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Abstract

Background: Many short peptides have proved to exhibit potential anti-hypertensive activity through the inhibition of
the Angiotensin I-converting enzyme (ACE) activity and the regulation of blood pressure. However, the traditional
experimental screening method for ACE inhibitory peptides is time consuming and costly, accompanied with the
limitations as incomplete hydrolysis and peptides loss during purification process. Virtual methods with the aid of
computer can break such bottle-neck of experimental work. In this study, an attempt was made to establish a
library of di- and tri-peptides derived from proteins of Phascolosoma esculenta, a kind of seafood, through BIOPEP
(http://www.uwm.edu.pl/biochemia/index.php/pl/biopep), and to screen highly active ACE inhibitory peptides by
molecular docking with the help of LibDock module of Discovery Studio 3.5 software.

Results: Two hundred and eighty four (284) di- and tri-peptides, derived from P. esculenta proteins after a virtual
hydrolysis with pepsin, trypsin and a mixture of pepsin and trypsin, were predicted to possess ACE inhibitory activity,
among which there are 99 ACE inhibitory peptides with estimated IC50 less than 50 μM. Nine peptides were synthesized
for the comparison between the estimated and the experimentally determined IC50. The results indicated that errors
between the estimated and measured log(1/IC50) are all less than 1.0 unit.

Conclusions: Virtual method for peptide library construction and ACE inhibitory peptides screening efficiently
demonstrated that P. esculenta proteins are prospect resource for food-origin ACE inhibitory peptide.

Keywords: Virtual screening; Angiotensin I-converting enzyme (ACE); ACE inhibitory peptide; Phascolosoma esculenta
Background
Hypertension is a worldwide health problem, the preva-
lence of which have affected up to 30% of the adult
population according to the World Health Organization.
Hypertension carries a high-risk factor for arterioscler-
osis, myocardial infarction, and end-stage renal disease
[1,2]. It is predicted that by 2025, about 20% of the
world population will suffer from hypertension [3].
Although the cause of hypertension currently cannot

be well determined, it is understood that the renin-
angiotensin system regulates an organism's water, electro-
lytes, and blood, and the angiotensin I-converting enzyme
(ACE) (peptidyldipeptide hydrolase, EC 3.4.15.1) plays an
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important role in regulating the blood pressure [4]. ACE
is a hypertension-responsible glycoprotein distributed in
vascular endothelial, absorptive epithelial, and male germi-
nal cells [5,6]. ACE cleaves the carboxyl terminal His-Leu
dipeptide from inactive decapeptide angiotensin I to
active angiotensin II, a powerful vasoconstrictor which
can trigger hypertension [7-10]. ACE also influences the
kallikrein-kinin system by promoting the degradation and
inactivation of bradykinin, which can lead to reduction of
hypertension. Therefore, excessive activity of ACE leads to
hypertension. Molecules which can inhibit the activity of
ACE are considered useful drugs for hypertension man-
agement [11]. Currently, synthetic ACE inhibitors, such as
captopril, enalapril and lisinopril, are available on the mar-
ket [12]; however, they tend to have side effects [13].
Since the discovery of the first anti-hypertensive pep-

tide in snake venom [14], more attention has been paid
to natural sources, especially peptides. Peptides derived
pen access article distributed under the terms of the Creative Commons
g/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
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Table 1 Properties of 22 P. esculenta proteins in UniProt
(http://www.uniprot.org/)

Name Number of amino acids MW (kDa) PI

D2J0B2 226 25.2 6.0

C3PUI4 378 43.2 9.1

D2J288 726 83.6 4.9

C3PUI8 304 34.6 8.5

C3PUI2 267 30.3 6.9

B6CQR3 658 71.6 5.1

A5A2J9 135 15.4 6.5

C3PUI5 121 13.9 6.7

B3TCX0 84 9.3 4.7

C3PUJ0 571 63.3 9.2

C3PUI9 231 25.7 5.9

B6CPA3 120 13.63 5.8

A5A2K2 220 24.4 5.8

C3PUH9 519 57.2 6.2

C3PUI7 450 50.2 9.2

B3TFG2 174 20.2 5.1

C3PUI1 54 6.5 10.8

C3PUI3 157 17.7 9.5

A3EX91 137 14.8 4.7

C3PUJ1 323 36.1 9.1

C3PUI0 231 25.9 4.8

C3PUI6 94 10.5 9.2

MW molecular weight, PI isoelectric point.
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from cheese whey [15], fermented milk [16], mushroom
[17], soy bean [18,19], corn gluten [20], insect protein
[21], peanut flour [22], and egg [23] have been proven to
inhibit the activity of ACE. However, few studies were
reported about their side effects [24,25]. Nutritionists
claim that peptides found in food are safer than ‘trad-
itional’ drugs, and they are promising synthetic drug
substitutes [26].
Among the ACE inhibitory peptides, shorter ones

