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Abstract 

Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system 
is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design 
of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative 
robots. We first present the architecture of micROS, including the distributed architecture for collective robot system 
as a whole and the layered architecture for every single node. We then present the design of autonomous behavior 
management based on the observe–orient–decide–act cognitive behavior model and the design of collective intel-
ligence including collective perception, collective cognition, collective game and collective dynamics. We also give 
the design of morphable resource management, which first categorizes robot resources into physical, information, 
cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally 
deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.
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Background
The third industrial revolution is under its way [1]. 
Robots, as one of the most remarkable novel products in 
this revolution, will repeat the history of the rising of per-
sonal computers and enter every home in a near future 
[2]. The most important system software for robots, 
robot operating system, will be the key driving force for 
this trend. It is able to effectively solve the major prob-
lems of low modularity and standardization level faced by 
current robotic technology, in order to simplify software 
design, improve software quality, promote the integration 
of new technologies and reduce production costs.

Before the concept of robot operating system was intro-
duced, system software with the same functionalities was 
referred to as robotics middleware, robot software frame-
work, or robotics development environment. They gained 
more and more attentions and research efforts since late 
1990s, with typical initiatives gradually emerging, such 

as Miro [3], Orca [4], RT-Middleware [5], Player/Stage 
[6], MARIE [7], RSCA [8] and Orocos [9]. Microsoft also 
released Robotics Developer Studio [10] in 2006. In 2007, 
the release of Robot Operating System (ROS) version 
1.0 [11] introduced the concept of operating system into 
robotics for the first time. In recent years, this concept 
was gradually accepted by both academia and industry. 
An increasing number of experimental and commer-
cial robot systems base their research and development 
entirely or partially upon robot operating systems, even 
including examples like the Aircrew Labor In-cockpit 
Automation System (ALIAS) [12] and Robonaut 2 [13], 
which requires very high real-time performance and 
reliability. However, most of the aforementioned robot 
operating systems mainly focused on development of 
applications on individual robotic platform, despite the 
fact that the vast majority of them support networking. 
It still remains an open issue for existing robot operating 
systems how to manage the heterogeneous resources and 
complex behaviors of collective robot systems to achieve 
collective intelligence.

In order to solve the above-mentioned problems and 
better adapt to the emerging of co-robot (i.e., cooperative 
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robots) that would profoundly interact with the human 
society, this paper proposes the idea and design of a mor-
phable, intelligent and collective robot operating system, 
micROS. The main contribution of this paper is fourfold.

• • The design choice of micROS is based on autono-
mous behavior and collective intelligence, with man-
agement of autonomous and collective robots as its 
major target;

• • The micROS architecture, in terms of both the dis-
tributed collective architecture for collective robots 
and the layered architecture for individual robots, is 
proposed;

• • We combine the observe–orient–decide–act (OODA)  
cognitive behavior model and collective intelligence 
in the high-level architecture design and tackle the 
four major challenges, i.e., autonomous observation 
and collective perception, autonomous orientation 
and collective cognition, autonomous decision and 
collective game, autonomous action and collective 
dynamics;

• • The morphable and adaptive mechanism of micROS 
is designed based on adaptive software techniques.

The remaining part of this paper is structured as follows. 
“micROS Architecture” section introduces the architec-
ture of micROS. “Autonomous behavior and collective 
intelligence” section presents the mechanisms to imple-
ment autonomous behavior and collective intelligence. 
“Morphable and adaptive mechanism” section describes 
the morphable and adaptive design of micROS. Practi-
cal application of micROS in a RoboCup system (soccer 
robots), as well as the corresponding experimental results, 
is presented in “Application and experiments” section. 

Finally, “Conclusion and future work” section concludes 
the paper and discusses about potential future work.

Methods
micROS architecture
Derived from the organization structures of collective 
robots, we designed for micROS the overall distributed 
architecture and the layered structure for individual node.

Organization structures for collective robots
Collective behaviors are deeply affected by organization 
structures, which are made of roles, relations and privi-
leges. There are various organization structures for col-
lective robots under different tasks and environments, 
such as hierarchies, holarchies, coalitions, teams, congre-
gations, federations, markets, matrices and societies [14]. 
A robot, a computer or even a human can serve as a node 
in the organization structures. The left part of Fig. 1 illus-
trates an example of organization structures. It consists 
of an environment, several nodes in two domains and a 
node dominating others. All nodes together form a col-
lection by collaborating with each other and interacting 
with the environment. The right part of Fig. 1 shows an 
example of co-robot collections with two domains serv-
ing humans collaboratively in a city scenario. In the out-
door domain, unmanned aerial vehicles and unmanned 
ground vehicles collaborate to percept, plan and share 
data to improve mobility. In the indoor domain, robots, 
computers and smart terminals collaborate to provide a 
better service.

