
Yang et al. Robot. Biomim. (2016) 3:21
DOI 10.1186/s40638-016-0054-y

RESEARCH

micROS: a morphable, intelligent
and collective robot operating system
Xuejun Yang, Huadong Dai, Xiaodong Yi*, Yanzhen Wang, Shaowu Yang, Bo Zhang, Zhiyuan Wang, Yun Zhou
and Xuefeng Peng

Abstract 

Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system
is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design
of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative
robots. We first present the architecture of micROS, including the distributed architecture for collective robot system
as a whole and the layered architecture for every single node. We then present the design of autonomous behavior
management based on the observe–orient–decide–act cognitive behavior model and the design of collective intel-
ligence including collective perception, collective cognition, collective game and collective dynamics. We also give
the design of morphable resource management, which first categorizes robot resources into physical, information,
cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally
deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.

Keywords:  micROS, Robot operating system, OODA, Collective intelligence

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
The third industrial revolution is under its way [1].
Robots, as one of the most remarkable novel products in
this revolution, will repeat the history of the rising of per-
sonal computers and enter every home in a near future
[2]. The most important system software for robots,
robot operating system, will be the key driving force for
this trend. It is able to effectively solve the major prob-
lems of low modularity and standardization level faced by
current robotic technology, in order to simplify software
design, improve software quality, promote the integration
of new technologies and reduce production costs.

Before the concept of robot operating system was intro-
duced, system software with the same functionalities was
referred to as robotics middleware, robot software frame-
work, or robotics development environment. They gained
more and more attentions and research efforts since late
1990s, with typical initiatives gradually emerging, such

as Miro [3], Orca [4], RT-Middleware [5], Player/Stage
[6], MARIE [7], RSCA [8] and Orocos [9]. Microsoft also
released Robotics Developer Studio [10] in 2006. In 2007,
the release of Robot Operating System (ROS) version
1.0 [11] introduced the concept of operating system into
robotics for the first time. In recent years, this concept
was gradually accepted by both academia and industry.
An increasing number of experimental and commer-
cial robot systems base their research and development
entirely or partially upon robot operating systems, even
including examples like the Aircrew Labor In-cockpit
Automation System (ALIAS) [12] and Robonaut 2 [13],
which requires very high real-time performance and
reliability. However, most of the aforementioned robot
operating systems mainly focused on development of
applications on individual robotic platform, despite the
fact that the vast majority of them support networking.
It still remains an open issue for existing robot operating
systems how to manage the heterogeneous resources and
complex behaviors of collective robot systems to achieve
collective intelligence.

In order to solve the above-mentioned problems and
better adapt to the emerging of co-robot (i.e., cooperative

Open Access

*Correspondence: yixiaodong@nudt.edu.cn
State Key Laboratory of High Performance Computing (HPCL), Computer
School, National University of Defense Technology, 137 Yanwachi Street,
Changsha, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40638-016-0054-y&domain=pdf

Page 2 of 9Yang et al. Robot. Biomim. (2016) 3:21

robots) that would profoundly interact with the human
society, this paper proposes the idea and design of a mor-
phable, intelligent and collective robot operating system,
micROS. The main contribution of this paper is fourfold.

• • The design choice of micROS is based on autono-
mous behavior and collective intelligence, with man-
agement of autonomous and collective robots as its
major target;

• • The micROS architecture, in terms of both the dis-
tributed collective architecture for collective robots
and the layered architecture for individual robots, is
proposed;

• • We combine the observe–orient–decide–act (OODA)
cognitive behavior model and collective intelligence
in the high-level architecture design and tackle the
four major challenges, i.e., autonomous observation
and collective perception, autonomous orientation
and collective cognition, autonomous decision and
collective game, autonomous action and collective
dynamics;

• • The morphable and adaptive mechanism of micROS
is designed based on adaptive software techniques.

The remaining part of this paper is structured as follows.
“micROS Architecture” section introduces the architec-
ture of micROS. “Autonomous behavior and collective
intelligence” section presents the mechanisms to imple-
ment autonomous behavior and collective intelligence.
“Morphable and adaptive mechanism” section describes
the morphable and adaptive design of micROS. Practi-
cal application of micROS in a RoboCup system (soccer
robots), as well as the corresponding experimental results,
is presented in “Application and experiments” section.