(di- and tri-peptides) usually have significant advan-
tages over longer ones. They easily pass through blood
circulation system [27,28] and then reach action sites
faster without being hydrolyzed by digestive enzymes
during the gastrointestinal digestion [29,30]. For these
reasons, the present study focused on di- and tri-
peptides.
The discovery of ACE inhibitory peptides with poten-

tial anti-hypertensive effect is mostly based on experi-
ments, which require amounts of labors and funds.
Besides, the possible active peptides can not be totally
harvested due to the incomplete hydrolysis and peptides
loss in the purification by the experimental protocols.
Recently, as the computation simulation technology for
drug design and discovery of molecular interaction are
booming, the virtual screening or in silico experiment
may replace the traditionally experimental screening
of anti-hypertensive peptides to some extent. Computa-
tional approaches, which are based on computational
evaluation of interactions between receptor and ligand,
are proved feasible for virtual screening [31]. Molecular
docking is a powerful and a widely used tool in molecu-
lar simulation, which is approximated to a lock-and-key
process. The docking protocol is to ‘dock’ a ligand into
an active site of a receptor; then, the interactions be-
tween them were ‘scored’ to assess the potential bio-
activity of candidate compounds. The most advantage of
docking is its high-throughput screening in short time
with little cost [32].
In this study, an attempt was made to investigate the

ACE inhibitory activity of di- and tri-peptides derived
from Phascolosoma esculenta, a marine deposit-feeding
benthonic invertebrates, also a traditional seafood with
over 70% protein (dry weight) in Southeast China
[33,34]. Database of di- and tri-peptides derived from P.
esculenta were established, and their ACE inhibitory
activities were predicted by virtual hydrolysis and screening
method. Finally, di- and tri-peptides which have obvious
ACE inhibitory activity were synthesized for verifying the
validity of such virtual strategy.

Methods
Materials
There are 22 proteins of P. esculenta with the protein
messages including entry name and sequence obtained
from UniProt (http://www.uniprot.org/) (Table 1). They
were used as original materials for database of di- and
tri-peptides. With the help of BIOPEP (http://www.
uwm.edu.pl/biochemia/index.php/pl/biopep), the 22 pro-
teins were virtually hydrolyzed with pepsin, trypsin, and
a mixture of pepsin and trypsin.

Molecular docking experiments
LibDock, a module of Discovery Studio 3.5 software
(DS3.5, Accelrys, San Diego, CA, USA), was used for
molecular docking experiments. Scoring results (Lib-
Dock score) about ligand-receptor combination were
used as the final criterion to estimate the ACE inhibitory
activity of ligands. Based on a previous study [35], the
corresponding relationship between LibDock score and
IC50 was

LibDock score ¼ 10:063 log 1=IC50ð Þ þ 68:08 ;

where IC50 is 50% inhibitory concentration (in μM)
towards ACE. According to the LibDock score, ACE
inhibitory activity of ligands could be estimated.

http://www.uniprot.org/
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ACE was used as receptor in docking simulation, whose
crystal structures was available in the Protein Data Bank
(PDB) (http://www.pdb.org), from where the three-
dimensional structure of ACE was imported [PDB:1O8A].
Before the docking procedure, water molecules were
removed and zinc ions were retained. The 284 di- and tri-
peptides derived from P. esculenta were used as ligands, of
which structures and energies were generated with Chem-
BioDraw software [36] and minimized with the CHARMM
program [37], respectively. Parameters used in the docking
process are shown in Table 2.

Synthesis of peptides
Five tri-peptides (GYF, WAL, AYF, GLR, and ILK) and four
di-peptides (FK, QF, EL, and HK) generated through in
silico hydrolysis of P. esculenta protein, with purity of 95%,
were synthesized by GL Biochem Co. Ltd. (Shanghai,
China) for IC50 testing.

Measurement of ACE inhibitory activity
The ACE inhibitory activity was measured according to the
method of Cushman and Cheung [38] with slight
Table 2 Parameters for molecular docking experiments
performed with the LibDock of DS3.5