The distributed architecture of micROS
Inspired by organization structures, micROS is designed 
to be a distributed architecture which consists of lots of 

Fig. 1  Illustrative examples for collective organization structures (left) and co-robot collections in a city scenario (right), respectively
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individuals (nodes) interconnected. The nodes could be 
robots, computers or humans. micROS is installed on 
every node to form a distributed system, which is respon-
sible for management of resources and behaviors, coordi-
nation of node–node and node–environment interaction 
and self-organization in dynamic and open environment. 
Figure 2 shows how to map the city scenario example to 
micROS.

The distributed architecture of micROS implements 
“inter-connecting, inter-communicating, interoperability, 
inter-understanding and inter-obedience.” Interconnect-
ing and intercommunicating are implemented through 
distributed networking. Interoperability is supported by 
standardization, modularity and platformization. Inter-
understanding includes three aspects: human–robot, 
robot–robot and robot–environment. Inter-obedience 
is expressed by rules in physical, information and social 
domains.

Networking is the basis for constructing the distrib-
uted architecture. Wireless network is the mainly used 
one for mobile robots. micROS will support scalable 

self-organizing networks based on wireless communica-
tion and provide mechanisms for robust interoperability.

Real-time guarantee is a distinguished feature of 
micROS. micROS will implement three levels of real-
time guarantee, i.e., node-level real time, message-level 
real time and task-level real time. Node-level real-time 
guarantee is achieved by high-resolution timer, inter-
rupt/event priorities, resource scheduling, non-blocking 
communication, etc. Message-level real-time guarantee 
is achieved based on the network protocols, such as RT-
NET, which provide real-time support. Task-level real-
time guarantee supports real-time constraint exchange 
among interconnected nodes and real-time behavior for 
the entire system.

The layered structure for micROS Nodes
micROS is installed on each node of the collective robots 
and exhibits the layered structure for each node, as 
shown in Fig. 3, which consists of the core layer and the 
API layer. The API layer is responsible for interaction and 
programming interface. The micROS core is divided into 

Fig. 2  Distributed architecture of micROS for the city scenario example
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resource management layer and behavior management 
layer. The former aims at resource management in physi-
cal, information, cognitive and social domains. Accord-
ing to the OODA cognitive behavioral model (“Collective 
behavior of robots” section), the behavior management 
layer is composed of observation, orientation, decision 
and action modules.

Autonomous behavior and collective intelligence
Collective behavior of robots
The OODA loop is a famous cognitive behavioral model 
proposed by John Boyd [15]. It was initially used to model 
strongly confrontational behaviors and then extended to 
model more general behaviors such as those in commer-
cial and social domains.

The OODA loop is illustrated in Fig. 4, which consists 
of the observe, orient, decide and act elements. It fully 
takes into account the nonlinearity, uncertainty, emer-
gence, self-organization and creation characteristics of 
dynamic environments and complex systems. So it is 
capable of describing high-level and complex collective 
behaviors [15].

In order to implement behavior management for col-
lective robots, micROS embodies collective intelligence 
into the OODA loop in four aspects: (1) autonomous 
observation and collective perception, (2) autonomous 
orientation and collective cognition, (3) autonomous 
decision and collective game and (4) autonomous action 
and collective dynamics. They will be explained in detail 
in the following sections.

Autonomous observation and collective perception
micROS manages different perception roles and their 
corresponding perception capabilities of each collective 
robot to implement autonomous observation. Moreo-
ver, micROS achieves collective perception by fusing 
information from all individuals of the collective robots 
according to the given tasks and scenarios.

In order to fuse perception information according to 
the different robot roles, micROS first defines the roles 
for each individual robot. micROS allows different ways 
for defining roles. For example, as defined in Webster’s 
dictionary, a role can be a function or a part performed 
function in a particular operation or process. We can also 
consider the role as a function that one or more robots 
perform during the execution of a cooperative task as in 
[16]. micROS assigns roles to collective robots according 
to the actual perception capabilities of their sensors in 
specific tasks. Furthermore, perception information from 
all roles is fused to achieve collective perception.

