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Abstract

Background: /evo-Menthol is an important flavoring chemical, which can be prepared by enantioselective
enzymatic hydrolysis of d-menthyl esters. A recombinant esterase (BsE) cloned from Bacillus subtilis 0554 shows
excellent enantioselectivity to d-menthyl acetate and has been immobilized using cross-linked enzyme aggregates.
Though BsE has relatively high substrate tolerance, the conversion of d-menthyl acetate decreased sharply with the
increase of substrate loading from 1 to 3 M in mono-aqueous system, which might be due to the severe inhibition
of enzyme activity at extremely high load of substrate or product. In this work, enzymatic hydrolysis of dl-menthyl
acetate with an extremely high load using the immobilized CLEA-BSE was investigated in an organic-aqueous
biphasic system containing surfactant to establish a promising bioprocess for large-scale production of I-menthol.

substrate load of up to 3.0 M with >40% conversion.

production of -menthol.

Immobilized Bacillus subtilis esterase

Results: An efficient biphasic reaction system of pentanol-water containing sodium dodecyl sulfate (SDS) was
developed for improving enantioselective hydrolysis of d-menthyl acetate to produce -menthol by immobilized
BsE. Under the optimized reaction conditions, -menthol was produced in >97% enantiomeric excess (ee) at a

Conclusions: All the positive features demonstrate the potential applicability of the bioprocess for the large-scale

Keywords: I-Menthol; Enantioselective hydrolysis; Organic-aqueous biphasic system; d-Menthyl acetate;

Background

Menthol is an important cyclic monoterpene alcohol hav-
ing eight optical isomers because of three chiral centers.
Among them, /-menthol is not only one of the most im-
portant flavoring chemicals used extensively in oral prod-
ucts, pharmaceuticals, tobacco products, confectionaries,
and shaving products [1,2], but also a useful chiral resolv-
ing reagent [3,4]. In the past two decades, the global
demand for [-menthol increased sharply from 6,300
to 20,000 t [5], and the production of /-menthol by
extracting from mint can no longer meet the market
demands. Therefore, considerable efforts have been
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devoted to the production of /-menthol by synthetic
or semi-synthetic method.

Symrise Incorporation (Germany) first developed a
chemical synthesis process for the industrial production
of [-menthol using thymol as a raw material [6,7]. Later,
Takasago International Corporation (Japan) developed an
elegant route from myrcene based on the catalytic asym-
metric isomerization of geranyldiethylamine by using a
chiral catalyst (S)-BINAP-Rh, invented by Nobel laureate
Ryoji Noyori. The production of /-menthol has reached
1,000 t annually [8-11].

Though chemical synthesis has been successfully com-
mercialized, biosynthetic methods still attract much atten-
tion due to the advantages of high activity, mild reaction
condition, little pollution, and excellent purity of product,
and more importantly, the /-menthol produced is much
closer to the natural product. Researchers from South
Africa have developed a biosynthetic process for preparation
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of I-menthol by lipase-catalyzed kinetic resolution of
dl-menthol at a scale of kilogram [12,13]. Other biosyn-
thetic approaches, including enantioselective esterification,
transesterification, and hydrolysis, have also been reported
[14-22]. In our laboratory, using racemic menthyl acetate
as the sole carbon source and combining the strategy of
habituated culture with increasing substrate concentra-
tion, a bacterial strain of Bacillus subtilis ECU0554 was
isolated from soil samples, which exhibited very high sub-
strate tolerance (100 g 1"}, 0.5 M) and excellent enantios-
electivity (E > 100) [23]. The esterase (BsE) catalyzing the
enantioselective hydrolysis of d/-menthyl acetate was
cloned and overexpressed in Escherichia coli [24]. The free
BsE was not very stable, and its stability was improved by
immobilization in the form of cross-linked enzyme aggre-
gates (CLEAs) [25]. The thermostability of the immobi-
lized BsE at 30°C was increased by 360 times, with only
8% activity loss after 10 cycles of repeated use in enzym-
atic resolution of dl-menthyl acetate.