Finally, “Conclusion and future work” section concludes
the paper and discusses about potential future work.

Methods
micROS architecture
Derived from the organization structures of collective
robots, we designed for micROS the overall distributed
architecture and the layered structure for individual node.

Organization structures for collective robots
Collective behaviors are deeply affected by organization
structures, which are made of roles, relations and privi-
leges. There are various organization structures for col-
lective robots under different tasks and environments,
such as hierarchies, holarchies, coalitions, teams, congre-
gations, federations, markets, matrices and societies [14].
A robot, a computer or even a human can serve as a node
in the organization structures. The left part of Fig. 1 illus-
trates an example of organization structures. It consists
of an environment, several nodes in two domains and a
node dominating others. All nodes together form a col-
lection by collaborating with each other and interacting
with the environment. The right part of Fig. 1 shows an
example of co-robot collections with two domains serv-
ing humans collaboratively in a city scenario. In the out-
door domain, unmanned aerial vehicles and unmanned
ground vehicles collaborate to percept, plan and share
data to improve mobility. In the indoor domain, robots,
computers and smart terminals collaborate to provide a
better service.

The distributed architecture of micROS
Inspired by organization structures, micROS is designed
to be a distributed architecture which consists of lots of

Fig. 1  Illustrative examples for collective organization structures (left) and co-robot collections in a city scenario (right), respectively

Page 3 of 9Yang et al. Robot. Biomim. (2016) 3:21

individuals (nodes) interconnected. The nodes could be
robots, computers or humans. micROS is installed on
every node to form a distributed system, which is respon-
sible for management of resources and behaviors, coordi-
nation of node–node and node–environment interaction
and self-organization in dynamic and open environment.
Figure 2 shows how to map the city scenario example to
micROS.

The distributed architecture of micROS implements
“inter-connecting, inter-communicating, interoperability,
inter-understanding and inter-obedience.” Interconnect-
ing and intercommunicating are implemented through
distributed networking. Interoperability is supported by
standardization, modularity and platformization. Inter-
understanding includes three aspects: human–robot,
robot–robot and robot–environment. Inter-obedience
is expressed by rules in physical, information and social
domains.

Networking is the basis for constructing the distrib-
uted architecture. Wireless network is the mainly used
one for mobile robots. micROS will support scalable

self-organizing networks based on wireless communica-
tion and provide mechanisms for robust interoperability.

Real-time guarantee is a distinguished feature of
micROS. micROS will implement three levels of real-
time guarantee, i.e., node-level real time, message-level
real time and task-level real time. Node-level real-time
guarantee is achieved by high-resolution timer, inter-
rupt/event priorities, resource scheduling, non-blocking
communication, etc. Message-level real-time guarantee
is achieved based on the network protocols, such as RT-
NET, which provide real-time support. Task-level real-
time guarantee supports real-time constraint exchange
among interconnected nodes and real-time behavior for
the entire system.

The layered structure for micROS Nodes
micROS is installed on each node of the collective robots
and exhibits the layered structure for each node, as
shown in Fig. 3, which consists of the core layer and the
API layer. The API layer is responsible for interaction and
programming interface. The micROS core is divided into

Fig. 2  Distributed architecture of micROS for the city scenario example

Page 4 of 9Yang et al. Robot. Biomim. (2016) 3:21

resource management layer and behavior management
layer. The former aims at resource management in physi-
cal, information, cognitive and social domains. Accord-
ing to the OODA cognitive behavioral model (“Collective
behavior of robots” section), the behavior management
layer is composed of observation, orientation, decision
and action modules.

Autonomous behavior and collective intelligence
Collective behavior of robots
The OODA loop is a famous cognitive behavioral model
proposed by John Boyd [15]. It was initially used to model
strongly confrontational behaviors and then extended to
model more general behaviors such as those in commer-
cial and social domains.

The OODA loop is illustrated in Fig. 4, which consists
of the observe, orient, decide and act elements. It fully
takes into account the nonlinearity, uncertainty, emer-
gence, self-organization and creation characteristics of
dynamic environments and complex systems. So it is
capable of describing high-level and complex collective
behaviors [15].