Parameter name Parameter value

Docking sphere 10 Å

Input site sphere

x 48.65

y 82.55

z 54.04

Number of HPTPot 100

Docking tolerance 0.25

Docking preference User specified

Max hits to save 10

Max number of hits 100

Minimum LibDock score 100

Final score cutoff 0.5

Max BFGS steps 50

Rigid optimization False

Max conformation hits 30

Max start conformations 1,000

Steric fraction 0.10

Final cluster radius 0.5

Apolar SASA cutoff 15.0

Polar SASA cutoff 5.0

Surface grid steps 18

Conformation method Best

Minimization algorithm Do not minimize

Parallel processing True
modifications. Ten milligram of the sample was dissolved
in 1 mL distilled water and then diluted to seven different
concentrations for ACE inhibitory measurements. Fifteen
microliters of the sample solution in certain concentration
(Seven different concentrations) were needed, which were
determined by the pre-experiment about ACE inhibition
ratio. The whole principle is that the concentration which
ACE inhibition ratio reaches 50% is included within the
concentration range. The concentrations for GYF, FK,
WAL, QF, and AYF are 10, 20, 30, 40, 50, 60, and
70 μg/mL, and for EL, GLR, HK, and ILK are 20, 40, 60,
80, 100, 120, and 140 μg/mL, respectively) and 15 μL
substrate hippuryl-L-histidyl-L-leucine (HHL) (8.3 mM
Hip-His-Leu in 50 mM sodium borate buffer containing
0.5 M NaCl at pH 8.3) were mixed together and then pre-
incubated at 37°C for 5 min. The reaction was initiated by
adding 5 μL of ACE solution (310 mU/mL) and incubated
for 60 min at the same temperature. The reaction was
terminated by the addition of 1.0 M HCl (200 μL). Ten
microliters of the reaction solution was injected directly
onto a Thermo BDS-C18 column (3.0 mm× 250 mm,
5 μm, Thermo Scientific Co. Ltd., Waltham, MA, USA).
The mobile phase consisted of 10% acetonitrile and 90%
water with 0.1% trifluoroacetic acid (TFA). The flow rate
was 0.7 mL/min and the absorbance was monitored at
228 nm. All determination was carried out at least in
triplicate. The inhibition activity was calculated using the
following equation:

ACE inhibition %ð Þ ¼ 1− Ainhibitor=Acontrolð Þ½ � � 100 ;

where Ainhibitor is the absorbance with ACE, HHL, and
sample, and Acontrol is the absorbance of hippuric acid (HA)
with ACE and HHL without the sample. Dose-dependent
ACE inhibition was investigated using at least five different
concentrations of peptides. The concentration of peptides
that inhibited ACE activity by 50% (IC50) was calculated
using a non-linear regression from a plot of ACE inhibition
versus sample concentrations.

Study on structural-active relationship of ACE inhibitory
peptides
The chemical properties of C-terminal and N-terminal
amino acids of 99 peptides with estimated IC50 less than
50 μM were summarized to deduce the structural-active
relationship of ACE inhibitory peptides.

Results and discussion
Pool of di- and tri-peptides derived from P. esculenta proteins
Pepsin, trypsin, and the mixture of pepsin and trypsin
were used to virtually hydrolyze the 22 proteins from P.
esculenta, with the help of BIOPEP (http://www.uwm.edu.
pl/biochemia/index.php/pl/biopep). In total, 2,667 peptides
were virtually produced, and among them, 1,084 were di-

http://www.pdb.org/
http://www.uwm.edu.pl/biochemia/index.php/pl/biopep
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and tri-peptides, which accounted for about 40.6% (Figure 1).
After excluding the repeated ones, there were 1,017 non-
repeated peptides, among which 284 were di- and tri-
peptides. The sequences and the frequencies of these 284
short peptides are shown in Table 3. These 284 peptides
were used as the ligands for docking experiment with ACE.
Estimated IC50 distribution of ACE inhibitory di- and
tri-peptides
The estimated ACE inhibitory IC50 of the 284 di- and tri-
peptides derived from P. esculenta proteins were obtained
according to LibDock scores, which were summarized in
Figure 2. Ninety-nine (99) peptides had an estimated IC50

less than 50 μM (34.9% of 284 peptides), 100 peptides had
an estimated IC50 between 50 and 100 μM (35.2% of 284
peptides), and 37 peptides had an estimated IC50 less than
500 μM, accounting for 13.0%. Most reported ACE inhibi-
tory peptides with IC50 less than 100 μM showed potent
in vivo anti-hypertensive activity [39]. Therefore, P. escu-
lenta is a prospective anti-hypertensive peptide-containing
resource since more than two thirds di- and tri-peptides
theoretically possess obvious ACE inhibitory activity. The
sequences and estimated IC50 of di- and tri-peptides with
estimated IC50 less than 50 μM are shown in Table 4.
Short peptides were usually used for predicting potent