The solubility of d/-menthyl acetate in mono-aqueous
phase was very low, and ethanol was added as cosolvent
to improve the substrate solubility [23]. Although BsE
showed relatively high substrate tolerance, the conversion
decreased sharply with increase of substrate concentra-
tion from 1 to 3 M in mono-aqueous system, which might
be due to the severe inhibition of enzyme activity at ex-
tremely high concentration of substrate or product. Organic-
aqueous biphasic system was usually adopted to increase the
substrate load and relieve the substrate/product inhibition
[26]. The addition of surfactant could facilitate the dispersal
of the water-insoluble substrate through the formation of
micellar system and improve the mass transfer of substrate
[27], which is beneficial for the enzyme enantioselectivity
[28]. As well known, the increase of substrate concentration
can often effectively facilitate the downstream separation
and reduce the cost of the product. Additionally, immobi-
lized enzymes are insoluble in the reaction medium, thus
avoiding contamination of the product, which is feasible for
separation and simplifies the downstream process. Hence,
in this work, enzymatic hydrolysis of d/-menthyl acetate at
an extremely high load using the immobilized CLEA-BSE
was investigated to establish a promising bioprocess for
large-scale production of /-menthol.

Methods

Materials

dl-Menthol was purchased from Alfa Aesar (Tianjin, China),
and d/-menthyl acetate was synthesized as described be-
fore [23]. All other reagents were obtained commercially
and of analytic grade.

Preparation of immobilized BsE
The immobilized BsE was prepared as described previ-
ously [25]. The crude BsE (10 g powder) was dissolved in
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500 ml potassium phosphate buffer (KPB, 100 mM,
pH 7.0), then 250 g (NH4),SO, was added slowly with
gentle stirring at 0°C and continuously stirred for 10 min.
A 25% glutaraldehyde solution (12 ml) was added to the
mixture. The suspension was stirred at 0°C for 3 h, and
the resultant immobilized BsE was separated by centrifu-
gation (6,000xg, 4°C, 5 min). After washing twice with
KPB, the collected immobilized BsE was lyophilized for
later use.

For BsE activity assay, the BsE was appropriately diluted
in 1.0 ml KPB (100 mM, pH 8.0) containing 10 mM di-
menthyl acetate and the reaction was performed at 30°C,
1,000 rpm for 10 min. Then 500 pl of reaction mixture
was extracted with same volume of ethyl acetate, and the
conversion of /-menthyl acetate was determined by gas
chromatography (GC) analysis for the activity assay.

Enzymatic hydrolysis of dI-menthyl acetate

The reactions were performed in a 25-ml jacketed reactor
with 10 ml of medium system. For mono-aqueous system,
KPB (pH 8.0, 200 mM) containing 10% ethanol was used,
and for organic-aqueous biphasic system, the volumetric ra-
tio of KPB (pH 8.0, 200 mM) and organic solvent was 4:1.
dl-Menthyl acetate was added together with the immobi-
lized BsE. Surfactant was also added in some cases. The
reactions were performed at 30°C with magnetic stirring
at 300 rpm. The pH of reaction mixture was controlled at
8.0 by automatically titrating 1 M NaOH. Samples were
withdrawn for GC analysis.

Reaction scaling up

Into a 250-ml, three-necked flask, 59.4 g dl-menthyl acet-
ate, 5.5 g immobilized BsE, 0.25 g SDS, 80 ml KPB (pH 8.0,
200 mM), and 20 ml n-pentanol were added. The reaction
mixture was incubated at 30°C and agitated at 300 rpm.
The reaction pH was controlled at 8.0 by automatic titra-
tion of 1 M NaOH. After a certain period of time, samples
were withdrawn for GC analysis.

After 84 h of reaction, immobilized BsE was removed by
filtration. The organic phase was separated and distilled
under vacuum. A flash chromatography of the residue
was performed on a silica column using a mobile phase of
petroleum-ethyl acetate (10:1, v/v) to get chemically pure
/-menthol.

GC analysis

GC analysis was performed as described previously [25].
The samples from the hydrolysis reaction mixture were
analyzed on a GC-14 gas chromatography (Shimadzu,
Kyoto, Japan) equipped with an FID detector. The en-
antiomeric excess of substrate (ees) was determined using
Beta Dex™ 120 chiral column (30 m x 0.25 mm, 0.25 um
film thickness) from Supelco (Bellefonte, PA, USA) using
N, as carrier gas. The temperatures of column, injector,
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and detector were held at 130°C, 280°C, and 350°C, respect-
ively. The enantiomeric excess of product (ee,) was deter-
mined using Gamma Dex™ 120 chiral column (30 m x
0.25 mm, 0.25 pm film thickness) also from Supelco (USA)
using N as carrier gas. The injector and detector tempera-
tures were held at 280°C and 350°C, respectively. The oven
temperature was programmed from 110°C, held for
15 min, then raised to 150°C at a rate of 10°C min " and fi-
nally held at 150°C for 1 min. The ee, ee,, substrate con-
version, and enantioselectivity were calculated according to
the equations of Chen et al. [29]. The conversion was calcu-
lated as c = eey/(ees + eep) and the E value was calculated as
E=In[l-c(l + eep)]/In[1 - c(l - eep)].