In collective robots, the perception capability of a robot 
node ri is described as a capability vector Ci

r [17]

where αij is the strength of the perception capability cj for 
robot ri, and [c1, c2,…, cm]T is the perception capability 
set of the collective robots. For a specific task t, we can 
define its relevance vector Ci

t to the perception capability 
set as

where βij is the relevance of task t to the perception capa-
bility cj.

micROS adopts a role-based distributed collective 
perception model for different tasks. When the robots 

(1)Cr
i = diag{αi1,αi2, . . . ,αim} · [c1, c2, . . . , cm]

T

(2)Ct
i = diag{βi1,βi2, . . . ,βim} · [c1, c2, . . . , cm]

T

Fig. 3  Layered structure of micROS nodes

Fig. 4  OODA loop



Page 5 of 9Yang et al. Robot. Biomim.  (2016) 3:21 

perform collective perception, the role task tree is con-
structed according to the perception capabilities of the 
collective robots and the relevance between the capabili-
ties and the given collective perception task. Meanwhile, 
the role of each robot is assigned. In order to achieve 
maximal collective efficiency, this role assignment 
method takes into account the actual perception capabili-
ties of the collective robots at the beginning of produc-
ing the role task tree. Thus, it is different from traditional 
methods, such as those in [18, 19], which directly decom-
pose cooperative tasks to achieve role task trees. The 
perception task of each node of the role task tree is ful-
filled by fusing sensing data of each corresponding robot. 
Then, perception results of all nodes are further fused for 
collective perception task. Moreover, in order to achieve 
globally optimized role assignment strategy and collec-
tive perception capability, the quantity and quality of the 
fulfillment of the collective perception task are evaluated 
in micROS, based on which the role task tree is dynami-
cally adjusted.

Autonomous orientation and collective cognition
micROS is designed to support acquiring, storing and 
managing collective knowledge. The collective knowl-
edge is further analyzed and utilized to achieve autono-
mous orientation and collective cognition, which can be 
used to facilitate the decision of the robots.

Similar to the classification in psychology, collective 
knowledge is also classified into common sense, expe-
riential knowledge and implicit knowledge by micROS. 
Collective robots have the common sense including 
the basic knowledge and rules about inter-robots and 
external environments that each robots possesses, e.g., 
communication protocols among collective robots and 
physical laws, such as Newton’s laws of motion. Experi-
ential knowledge includes the knowledge obtained by 
practices of individuals of the collective robots and can 
be accessed by other robots. Implicit knowledge means 
the knowledge that can be obtained by analyzing all the 
existing knowledge from the collective robots. How to 
extract implicit knowledge is one of the research focuses 
of micROS.

Collective knowledge is stored (i.e., memorized) in 
common-sense database, experiential-knowledge data-
base and implicit-knowledge database (refer to the cogni-
tive domain in Fig. 3). The three databases are organized 
into hierarchically structured computer memories [20], 
in which the collective knowledge is memorized and 
forgotten following a model similar to human memo-
ries [21]. Before a knowledge instance κ is accessed by 
a robot again, the strength sκ of memorizing κ in the 
robot decreases following a negative exponents curve. 
When sκ ≤ τf, where τf is the threshold for forgetting the 

knowledge on the corresponding hierarchical memory 
level of κ, κ will be removed from this memory level to a 
lower level, which has a larger memory space but longer 
accessing time. In order to achieve sufficient memory 
space of knowledge during long-term operation, the 
knowledge that forgotten by the lowest memory level 
will be permanently removed from the robot. The hier-
archical structured memory is also divided into short-
term memory and long-term memory. Those short-term 
memories, that have been strengthened multiple times, 
can be promoted as long-term memories.

In order to achieve human–machine collaborated anal-
ysis and orientation, different kinds of cognition models 
are supported in micROS. Techniques, like data mining, 
will be utilized by micROS to extract collective implicit 
knowledge. Finally, collective cognition is accomplished 
by analysis and orientation on top of the three types of 
collective knowledge.

Autonomous decision and collective game
In order to support autonomous decision and plan-
ning for the collective robots, micROS supports coop-
erative and noncooperative game, where robots and even 
humans are treated as players.

Firstly, micROS supports extraction of the payoff func-
tions and strategy sets of the players. micROS also pro-
vides support for building cooperative or noncooperative 
game models according to whether the players obey the 
common rules. In a noncooperative game, each player 
independently makes decisions according to its own 
objective and intention. In contrast, multiple players may 
form a coalition in a cooperative game. micROS guar-
antees information sharing within the coalition, while 
enforcing the binding contracts [22].

