic amino acid residues 
on the flat face of the CBM (Wahlström et al. 2014). There 
is also the possibility that CBMs assist in the improve-
ment of the overall structure of the multimeric enzyme, 
leading to an increase in the hydrolysis yield (Fan et  al. 
2009). However, the number and position of CBMs in the 
multi-enzyme complex may cause effects (such as product 
inhibition) on the enzymes during cellulose degradation 
(Moraïs et al. 2012); thus, it requires investigation.

The CBM modules are classified into three, namely 
type A, type B, and type C, to define CBMs in terms of 
their binding specificity. Type A CBMs bind the surface 
of complex polysaccharides, type B CBMs (with speci-
ficity for amorphous regions) recognize internal glycan 
chains (endo type), and type C CBMs (with specificity for 
crystalline regions) bind the termini of glycans (exo type), 

according to Bornscheuer et  al. (2014) and Fontes and 
Gilbert (2010).

The practice of the use of cellulosomes is interestingly 
surging in cellulose degradation activities. In this case, 
the GH enzyme assembly is attached onto the surface of 
the organism (mostly fungi and bacteria) for an effective 
saccharification process. The repeating scaffoldin-cohes-
ins are docked individually with different dockerin-bear-
ing GHs to enforce efficient cascade reaction, leading to 
high yields of fermentable sugars.

According to Zhang (2011), the most investigated 
in  vitro multi-enzyme complex—even in the conver-
sion of cellulose into fermentable sugars—are cellu-
losomes. This stems from the highly active-synergistic 
hydrolytic effect of the enzymes. To effectively evaluate 
the proposed benefits of cellulosomal enzymes over free 
enzymes, it is imperative to compare the optimized-state 
characteristics of each system on the same substrate 
(Moraïs et  al. 2010). Park et  al. (2014) reported 23-fold 
glucose production enhancement over that of free 
enzymes after their investigation of the effects of localiza-
tion, surface accessibility, and functionality of synergetic 
enzymes on Scaf3-decorated bacteria outer membrane 
vesicles (OMVs) using phosphoric acid-swollen cellu-
lose (PASC) as substrate. Yuan et al. (2015), in an inves-
tigation to biochemically characterize and structurally 
analyze cellulase/xylanase from Clostridium thermocel‑
lum, also revealed equally insightful results. Advance-
ment in cellulosome investigation has led to the advent 
of its artificial counterpart, called designer cellulosomes, 
described below.

Designer cellulosomes (Chimeras)  Designer cellu-
losomes (also known as chimeras)—unlike native cellu-
losomes—are artificial constructs, composed of chimeric 
scaffoldin and enzymes with cohesins and dockerins of 
divergent specificities, thus providing interdomain flex-
ibility in the enzyme complex while maintaining (to some 
extent) the original wild-type functionality (Fierobe et al. 
2002; Stern et al. 2015). Although synthetic cellulosomes 
present faster hydrolysis rates than non-composite cellu-
lase mixtures, Zhang (2011) remarked that there is a limi-
tation in the understanding of why synthetic cellulosomes 
constructed to date have been much less active than their 
natural counterparts. This may be due to factors such 
as changes in the microenvironments of the active sites, 
possible unproductive competition between functionally 
similar enzymes, difficulties in component arrangement 
as well as the nature of the peptide linker.

Cota et al. (2013) investigated and assembled a complex 
xylanase–lichenase (XylLich) chimera—both enzymes 
from Bacillus subtilis—through all-atom molecular 

Fig. 4  Schematic architecture of bacterial cellulosome. The desired 
enzymes are assembled onto a suitable peptide with the help of 
cohesin–dockerin arrangements. The anchoring scaffoldin ensures 
the surface attachment of the cellulosome onto the bacteria surface 
[The figure was modified from Juturu and Wu (2014)]
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dynamics simulations. Contrary to the remark by Zhang 
(2011), Cota et al. (2013) reported based on comparison 
between the recombinant protein yield and the hydro-
lytic activity achieved that the production of chimeric 
enzymes is more efficient (in terms of cost and catalytic 
efficiency) than wild-type proteins and could be more 
profitable in streamlining biomass conversion strategies 
than separate production of single enzyme. Cota et  al. 
(2013) further reported that the mode of operation of 
their chimera was exactly similar to that of the parental 
enzymes. Moreover, Moraïs et  al. (2012) reported that 
their designer cellulosome system from Thermobifida 
fusca exhibited “equal or superior” activity to that of 
the free system. This presumably reflects the combined 
proximity effect of the enzymes and high flexibility of 
the designer cellulosome components to enable efficient 
enzymatic activity of the catalytic modules.