Results and discussion

Enzymatic hydrolysis of dl-menthyl acetate in
mono-aqueous system

The activity (turnover number) of the free BSE was deter-
mined as 1,304 s! (towards [-menthyl acetate), and the ac-
tivity recovery of the immobilized BsE was as high as 70%.
Immobilized BsE could efficiently catalyze the enantioselec-
tive hydrolysis of dl-menthyl acetate to produce /-menthol
in mono-aqueous phase containing 10% ethanol. As shown
in Figure 1, at a substrate concentration of 1.0 M, 41% of
the racemic substrate can be hydrolyzed within 8 h. How-
ever, when the substrate loading was further increased to
3 M with a constant ratio of S/C (substrate/catalyst, g/g),
the reaction proceeded fast at first, and then slowed down
sharply. Finally, merely 23.7% of the substrate was con-
verted, indicating extremely high concentration of the sub-
strate or the product might probably inhibit the enzyme
activity.

50

Conversion (%)

Reaction time (h)

Figure 1 Enzymatic hydrolysis of dI-menthyl acetate at varied
loads in mono-aqueous system containing 10% (v/v) of EtOH.
Symbols: (#) 1.0 M dl-menthyl acetate with 55 g I”' of immobilized
BSE; (e) 2.0 M dl-menthyl acetate with 110 g I of immobilized BsE;
(A) 3.0 Md-menthyl acetate with 165 g | of immobilized BsE. The
reactions were performed at 30°C and 300 rpm.
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Enzymatic hydrolysis of dl-menthyl acetate in
organic-aqueous biphasic system

High loading of substrate is very important for biocatalysis
since it can reduce the difficulties of product separation
and facilitate practical application. However, exorbitant
concentrations of the substrate or product may inhibit the
activity of free and immobilized BsE, and consequently,
prevent the completion of the enzymatic reaction.

The application of organic-aqueous biphasic systems has
proven to be an efficient approach to solve the problem of
inhibition [30,31]. In order to eliminate the inhibition of
product /-menthol and realize the complete bioconversion
of [-menthyl acetate at high loads, an organic-aqueous
biphasic system was adopted as the reaction medium.
Several water-immiscible organic solvents with varied log
P values were tested at a fixed phase ratio of 1:4 for or-
ganic solvent to buffer. The results were shown in Table 1.

Unfortunately, compared with the reaction in mono-
aqueous phase, the enantioselectivity (E value) of the
immobilized BsE decreased obviously in organic-aqueous
biphasic system. Even in the best system composed of
n-pentanol and buffer, the E value was only 26, far
lower than that (E=63) in mono-aqueous phase using
10% (v/v) ethanol as a cosolvent. The optical purity of
the product also decreased from 94% ee to 85% ee. The
decrease in enantioselectivity may be attributed to the
diffusion limitation of substrate/product in the biphasic
system. After the faster-reacting enantiomer (/-menthyl
acetate) in the microenvironment of the enzyme was com-
pletely converted, the fresh /-menthyl acetate could not
swiftly access to the active site of the enzyme due to
diffusion limitation. In this case, the enzyme would
catalyze the hydrolysis of the slower-reacting d-menthyl
acetate, thus decreasing the optical purity of the product
(/-menthol).

Table 1 Enantioselective hydrolysis of dI-menthyl acetate
by immobilized BsE in different organic-aqueous biphasic
systems

Organic solvent Log P Conversion (%) ee, (%) E value
Control 41 94 63
Methy! t-butyl ether 1.3 39 81 17
n-Pentanol 1.5 44 85 26
Pentyl acetate 2.1 15 89 20
Toluene 25 44 78 15
Carbon tetrachloride 2.8 37 70 10
n-Nonanol 36 50 63 8
n-Octane 44 32 61 5
n-Dodecane 6.1 32 53 4