In order to implement behavior management for col-
lective robots, micROS embodies collective intelligence
into the OODA loop in four aspects: (1) autonomous
observation and collective perception, (2) autonomous
orientation and collective cognition, (3) autonomous
decision and collective game and (4) autonomous action
and collective dynamics. They will be explained in detail
in the following sections.

Autonomous observation and collective perception
micROS manages different perception roles and their
corresponding perception capabilities of each collective
robot to implement autonomous observation. Moreo-
ver, micROS achieves collective perception by fusing
information from all individuals of the collective robots
according to the given tasks and scenarios.

In order to fuse perception information according to
the different robot roles, micROS first defines the roles
for each individual robot. micROS allows different ways
for defining roles. For example, as defined in Webster’s
dictionary, a role can be a function or a part performed
function in a particular operation or process. We can also
consider the role as a function that one or more robots
perform during the execution of a cooperative task as in
[16]. micROS assigns roles to collective robots according
to the actual perception capabilities of their sensors in
specific tasks. Furthermore, perception information from
all roles is fused to achieve collective perception.

In collective robots, the perception capability of a robot
node ri is described as a capability vector Ci

r [17]

where αij is the strength of the perception capability cj for
robot ri, and [c1, c2,…, cm]T is the perception capability
set of the collective robots. For a specific task t, we can
define its relevance vector Ci

t to the perception capability
set as

where βij is the relevance of task t to the perception capa-
bility cj.

micROS adopts a role-based distributed collective
perception model for different tasks. When the robots

(1)Cr
i = diag{αi1,αi2, . . . ,αim} · [c1, c2, . . . , cm]

T

(2)Ct
i = diag{βi1,βi2, . . . ,βim} · [c1, c2, . . . , cm]

T

Fig. 3  Layered structure of micROS nodes

Fig. 4  OODA loop

Page 5 of 9Yang et al. Robot. Biomim. (2016) 3:21

perform collective perception, the role task tree is con-
structed according to the perception capabilities of the
collective robots and the relevance between the capabili-
ties and the given collective perception task. Meanwhile,
the role of each robot is assigned. In order to achieve
maximal collective efficiency, this role assignment
method takes into account the actual perception capabili-
ties of the collective robots at the beginning of produc-
ing the role task tree. Thus, it is different from traditional
methods, such as those in [18, 19], which directly decom-
pose cooperative tasks to achieve role task trees. The
perception task of each node of the role task tree is ful-
filled by fusing sensing data of each corresponding robot.
Then, perception results of all nodes are further fused for
collective perception task. Moreover, in order to achieve
globally optimized role assignment strategy and collec-
tive perception capability, the quantity and quality of the
fulfillment of the collective perception task are evaluated
in micROS, based on which the role task tree is dynami-
cally adjusted.

Autonomous orientation and collective cognition
micROS is designed to support acquiring, storing and
managing collective knowledge. The collective knowl-
edge is further analyzed and utilized to achieve autono-
mous orientation and collective cognition, which can be
used to facilitate the decision of the robots.

Similar to the classification in psychology, collective
knowledge is also classified into common sense, expe-
riential knowledge and implicit knowledge by micROS.
Collective robots have the common sense including
the basic knowledge and rules about inter-robots and
external environments that each robots possesses, e.g.,
communication protocols among collective robots and
physical laws, such as Newton’s laws of motion. Experi-
ential knowledge includes the knowledge obtained by
practices of individuals of the collective robots and can
be accessed by other robots. Implicit knowledge means
the knowledge that can be obtained by analyzing all the
existing knowledge from the collective robots. How to
extract implicit knowledge is one of the research focuses
of micROS.

Collective knowledge is stored (i.e., memorized) in
common-sense database, experiential-knowledge data-
base and implicit-knowledge database (refer to the cogni-
tive domain in Fig. 3). The three databases are organized
into hierarchically structured computer memories [20],
in which the collective knowledge is memorized and
forgotten following a model similar to human memo-
ries [21]. Before a knowledge instance κ is accessed by
a robot again, the strength sκ of memorizing κ in the
robot decreases following a negative exponents curve.
When sκ ≤ τf, where τf is the threshold for forgetting the

knowledge on the corresponding hierarchical memory
level of κ, κ will be removed from this memory level to a
lower level, which has a larger memory space but longer
accessing time. In order to achieve sufficient memory
space of knowledge during long-term operation, the
knowledge that forgotten by the lowest memory level
will be permanently removed from the robot. The hier-
archical structured memory is also divided into short-
term memory and long-term memory. Those short-term
memories, that have been strengthened multiple times,
can be promoted as long-term memories.