ACE inhibitory activity. Pripp docked 58 di-peptides into
protein target using the Molegro Virtual Docker version
1.1.1 software and found significant relationship between
docking results and experimental IC50 values [32]. Several
tri-peptides consisting of I or L and positive charged amino
acids and aromatic amino acids were synthesized, and their
ACE inhibitory activities were measured to clarify the
amino acid sequence for inhibition of ACE [40]. Larger
peptides, for instance, the sequence length more than 5,
were also focused in some work [41]; however, such works
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Figure 1 Length distribution of peptides derived from P. esculenta prot
pepsin, trypsin, and a mixture of pepsin and trypsin.
were reported with lower R2 (coefficient of variation)
because of the complexity in the modeling due to the
bigger peptide [42,43].
Confirmation of virtual screening method
In order to confirm the validity of virtual screening method
of the present work, nine peptides were synthesized for
IC50 testing. The sequences of these peptides were obtained
from P. esculenta protein through virtual hydrolysis and
screening by docking experiments. The estimated log(1/
IC50) and measured log(1/IC50) of the nine peptides were
compared (Table 5). The error between the estimated log
(1/IC50) and measured log(1/IC50) is less than 1.0 unit.
Desirable limit for model is that the error between
estimated log(1/IC50) and measured log(1/IC50) is less than
1.5 units [30]. A reported quantitative structure-activity
relationship (QSAR) model was constructed on 168 di-
peptides and 140 tri-peptides collected from literatures, and
the model verification was made on seven reported di-
peptides and tri-peptides (not included in 168 di-peptides
and 140 tri-peptides), of which the error was between 0.07
and 1.39 [29]. On the ground of such criterion, the present
model is efficient and credible.
Previous studies suggested that the structural-active

relationship of ACE inhibitory peptides largely depended
on their amino acid composition, sequence, and configur-
ation, though the full mechanism of interaction between
peptides and ACE is not established so far [44,45]. For the
short peptides as di- and tri-peptides, the amino acid
composition and configuration are more significant. The
di- and tri-peptides which have an estimated IC50 within
50 μM were used to study the structural-active relationship
of these ACE inhibitors.
There are four kinds of C-terminal residues for 99

sequences (Figure 3) due to the cutting specificity of pepsin
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Table 3 Sequence and frequency of di- and tri-peptides derived from P. esculenta proteins by virtual hydrolysis

Peptide Frequency Peptide Frequency Peptide Frequency Peptide Frequency

ADL 1 GYF 2 NDK 2 STL 2

AEF 2 HAQ 2 NF 10 SVF 2

AEK 1 HER 1 NGK 1 SVL 4

AEL 2 HF 9 NIL 2 SWK 2

AF 19 HGL 2 NK 2 SWL 2

AGF 2 HIK 2 NL 13 SYL 1

AIF 4 HK 4 NLK 1 TAL 2

AK 2 HKF 1 NMR 1 TDK 1

AL 35 HL 17 NPF 6 TDR 1

ALR 1 HSL 2 NR 2 TEF 2

AMF 2 HTK 1 NRF 2 TF 7

APF 2 HTL 1 NSF 2 TGF 2

AQF 2 IAR 2 NTL 3 TGL 4

AR 2 ICL 4 NVL 5 TIL 2

ASK 1 IF 20 NVR 2 TK 4

AVK 2 IGR 1 NWL 2 TL 31

AVR 2 IHR 2 PCK 1 TLK 1

AYA 2 IIL 4 PDL 2 TML 2

AYF 3 IK 7 PF 19 TNR 1

CF 2 IL 46 PGF 2 TPF 1

CK 1 ILK 1 PIL 2 TSL 4

CL 9 IMF 2 PK 7 TTK 1

CVF 2 IMK 2 PKL 1 TVK 1

DF 4 IPK 2 PL 30 TVL 2

DK 16 IPL 5 PNK 2 TVR 1

DL 11 IQK 2 PPL 2 TWK 1

DMF 2 IR 4 PRL 1 TYF 2

DNR 1 IRF 1 PSF 2 VAL 6

DPK 1 ISF 2 PSK 1 VDL 2

DR 4 ISL 2 PSL 2 VEK 3

DSK 2 ISR 1 PTL 4 VER 2

DSL 4 ITK 1 PTR 2 VF 9

DWL 1 ITL 2 PVK 1 VGF 6

EAF 2 IVL 1 PVL 2 VGL 3

EAR 1 IWL 4 QAL 2 VIR 3

EDK 2 KAL 1 QDF 2 VK 2

EEF 1 KDL 2 QEL 2 VKL 1

EEL 2 KF 2 QF 5 VL 14

EER 1 KGF 1 QGL 2 VMK 2

EF 2 KIL 1 QIR 1 VML 2

EGL 1 KL 4 QK 2 VNL 4

EIF 1 KPL 1 QL 7 VPK 1

EIL 1 KRF 1 QR 1 VPL 4

EK 7 KSL 1 QYK 1 VSF 2
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Figure 2 Distribution of estimated IC50 of di- and tri-peptides with ACE inhibitory activity. The peptides were derived from P. esculenta
proteins. All IC50 values were predicted by LibDock scores according to the equation, LibDock score = 10.063 log(1/IC50) + 68.08.