The higher flexibility and structural conformations of 
the fused CDs of designer cellulosomes explicate their 
more efficient enzymatic abilities (Moraïs et  al. 2012). 
Stern et  al. (2015), based on extensive combinatorial 
analysis, devised and developed a designer cellulosome 
concept consisting of chimeric scaffoldins for controlled 
incorporation of recombinant polysaccharide-degrading 
enzymes. Their results supported the argument that for 
a given set of cellulosomal enzymes, the relative position 
of enzymes within a scaffoldin can be critical for opti-
mal degradation of microcrystalline cellulosic substrates. 
Liang et  al. (2014) also constructed a penta-functional 
minicellulosome by co-expressing lytic polysaccharide 
mono-oxygenases (LPMOs) and cellobiose dehydroge-
nases (CDH) with cellobiohydrolases, endoglucanases, 
and β-glucosidases in Saccharomyces cerevisiae for 
simultaneous saccharification and ethanol fermentation 
of PASC. The synergetic activity of this penta-enzyme 
complex increased the ethanol titer from 1.8 to 2.7 g/l.

Engineering multi-domain enzymes that are capable 
of catalyzing two or more reactions is a potential strat-
egy to reduce enzyme costs in bio-industrial processes, 
as multiple catalytic properties on a single polypeptide 
conceivably simplify production and purification opera-
tions of biochemicals (Ribeiro et  al. 2011). Similarly, 
the cost-effective optimization of chimeras to prevent 
unproductive competition between functionally similar 
enzymes by testing the importance of both the positions 
of enzymes and CBMs for an efficient use in bioprocess-
ing industries is necessary, though demanding a vigor-
ous investigation. However, the successful expression of 
the essential cellulolytic enzymes (i.e., endoglucanases, 
exoglucanases, and β-glucosidases) on a single peptide 
chain, in a processive order, such that their proportion-
ate quantities favor maximum hydrolysis efficiency has 
been highly challenging (Tozakidis et al. 2016). Also, the 

determination of simple and reliable structural organi-
zation of the chimeric domains has been a significant 
drawback in the construction of a protein chimera, but 
the advent of small-angle X-ray scattering (SAXS) with 
flexible analytical models (e.g., molecular dynamics (MD) 
and Monte Carlo simulations) has provided not only suc-
cessful computational data validation approaches, but 
also accurate fitting of the scattering profile due to their 
potential to explore the protein conformation in space 
(Cota et al. 2013).

A critical factor for success in the creation of enzyme 
chimeras is the compatibility and cooperativity among 
the involved CBMs and CDs, with respect to their phys-
icochemical requirements such as solubility, optimum 
pH, and temperature (Kim et al. 2010; Ribeiro et al. 2011). 
Howbeit, Stern et  al. (2015) suggested that the optimal 
order for the positioning of enzymes as per their inves-
tigation is processive endoglucanase, exoglucanase, and 
non-processive endoglucanase; and for overall higher 
enzymatic activity the CBM should not be placed in the 
middle of the scaffoldin.

In parallel with the designer cellulosome approach, 
another interesting attempt to increase enzyme syn-
ergism, in the form of multifunctional enzyme conju-
gates, has been reported recently, and it is believed that 
this strategy may provide a component cost-reducing 
advantage over designer cellulosomes in future industrial 
applications (Moraïs et  al. 2010). However, the multi-
functional enzyme strategy is limited to small numbers of 
enzymes and restricted to suboptimal equimolar ratios of 
enzymes. This paradigm permits the expression of single 
enzymes on the surface of a suitable microorganism such 
that blending complexities could be overcome.

Multifunctional enzyme systems  Multifunctional 
enzymes—comprising the direct surface display of mul-
tiple enzymes in a non-complex form—are very high-
molecular weight proteins of one or several CBMs and 
two or more CDs for effective substrate targeting and effi-
cient degradation of plant cell walls, respectively (Moraïs 
et al. 2012; Smith et al. 2015). The several catalytic mod-
ules on the same polypeptide chain are assembled such 
that their enforced proximity account for an enhanced 
concerted action on substrates (Moraïs et al. 2012). The 
enzyme assemblies in multifunctional enzyme systems 
enable metabolic control and prevent metabolic cross-
talk between competing pathways (Conrado et al. 2008). 
Multifunctional enzymes are formed by linking the CD of 
desired enzymes, using flexible peptide linkers or linkers 
containing CBMs, with that of the parent enzyme (Fan 
et al. 2009). The resulting enzyme may retain similar prop-
erties (example, pH and temperature profiles, kinetics, 
etc.) as the parent enzyme and exhibit synergetic effects 
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in the hydrolysis of the target substrate. Though the mul-
tifunctional enzyme system is under thorough investiga-
tion, a broader understanding of (1) how the structure of 
an enzyme relates to its function and (2) what changes can 
be tolerated within a multifunctional enzyme framework 
are needed to promote industrial applications.