Then, micROS will work out the high-level strategies 
by solving the cooperative or noncooperative games [24], 
where various methods can be adopted, e.g., computa-
tional intelligence method [24] or simple search method 
[25]. Afterward, micROS implements specific task and 
path planning according to the objective of the high-level 
strategy, while considering the capabilities of each robot 
in the team. This planning process invokes optimization 
methods for computing the task allocation and action 
sequences for individual robots [26, 27].

It should be noticed that humans are also considered to 
be nodes in the distributed architecture of micROS. And 
the autonomous decision and collective game module is 
designed to coordinate human and machine intelligence. 
So human may participate or intervene the decision 
process and therefore controls the gaming and decision 
results.

Consider a scenario where multiple robots cooperate 
for resource mining. A noncooperative game model can 
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be constructed, where teams of robots may participate 
as players, and each team aims at maximizing the mining 
outcome. Human may define rules to affect the strategies 
made by the collective robots. Firstly, a robot team recov-
ers the environmental information as well as the informa-
tion of other teams during the collective perception and 
orientation processes. The information is used for defin-
ing the payoff functions and feasible strategies. Then, 
each team invokes the methods provided by micROS for 
finding the Nash equilibrium to form the high-level strat-
egy. Finally, each team invokes optimization methods to 
perform path planning and task allocation for the collec-
tive robots.

Autonomous action and collective dynamics
Through cooperation and self-organization of multiple 
robots, coordinated movements may emerge at the col-
lection level. Therefore, collective robots become capable 
of accomplishing complex tasks, which are impossible 
for a single robot. According to various action objectives, 
the environments and the robots’ capabilities, micROS 
may adopt different collective dynamics models, includ-
ing Boid model, leader–follower model and graph-based 
models, while using the corresponding formation-con-
trolling algorithms for coordinated control [28].

When self-organization is required without explic-
itly defining collective actions, micROS adopts the Boid 
model, which is characterized by three principles or 
local actions: collision avoidance, velocity matching and 
flock centering [29]. Formations of consistent velocity 
and orientation can be achieved and maintained by local 
coordination based on these three principles to achieve 
coordinated control of the collection. In a simpler sce-
nario, where only the velocity matching is considered, 
the particle model can be used for describing the col-
lective dynamics [30]. Besides, the models based on 
attract–repulse rules can be used for describing the col-
lision avoidance and flock centering principles, where the 
potential field method can be used for coordinated con-
trol [31].

When the collective action is decided by an individual 
or some of the robots in the team, the micROS can adopt 
the leader–follower method for formation control [32]. 
The leader may be one of the robots in the formation, or a 
virtual point such as the centroid of the team. Also, mul-
tiple leaders may switch roles during the movements.

Graph-based models can be used for quantifying com-
plex network connection relationships in the team, such 
as sensing, communications and control relationship. 
Graph theory, especially the algebraic graph theory, can 
be used for investigating various properties of the robot 
teams to design the formation and coordinated control 
mechanisms. In this process, the leader–follower method 

and the behavior-based methods may be integrated into 
the framework provided by graph theory.

Morphable and adaptive mechanism
Collective robot systems live and work in a dynamic and 
open space, which can be projected into physical, infor-
mation, cognitive and social domains simultaneously. 
Moreover, collective robots themselves are extremely 
heterogeneous and suffer from high hardware and soft-
ware failure rate. Therefore, some researchers on robot-
ics have reached a consensus that implementing a static, 
complete and generic robot operating system is a daunt-
ing work, if not impossible [33].

We adopt a morphable and adaptive design in micROS, 
in order to provide both generality and usability with 
acceptable system complexity. The resulting system can 
effectively adapt to heterogeneous collective robots sys-
tems and the dynamic and open environments that they 
operate in. As shown in Fig. 5, the morphable and adap-
tive mechanism of micROS is based on control theory 
and adaptive software model [34]. It consists of three 
modules, i.e., self-sensing of software/hardware status, 
adaptive operation and control and morphable recon-
struction. The three constituent modules together make 
the robot system in the target layer adaptive to changes of 
the environment, tasks and the system itself.

Self‑sensing of software/hardware status
This module is able to detect dynamic, unstructured and 
unpredictable changes of the robots themselves, tasks 
and environments. Self-sensing of robot software status 
is based on program and resource analysis, and the tar-
get is the entire ecosystem that the software system of 
collective robots resides in, including libraries, middle-
ware, services, protocols, models, drivers. Self-sensing of 
hardware status is achieved by adding extra introspection 

Fig. 5  micROS morphable and adaptive framework based on control 
theory and adaptive software technology



Page 7 of 9Yang et al. Robot. Biomim.  (2016) 3:21 

sensors and corresponding drivers and is able to detect 
changes in hardware components such as sensors, actua-
tors and processors, as well as unexpected hardware 
failures.