Table 3 Sequence and frequency of di- and tri-peptides derived from P. esculenta proteins by virtual hydrolysis
(Continued)

EL 16 KTL 1 RAL 1 VSL 3

EML 1 KVF 1 REL 1 VVF 2

ENK 2 LDK 1 RL 3 VVK 2

ENL 6 LEK 1 RPF 1 WAF 2

ER 2 LK 2 RSF 2 WAL 2

ESK 1 LMK 1 RTL 1 WCF 2

ETL 3 LR 1 SAL 4 WF 6

EVK 1 LSK 1 SEK 1 WGK 2

EVL 4 MAL 8 SF 20 WL 8

FFK 1 MF 16 SGF 4 WML 2

FK 1 MFK 1 SGL 2 WNF 2

FWR 1 MFR 1 SHL 2 WPF 2

GAL 2 MGF 2 SIF 2 WQK 2

GF 12 MGL 2 SIK 2 WR 1

GGL 4 MIK 2 SIL 4 WTR 1

GGR 2 MIL 2 SK 6 WWF 2

GK 6 MK 10 SL 50 YAL 1

GKF 1 MKF 2 SNL 3 YF 7

GL 29 ML 16 SPF 2 YIF 2

GLR 1 MPL 1 SPL 2 YIK 1

GNL 2 MR 4 SQL 2 YK 4

GR 3 MSK 2 SR 2 YL 8

GSL 2 MSL 10 SS 2 YPL 2

GTL 4 MTK 2 SSF 6 YS 2

GTR 2 MTL 2 SSL 2 YSK 3

GVK 1 MVK 2 STF 2 YTL 2

GWL 2 NAL 2 STK 1 YVR 1

The enzymes used in virtual hydrolysis are pepsin, trypsin, and a mixture of pepsin and trypsin.
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Figure 3 Proportions of C-terminal amino acids for di- and
tri-peptides with estimated IC50 less than 50 μM.

Table 5 Estimated and measured log(1/IC50) of the nine
synthesized peptides derived from P. esculenta

Peptide Estimated log(1/IC50) Measured log(1/IC50) Error

GYF 4.49 4.31 ± 0.02 0.18

FK 4.79 4.27 ± 0.01 0.52

WAL 4.95 4.38 ± 0.04 0.57

QF 4.44 4.21 ± 0.03 0.23

AYF 4.83 4.18 ± 0.01 0.65

EL 3.19 3.43 ± 0.02 −0.24

GLR 4.07 3.61 ± 0.02 0.46

HK 3.53 3.86 ± 0.01 −0.33

ILK 4.09 3.72 ± 0.03 0.37

Table 4 Di- and tri-peptides derived from P. esculenta
with estimated IC50 less than 50 μM
Peptide Estimated