Moraïs et  al. (2012) employed a synthetic biology 
approach to convert two different cellulases from the 
free enzyme system of Thermobifida fusca into bifunc-
tional enzymes with different modular architectures 
and examined their performance compared to those 
of the combined parental free enzyme and equivalent 
designer cellulosome systems. They reported that the 
different architectures of the bifunctional enzymes dis-
played “somewhat inferior” cellulolytic activity to that 
of the wild-type free enzyme system. However, Ribeiro 
et  al. (2011) created two bifunctional enzymes with 
xylanase–laccase activity using rational design methods 
and reported catalytic properties similar to the paren-
tal enzymes. Moreover, Chang et  al. (2011) reported an 
excellent performance of a bifunctional xylanase/endo-
glucanase (RuCelA), which distinguishes it as an ideal 
candidate for industrial applications. Cho et  al. (2008) 
reported a multifunctional enzyme Cel44C-Man26A 
(secreted by Paenibacillus polymyxa GS01) with cel-
lulase, xylanase, lichenase, and mannanase activities. 
The construction of multifunctional enzymes is puta-
tively dependent on the nature and anatomy of source 
organism as well as the design technique, and thus more 
insights are required for this justification.

The autodisplay systems  The autodisplay system is an 
induced superior advancement of the whole-cell biocata-
lyst strategy. It mostly involves the recombinant surface 
display of proteins or peptides by means of autotransporter 
proteins in Gram-negative bacteria (Jose et al. 2012). The 
autotransporter proteins—the peptide chains that ‘link’ 
or hold the passenger protein onto the outer membrane 
of the organism—are common secretion proteins of most 
Gram-negative bacteria, and are synthesized as precur-
sor protein containing all domains needed to transport 
the passenger (e.g., cellulases, proteases, lipases, esterases 
etc.) to the cell surface (Jose 2006; Jose et al. 2012). This 
provides the possibility to transport protein (recombinant 
or natural passenger) to the outer membrane so long as its 
coding region lies between a typical signal peptide and a 
C-terminal “β-barrel” domain (Schumacher et  al. 2012). 
Tozakidis et al. (2016) has published a proof of concept of 
cellulose hydrolysis using autodisplay cellulases.

The hypothetical model of the autodisplay secretion 
mechanism (Fig. 5) has been described by Himmel et al. 
(2010). It typically involves the transport of a polyprotein 
precursor across the inner membrane (IM) of the cell 

into the periplasm, with the help of the sec signal peptide 
(SP). A typical precursor protein comprises a signal pep-
tide (SP) followed by the autotransporter protein, com-
posed of an N-terminal passenger domain (α-domain) 
and a C-terminal translocator domain (β-domain). The 
β-domain, as its name signifies, involves β-barrel and 
linker. Inside the periplasm, the C-terminal part of the 
precursor forms a porin-like structure (β-barrel) within 
the outer membrane (OM). Subsequently, the passenger 
proteins translocate to the cell surface through the pores, 
with anchorage from the free mobile β-barrel, unlike in 
other display systems where they are covalently attached 
to the cell envelope. Complementarily, the peptide linker 
ensures the full surface exposure and functionality of the 
passenger protein.

The recombinant expression principle of autotrans-
porter proteins has several advantages. The flexible trans-
fer of these proteins from one Gram-negative bacterium 
to the other needs little or no additional machinery for its 
propagation. Moreover, a large number (more than 105) 
of recombinant proteins or peptide molecules can be dis-
played on the surface of a single microorganism, without 
reducing cell viability or integrity (Jose and Meyer 2007). 
In addition, the relatively simple modular structure of 
autodisplay systems allows the easy interaction of pas-
senger proteins on the bacterial cell surface, thus display-
ing desired heterologous enzymes. The autodisplayed 
proteins normally expressed as monomers are capable 
of forming multimers upon membrane interaction after 
expression (Schumacher et  al. 2012; Smith et  al. 2015). 
Furthermore, the autodisplay  secretion method makes 
subsequent, often costly, purification steps to recover the 
enzyme of interest unnecessary (Kranen et al. 2014).

Conclusions
The bioprocess industry is constantly seeking to obtain 
useful products from the highly abundant lignocellulosic 
feedstock. Thus, lignocellulases have been vital in the 
production of reduced sugars for the manufacturing of 
biocommodities. The industrial pursuit of obtaining high 
level of fermentable sugars from lignocellulosic biomass 
depends substantially on the successful expression and 
blend of cellulases, hemicellulases, lignases, and other 
accessory proteins in a non-competing, progressive, and 
synergetic order, in one complex. However, the chal-
lenge has been the successful assembly of an entire suite 
of these enzymes that could function optimally at the 
same time and under different conditions to completely 
digest lignocellulosic biomass to simple sugars. Many cel-
lulase improvement practices and enzyme systems (i.e., 
cell-free or whole-cell) have surfaced and presently the 
fraternity is witnessing a gradual shift towards the cell-
surface display system. However, the challenge has been 
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the achievement of high-level expressions necessary for 
industrial use. Techniques such as directed evolution and 
rational design have been used in improving cellulases. 
The practice of harnessing glycosylation to improve cellu-
lase activity looks promising. A success in these ventures 
would be influential to the proposed ‘green’ future.
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