Adaptive operation and control
The adaptive operation and control module takes the 
detected software and hardware status changes as input. 
By giving the strategies, goals and constraints, this 
module may evaluate the system performances after 
the logical or physical changes occurred in operational 
environment, resources and hardware devices. Then, 
decisions on following control operations can be made 
according to the given strategies, goals and constraints. 
This module is based on learning-based and experience-
based software evolution approaches to achieve intel-
ligent and autonomous software operation and control, 
including software redeployment and upgrading. Impacts 
on the robot system are fed back by the previous self-
sensing module and used to decide control operations to 
take in the next step, until the controlled system reaches 
the target state. These modules form a closed feedback 
control loop for the adaptive operation and control 
mechanisms of micROS.

Morphable reconstruction
The morphable reconstruction module contains the 
common functionalities of adaptive software system. It 
embodies the adaptive control operations triggered by 
the previous module by performing reconfiguration and 
reconstruction on the robot software system accordingly. 

The specific approaches that micROS utilizes include 
high-level programming languages, formal modeling and 
analysis tools, automated program transformation, vir-
tual machines supporting cross-platform execution. The 
operation objects of this module are the entire robot soft-
ware system, including the self-sensing and adaptive con-
trol modules.

Results and discussion
micROS is an open-source project based on the Robot 
Operating System (ROS) project [35]. It focuses on mor-
phable resource management and autonomous behavior 
management, and provides support for collective intelli-
gence. Related codes and resources are available online at 
http://micros.nudt.edu.cn.

micROS can be applied to various types of robots. We 
choose a NuBot soccer robot [36] from National Uni-
versity of Defense Technology, which is designed for 
RoboCup Middle Size League, as an exemplary platform. 
micROS is installed on every NuBot soccer robot, provid-
ing common functionalities such as collective communi-
cation, collective perception and collective collaboration. 
NuBot soccer robots can be found in Fig.  6, with cyan 
markers.

The NuBot goalkeeper robot, as shown in Fig. 7, is used 
for experiments on real-time performance of behavior 
managements of micROS.

Installed on the goalkeeper robot, Kinect sensor is 
utilized to capture RGB-D images in the frame rate of 
30  Hz, which are used to produce color segmentation 
results and point clouds for localization and motion 

Fig. 6  NuBot soccer robots in a cooperative attack

http://micros.nudt.edu.cn
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prediction of the soccer. Thus, the robot can make deci-
sions on whether and how to intercept the soccer. The 
image processing algorithm is scheduled to process each 
frame at the rate of 30 Hz, and it must finish before next 
frame comes. So it is a typical real-time problem.

After deploying micROS on the goalkeeper robot, a 
significantly improvement in real-time performance, in 

terms of period jitter, of the Kinect node is achieved com-
pared with the original ROS. Period jitter, which is one of 
the main benchmarks to evaluate real-time performance, 
equals to the difference between any actual frame period 
and the average frame period. The actual frame period 
is usually not kept stable due to multitasking of the pro-
cessor. The comparative results are shown in Fig. 8. The 
maximum period jitters, with the first and last frames 
excluded to eliminate the startup and cleanup over-
head, on ROS and micROS are 0.038018 and 0.000777 s, 
respectively. We found that the period jitter on micROS 
is reduced by two orders of magnitude compared with 
that on ROS. It implies that the image processing task 
is more accurately started upon each incoming frame. 
This eliminates the possible delay and leaves as possible 
as more time for the algorithm. Consequently, the aver-
age per frame image processing time of the Kinect node 
decreases from 0.0403 s on ROS to 0.0366 s on micROS, 
which implies a 9.2% improvement.

Conclusions
We present in this paper the design of micROS, a mor-
phable, intelligent and collective robot operating system 
for collective and cooperative robots, including the archi-
tecture, the autonomous behavior and collective intelli-
gence, as well as the morphable and adaptive framework. 

Fig. 7  NuBot goalkeeper robot

Fig. 8  Comparison in image processing time per frame of the Kinect node using ROS (top) and micROS (bottom)
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We also apply micROS on NuBot football robots and 
achieve two orders of magnitude improvement of real-
time performance in terms of period jitter.

We present in this paper a high-level micROS design. 
Detailed design would be continuously polished in our 
long-term future work. Based on the open-source ROS 
project, we will be devoted to implementing a modular 
and common software platform for usual robot applica-
tion scenarios. We will also improve micROS by apply-
ing it to more kinds of individual robots and collective 
robots.
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