IC50
Peptide Estimated

IC50
Peptide Estimated

IC50

WNF 0.12 YIF 13.1 DSL 27.9

HKF 0.42 RPF 13.3 IR 28.9

WCF 0.47 APF 13.4 TGF 29.5

WPF 0.85 REL 13.7 NWL 30.7

WWF 1.18 YK 13.9 FFK 30.9

YVR 1.45 AEF 14.1 GYF 32.2

NRF 1.71 AYF 14.7 ISF 32.3

TYF 1.75 KTL 14.8 FK 33.2

IHR 2.06 WGK 14.9 SPF 33.4

WML 2.15 DWL 14.9 VML 33.7

WAF 3.27 SSF 15.0 KPL 36.1

IWL 5.22 NSF 15.4 ISL 36.5

RSF 5.44 VKL 16.1 QF 36.7

IRF 5.72 MAL 16.3 TML 36.9

CVF 7.15 NR 17.0 QEL 37.0

YIK 7.33 MTL 17.1 MKF 38.0

MGF 7.38 IMF 17.5 YAL 38.6

YF 7.48 WR 17.7 EEF 40.4

KRF 8.11 ER 18.1 IGR 40.5

SR 9.05 AEL 19.4 TEF 41.1

GNL 9.09 QDF 19.5 TTK 41.6

GKF 9.51 YTL 19.7 SGF 41.6

WTR 10.2 PIL 19.9 KVF 42.0

PRL 10.2 KDL 20.2 SIL 43.0

SYL 10.4 SVF 20.8 EVL 43.7

WF 10.6 YSK 21.5 DMF 46.6

IIL 10.8 VVF 22.5 RTL 46.9

WAL 11.3 ITK 22.6 QAL 47.0

AQF 11.5 DR 23.4 TPF 47.0

RAL 11.8 WQK 23.9 HSL 47.1

PGF 12.2 PKL 24.9 NAL 47.1

NVL 12.7 EIF 25.2 SHL 48.0

HTL 13.1 VGF 27.8 STF 49.4
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and trypsin. Leu and Phe are C-terminal residues formed by
pepsin hydrolysis, and C-terminal Lys and Arg are formed
by trypsin reaction. Hydrophobic C-terminal (Phe and Leu)
is dominant in amount and accounts for more than 80%
peptides (44.4% and 36.4%, respectively). There are some
accepted concepts about the structure-activity relationship
of ACE inhibitory peptides, such as that peptides with
hydrophobic amino acid in C-terminus showed a highly
potent ACE inhibitory activity [46]. Highly active peptide in
general should be composed of large, hydrophobic, and
aromatic amino acid with a polar functional group in C-
terminus [47]; and the physicochemical attributes of amino
acids such as hydrophobicity, bulkiness, and electronic
properties had impacts on the bioactivity of peptides [48].
Accordingly, benzene ring in Phe can also increase the
bulkiness and bring about the stability of binding between
ACE and peptide and sequentially result in high ACE inhibi-
tory activity.
There are 40 peptides among 99 peptides (40.4%) with

hydrophobic amino acid at N-terminal, 38 peptides with
neutral amino acid at N-terminal (38.4%), and 21.9% pep-
tides with positively or negatively charged amino acid at
N-terminal (Figure 4). N-terminal amino acid of ACE
inhibitory peptides also favors the hydrophobic interactions
with ACE [7,30]. The peptides with hydrophobic amino
acid at N-terminal showing higher ACE inhibitory activity
have some superiority in amount in the present study,
which verified such view.

Conclusions
A virtual method of hydrolysis and screening of ACE
inhibitory peptides with high activity such as IC50 value
< 50 μM was constructed in this work. Ninety-nine (99)
peptides were obtained from 22 proteins of P. esculenta.
Besides, the efficiency and the validity of such method were
verified by comparing the predicted IC50 and measured
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Figure 4 Proportions of N-terminal amino acids for di- and tri-
peptides with estimated IC50 less than 50 μM.
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IC50 of some synthesized peptides among the 99 peptides.
The results demonstrated that the virtual hydrolysis and
screening method is an efficient way that greatly cuts down
the experimental labor to get highly active ACE inhibitory
peptides. Moreover, P. esculenta proteins were proved as a
good resource of ACE inhibitory peptides, which could be a
beneficial ingredient for functional foods or pharmaceuti-
cals against hypertension. Further research on larger anti-
hypertension peptides derived from P. esculenta and in vivo
activity testing will be carried out.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
YL carried out the establishment of pool of di- and tri-peptides derived from
P. esculenta proteins and molecular docking experiments. MG carried out the
measurement of ACE inhibitory activity. JX designed the study and revised
the manuscript. HW performed the statistical analysis and partly revised the
manuscript. LZ participated in part of the method establishment. DW conceived
of the study and participated in the design and coordination. All authors read
and approved the final manuscript.

Acknowledgements
This work was supported by ‘National Natural Science Foundation of China
(No. 31301413)’, ‘National Major Science and Technology Projects of China
(No. 2012ZX09304009)’, and the ‘Fundamental Research Funds for the
Central Universities’, People's Republic of China.

Author details
1State Key Laboratory of Bioreactor Engineering, Department of Food
Science and Engineering, East China University of Science and Technology,
130# Meilong Rd., P.O. Box 283, Shanghai 200237, People’s Republic of China.
2Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-resource,
Wenzhou 325005, People’s Republic of China.

Received: 3 July 2014 Accepted: 4 September 2014

References
1. Jung WK, Mendis E, Je JY, Park PJ, Son BW, Kim HC, Choi YK, Kim SK (2006)

Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole
(Limanda aspera) frame protein and its antihypertensive effect in spontaneously
hypertensive rats. Food Chem 94(1):26–32

2. Silva DG, Freitas MP, da Cunha EFF, Ramalho TC, Nunes CA (2012) Rational
design of small modified peptides as ACE inhibitors. Med Chem Comm 3
(10):1290–1293

3. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005)
Global burden of hypertension: analysis of worldwide data. Lancet 365
(9455):217–223
4. Li GH, Le GW, Shi YH, Shrestha S (2004) Angiotensin I-converting enzyme
inhibitory peptides derived from food proteins and their physiological and
pharmacological effects. Nutr Res 24(7):469–486

5. Guang C, Phillips RD (2009) Plant food-derived angiotensin I converting
enzyme inhibitory peptides. J Agric Food Chem 57(12):5113–5120

6. De Leo F, Panarese S, Gallerani R, Ceci L (2009) Angiotensin converting
enzyme (ACE) inhibitory peptides: production and implementation of
functional food. Curr Pharm Des 15(31):3622–3643