The biphasic reactions were performed by adding 1.98 g (10 mmol) of d-menthyl
acetate and 0.55 g immobilized BsE into a mixture of 8 ml KPB (pH 8.0, 200 mM)
and 2 ml organic solvent at 30°C and 300 rpm for 48 h. The control reaction was
performed in 10 ml KPB containing 10% (v/v) ethanol.
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Table 2 Enantioselective hydrolysis of dI-menthyl acetate by immobilized BsE in biphasic pentanol-buffer system

containing a certain surfactant

Additive Hydrophilic lypophilic balance (HLB) Critical micelle concentration (CMC, g I Conversion (%) ee, (%) E value
Control 44 85 26
Tween 80 15 6.0 43 87 29
Triton X-100 135 0.13 50 85 35
Span 60 47 70 45 87 32
SDS 40 23 44 95 83

The reactions were performed at 30°C, 300 rpm, at pH of 8.0, by adding 1.98 g (10 mmol) of dl-menthyl acetate, 0.55 g immobilized BsE, and 15 mg surfactant

into a mixture of 8 ml KPB (pH 8.0, 200 mM) and 2 ml n-pentanol for 48 h.

Improvement of enantioselectivity by adding a surfactant
to biphasic system
In order to increase the enantioselectivity of the biphasic
reaction, surfactants were introduced into the reaction sys-
tem to improve the mass transfer of the substrate [28].
Four different surfactants were tested, including Tween 80,
Triton X-100, Span 60, and sodium dodecyl sulfate (SDS).
As shown in Table 2, the enantioselectivities increased
slightly with the addition of Tween 80, Triton X-100, or
Span 60, but the modulating effects were not so significant.
Surprisingly, when 1.5 g I"* of SDS (an anionic surfactant)
was added, the enantioselectivity of the enzymatic reaction
was significantly enhanced from 26 to 83, resulting in re-
markable improvement of [-menthol enantiopurity from
85% ee to 95% ee. The improvement of enantioselectivity
by SDS was also described by Mori et al. [32]. The signifi-
cant modulation of enantioselectivity is may be due to the
fact that SDS has a very high HLB value and a relatively
low critical micelle concentration (CMC), which is favor-
able for forming an oil-in-water emulsion and for solubiliz-
ing the hydrophobic d/-menthyl acetate in the dispersed
organic phase of the SDS micelles in the aqueous phase.
Therefore, SDS was selected for further investigation.
Subsequently, the amount of SDS as an additive was op-
timized. The CMC of SDS in an aqueous solution was
about 8 mmol 1! (ca. 2.3 g I'Y). As shown in Table 3, the
optical purity of the product increased with the increase
of SDS concentration up to 2.5 g 1%, beyond the CMC of
SDS, where the enantiomeric ratio (E value) reached 155.
As the SDS concentration further increased to 5 g 17, the

Table 3 Enantioselective hydrolysis of dI-menthyl acetate
by immobilized BsE in biphasic pentanol-buffer system
with varied concentrations of SDS

SDS concentration (g I Conversion (%) ee, (%) E value
0.5 47 91 52

15 44 95 83

25 41 97 155

5.0 26 97 90

The reactions were performed at 30°C and 300 rpm for 48 h by adding 1.98 g
(10 mmol) dl-menthyl acetate, 0.55 g immobilized BsE, and a varied amount of
SDS into a mixture of 8 ml KPB (pH 8.0, 200 mM) and 2 ml n-pentanol.

enantioselectivity of the reaction did not increase obvi-
ously. On the other hand, the conversion decreased sig-
nificantly, perhaps due to the denaturation/inactivation of
the enzyme resulting from the existence of excessive SDS.
Therefore, the optimal concentration of SDS was chosen
as 2.5 g1h

Under the above optimized conditions, the enantios-
electivity of biohydrolysis was significantly enhanced.
Enzymatic hydrolysis of d/-menthyl acetate at high con-
centrations of 1 to 3 M was reexamined. As shown in
Table 4, when the substrate loading was increased from 1
to 3 M, the final conversions were maintained at a high
level (over 40%) with a constant ratio of S/C, though the
reaction time was extended to some degree. The optical
purities of the produced /-menthol were also quite satis-
factory, all better than 97% ee.

The initial reaction rate at various stirring rates was
determined, as shown in Figure 2. When the stirring rate
increased from 200 to 300 rpm, the reaction rate in-
creased sharply from 23.8 to 77.8 mmol I h™!; however,
when the stirring rate further increased to 500 rpm, no
obvious increase in the reaction rate was observed. Since
the concentration of SDS has reached its CMC, normal
micelles could be formed rapidly at a relatively high stir-
ring rate, thereby facilitating the solubilization and diffu-
sion of the hydrophobic substrate, which in turn will result
in higher reaction rate. As a result, 300 rpm was employed
for further investigation.