7. Iroyukifujita H, Eiichiyokoyama K, Yoshikawa M (2000) Classification and
antihypertensive activity of angiotensin I-converting enzyme inhibitory
peptides derived from food proteins. J Food Sci 65(4):564–569

8. Reneland R, Lithell H (1994) Angiotensin-converting enzyme in human
skeletal muscle. A simple in vitro assay of activity in needle biopsy
specimens. Scand J Clin Lab Investig 54(2):105–111

9. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580
10. Sturrock E, Natesh R, Van Rooyen J, Acharya K (2004) Structure of

angiotensin I-converting enzyme. Cell Mol Life Sci 61:2677–2686
11. Lin L, Lv S, Li B (2012) Angiotensin-I-converting enzyme (ACE)-inhibitory and

antihypertensive properties of squid skin gelatin hydrolysates. Food Chem
131(1):225–230

12. Sweitzer NK (2003) What is an angiotensin converting enzyme inhibitor?
Circulation 108(3):e16–e18

13. Antonios TF, MacGregor GA (1995) Angiotensin converting enzyme
inhibitors in hypertension: potential problems. J Hypertens 13:S11–S16

14. Ondetti MA, Williams NJ, Sabo E, Pluscec J, Weaver ER, Kocy O (1971)
Angiotensin-converting enzyme inhibitors from the venom of Bothrops
jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry 10
(22):4033–4039

15. Abubakar A, Saito T, Kitazawa H, Kawai Y, Itoh T (1998) Structural analysis of
new antihypertensive peptides derived from cheese whey protein by
proteinase K digestion. J Dairy Sci 81(12):3131–3138

16. Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995)
Purification and characterization of angiotensin I-converting enzyme
inhibitors from sour milk. J Dairy Sci 78(4):777–783

17. Andújar-Sánchez M, Cámara-Artigas A, Jara-Pérez V (2004) A calorimetric
study of the binding of lisinopril, enalaprilat and captopril to angiotensin-
converting enzyme. Biophys Chem 111(2):183–189

18. Wu J, Ding X (2001) Hypotensive and physiological effect of angiotensin
converting enzyme inhibitory peptides derived from soy protein on
spontaneously hypertensive rats. J Agric Food Chem 49(1):501–506

19. Mallikarjun Gouda K, Gowda LR, Rao AA, Prakash V (2006) Angiotensin
I-converting enzyme inhibitory peptide derived from glycinin, the 11S
globulin of soybean (Glycine max). J Agric Food Chem 54(13):4568–4573

20. Suh H, Whang J, Lee H (1999) A peptide from corn gluten hydrolysate that
is inhibitory toward angiotensin I converting enzyme. Biotechnol Lett 21
(12):1055–1058

21. Vercruysse L, Van Camp J, Morel N, Rougé P, Herregods G, Smagghe G
(2010) Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect
protein with antihypertensive activity in spontaneously hypertensive rats.
Peptides 31(3):482–488

22. Quist EE, Phillips RD, Saalia FK (2009) Angiotensin converting enzyme
inhibitory activity of proteolytic digests of peanut (Arachis hypogaea L.)
flour. LWT-Food Sci Technol 42(3):694–699

23. Majumder K, Wu J (2009) Angiotensin I converting enzyme inhibitory
peptides from simulated in vitro gastrointestinal digestion of cooked eggs.
J Agric Food Chem 57(2):471–477

24. Wang C, Tian J, Wang Q (2011) ACE inhibitory and antihypertensive
properties of apricot almond meal hydrolysate. Eur Food Res Technol
232(3):549–556

25. Vermeirssen V, Camp JV, Verstraete W (2004) Bioavailability of angiotensin I
converting enzyme inhibitory peptides. Br J Nutr 92(03):357–366

26. Jimsheena V, Gowda LR (2011) Angiotensin I-converting enzyme (ACE)
inhibitory peptides derived from arachin by simulated gastric digestion.
Food Chem 125(2):561–569

27. Seppo L, Jauhiainen T, Poussa T, Korpela R (2003) A fermented milk high in
bioactive peptides has a blood pressure-lowering effect in hypertensive
subjects. Am J Clin Nutri 77(2):326–330

28. Mathews D, Adibi S (1976) Peptide absorption. Gastroenterology 71(1):151
29. Wu J, Aluko RE, Nakai S (2006) Structural requirements of angiotensin

I-converting enzyme inhibitory peptides: quantitative structure-activity
relationship study of di-and tripeptides. J Agric Food Chem 54(3):732–738



Liu et al. Bioresources and Bioprocessing 2014, 1:17 Page 9 of 9
http://www.bioresourcesbioprocessing.com/content/1/1/17
30. Wijesekara I, Qian ZJ, Ryu B, Ngo DH, Kim SK (2011) Purification and
identification of antihypertensive peptides from seaweed pipefish (Syngnathus
schlegeli) muscle protein hydrolysate. Food Res Int 44(3):703–707

31. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov
IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

32. Pripp AH (2007) Docking and virtual screening of ACE inhibitory dipeptides.
Eur Food Res Technol 225(3–4):589–592

33. Su X, Du L, Li Y, Li T, Li D, Wang M, He J (2009) Production of recombinant
protein and polyclonal mouse antiserum for ferritin from Sipuncula
Phascolosoma esculenta. Fish Shellfish Immunol 27(3):466–468

34. Du L, Fang M, Wu H, Xie J, Wu Y, Li P, Zhang D, Huang Z, Xia Y, Zhou L
(2013) A novel angiotensin I-converting enzyme inhibitory peptide from
Phascolosoma esculenta water-soluble protein hydrolysate. J Funct Foods
5(1):475–483

35. Wu H, Liu Y, Guo M, Xie J, Jiang X (2014) A virtual screening method for
inhibitory peptides of angiotensin I converting enzyme. J Food Sci 79:
C1635–C1642, doi:10.1111/1750-3841.12559

36. Kerwin SM (2010) ChemBioOffice Ultra 2010 suite. J Am Chem Soc
132(7):2466–2467

37. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M
(1983) CHARMM: a program for macromolecular energy, minimization, and
dynamics calculations. J Comput Chem 4(2):187–217

38. Cushman D, Cheung H (1971) Spectrophotometric assay and properties of
the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol
20(7):1637–1648

39. Iwaniak A, Minkiewicz P, Darewicz M (2014) Food-originating ACE inhibitors,
including antihypertensive peptides, as preventive food components in
blood pressure reduction. Compr Rev Food Sci Food Safety 13(2):114–134

40. Kobayashi Y, Yamauchi T, Katsuda T, Yamaji H, Katoh S (2008) Angiotensin-I
converting enzyme (ACE) inhibitory mechanism of tripeptides containing
aromatic residues. J Biosci Bioeng 106(3):310–312

41. Sagardia I, Roa-Ureta RH, Bald C (2013) A new QSAR model, for angiotensin
I-converting enzyme inhibitory oligopeptides. Food Chem 136(3):1370–1376

42. Wu J, Aluko RE, Nakai S (2006) Structural requirements of angiotensin
I-converting enzyme inhibitory peptides: quantitative structure-activity
relationship modeling of peptides containing 4-10 amino acid residues.
QSAR Combinat Sci 25(10):873–880

43. Pripp AH, Isaksson T, Stepaniak L, Søhaug T (2004) Quantitative structure-activity
relationship modelling of ACE-inhibitory peptides derived from milk proteins.
Eur Food Res Technol 219(6):579–583

44. Kim SY, Je JY, Kim SK (2007) Purification and characterization of antioxidant
peptide from hoki (Johnius belengerii) frame protein by gastrointestinal
digestion. J Nutr Biochem 18(1):31–38

45. Ruiz-Giménez P, Marcos JF, Torregrosa G, Lahoz A, Fernández-Musoles R,
Valles S, Alborch E, Manzanares P, Salom JB (2011) Novel antihypertensive
hexa- and heptapeptides with ACE-inhibiting properties: from the in vitro
ACE assay to the spontaneously hypertensive rat. Peptides 32(7):1431–1438

46. Kapel R, Rahhou E, Lecouturier D, Guillochon D, Dhulster P (2006)
Characterization of an antihypertensive peptide from an Alfalfa white
protein hydrolysate produced by a continuous enzymatic membrane
reactor. Process Biochem 41(9):1961–1966

47. Pripp AH (2005) Initial proteolysis of milk proteins and its effect on
formation of ACE-inhibitory peptides during gastrointestinal proteolysis:
a bioinformatic, in silico, approach. Eur Food Res Technol 221(5):712–716

48. Wu J, Aluko RE (2007) Quantitative structure-activity relationship study
of bitter di-and tri-peptides including relationship with angiotensin
I-converting enzyme inhibitory activity. J Pept Sci 13(1):63–69

doi:10.1186/s40643-014-0017-5
Cite this article as: Liu et al.: Virtual screening for angiotensin I-
converting enzyme inhibitory peptides from Phascolosoma esculenta.
Bioresources and Bioprocessing 2014 1:17.
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Materials
	Molecular docking experiments
	Synthesis of peptides
	Measurement of ACE inhibitory activity
	Study on structural-active relationship of ACE inhibitory peptides

	Results and discussion
	Pool of di- and tri-peptides derived from P. esculenta proteins
	Estimated IC50 distribution of ACE inhibitory di- and tri-peptides
	Confirmation of virtual screening method

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