The repeated use of the immobilized BsE was also in-
vestigated. After one batch of reaction, the immobilized

Table 4 Enantioselective hydrolysis of dI-menthyl acetate
at different substrate loads by immobilized BsE under
the optimal reaction conditions

Substrate loading Reaction ee, (%) Conversion (%) E value
time (h)

10M/198 g I 48 97 43 158

20M/396 g ™! 54 97 43 158

30 M/594 g 17! 72 97 40 120

The reactions were performed at 30°C and 300 rpm for 48 h by adding
different concentrations of dl-menthyl acetate, 0.55 g immobilized BsE, and
25 mg of SDS into a mixture of 8 ml KPB (pH 8.0, 200 mM) and

2 ml n-pentanol.
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Figure 2 Initial rate of dI-menthyl acetate hydrolysis at various
stirring rates in biphasic pentanol-buffer system. The reactions
were performed at 30°C and varied stirring rates, by adding 0.55 g
immobilized BsE and 25 mg SDS into a mixture of 8 ml KPB (pH 8.0,

200 mM) and 2 ml n-pentanol.

enzyme was collected by filtration and reused in the next
cycle. It should be noted that no activity was detected in
the filtrated aqueous phase. After three batches of reac-
tion, the initial reaction rate decreased to 45%, as shown
in Figure 3. As compared with the 8% deactivation after
10 cycles of reaction in mono-aqueous phase [25], the
fast deactivation might be attributed to the protein-
denaturing role of the anionic surfactant SDS.

Preparation of I-menthol at decagram scale

To evaluate the feasibility of the biocatalytic process for
practical application, the BsE-mediated reaction was scaled
up to 100 ml, with a substrate load of 3 M (594 g 1™"). The

100

80

60

40

Relative activity (%) &
conversion (%)

20

1 2 3

Reused times

Figure 3 Repeated use of the immobilized BsE. The reaction was
performed in a 50-ml three-necked flask containing 5.94 g di-menthy!
acetate, 25 mg SDS and 8 ml KPB (pH 8.0, 200 mM) and 2 ml n-pentanol,
at 30°C and 300 rpm with mechanical stirring. After 24-h reaction, the
reaction was terminated by filtration, and the recovered immobilized
BsE was reused in next batch of reaction. Symbols: black square,
relative activity (%); gray square, conversion after 24-h reaction.
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biocatalytic process was identical to that at 10-ml scale,
reaching 41% conversion after 84 h with an ee, of 97%.
After the reaction was terminated, the reaction mix-
ture was filtrated under vacuum. The filtrate was di-
vided into two phases immediately, without forming any
emulsion which is frequently encountered in the case of
free enzyme-catalyzed reactions. The organic phase was
separated, then the solvent was removed by vacuum distil-
lation, and finally the crude product was further purified
by silica gel column chromatography, affording 17.3 g
[-menthol (97.2% ee), in a yield of 37% (the theoretical
yield is 50% at maximum). Therefore, the biocatalytic
process developed herein should be feasible for efficient
transformation of highly loaded dl-menthyl acetate, dem-
onstrating a good prospect for practical application in
[-menthol manufacturing.

Conclusions

It has been proven that the use of immobilized BsE as a ro-
bust biocatalyst can perfectly catalyze the enantioselective
hydrolysis of dl-menthyl acetate. In order to increase the
substrate loading and to diminish the inhibition of enzyme
activity by the product, an organic-aqueous two-phase
system was adopted. To address the enantioselectivity de-
crease issue, several surfactants were tested for improving
the mass transfer limitation between the two phases. Unex-
pectedly, anionic surfactant SDS as an additive could en-
hance the enantioselectivity from 26 to more than 150. By
adopting these strategies, a high-performance bioprocess
was successfully constructed for preparative synthesis of /-
menthol with 97% ee. The substrate loading was as high as
3 M (594 g I'!), affording a very high space-time yield of
198 g/ menthol It day’l. Compared with the reported enan-
tioselective enzymatic esterification of dl-menthol [19-21]
and hydrolysis of d/-menthyl propionate [22], the substrate
loading was much higher. These results inspire us to ex-
plore the possibility of industrial biocatalysis in large-scale
production of /-menthol.
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