In order to achieve human–machine collaborated anal-
ysis and orientation, different kinds of cognition models
are supported in micROS. Techniques, like data mining,
will be utilized by micROS to extract collective implicit
knowledge. Finally, collective cognition is accomplished
by analysis and orientation on top of the three types of
collective knowledge.

Autonomous decision and collective game
In order to support autonomous decision and plan-
ning for the collective robots, micROS supports coop-
erative and noncooperative game, where robots and even
humans are treated as players.

Firstly, micROS supports extraction of the payoff func-
tions and strategy sets of the players. micROS also pro-
vides support for building cooperative or noncooperative
game models according to whether the players obey the
common rules. In a noncooperative game, each player
independently makes decisions according to its own
objective and intention. In contrast, multiple players may
form a coalition in a cooperative game. micROS guar-
antees information sharing within the coalition, while
enforcing the binding contracts [22].

Then, micROS will work out the high-level strategies
by solving the cooperative or noncooperative games [24],
where various methods can be adopted, e.g., computa-
tional intelligence method [24] or simple search method
[25]. Afterward, micROS implements specific task and
path planning according to the objective of the high-level
strategy, while considering the capabilities of each robot
in the team. This planning process invokes optimization
methods for computing the task allocation and action
sequences for individual robots [26, 27].

It should be noticed that humans are also considered to
be nodes in the distributed architecture of micROS. And
the autonomous decision and collective game module is
designed to coordinate human and machine intelligence.
So human may participate or intervene the decision
process and therefore controls the gaming and decision
results.

Consider a scenario where multiple robots cooperate
for resource mining. A noncooperative game model can

Page 6 of 9Yang et al. Robot. Biomim. (2016) 3:21

be constructed, where teams of robots may participate
as players, and each team aims at maximizing the mining
outcome. Human may define rules to affect the strategies
made by the collective robots. Firstly, a robot team recov-
ers the environmental information as well as the informa-
tion of other teams during the collective perception and
orientation processes. The information is used for defin-
ing the payoff functions and feasible strategies. Then,
each team invokes the methods provided by micROS for
finding the Nash equilibrium to form the high-level strat-
egy. Finally, each team invokes optimization methods to
perform path planning and task allocation for the collec-
tive robots.

Autonomous action and collective dynamics
Through cooperation and self-organization of multiple
robots, coordinated movements may emerge at the col-
lection level. Therefore, collective robots become capable
of accomplishing complex tasks, which are impossible
for a single robot. According to various action objectives,
the environments and the robots’ capabilities, micROS
may adopt different collective dynamics models, includ-
ing Boid model, leader–follower model and graph-based
models, while using the corresponding formation-con-
trolling algorithms for coordinated control [28].

When self-organization is required without explic-
itly defining collective actions, micROS adopts the Boid
model, which is characterized by three principles or
local actions: collision avoidance, velocity matching and
flock centering [29]. Formations of consistent velocity
and orientation can be achieved and maintained by local
coordination based on these three principles to achieve
coordinated control of the collection. In a simpler sce-
nario, where only the velocity matching is considered,
the particle model can be used for describing the col-
lective dynamics [30]. Besides, the models based on
attract–repulse rules can be used for describing the col-
lision avoidance and flock centering principles, where the
potential field method can be used for coordinated con-
trol [31].

When the collective action is decided by an individual
or some of the robots in the team, the micROS can adopt
the leader–follower method for formation control [32].
The leader may be one of the robots in the formation, or a
virtual point such as the centroid of the team. Also, mul-
tiple leaders may switch roles during the movements.

Graph-based models can be used for quantifying com-
plex network connection relationships in the team, such
as sensing, communications and control relationship.
Graph theory, especially the algebraic graph theory, can
be used for investigating various properties of the robot
teams to design the formation and coordinated control
mechanisms. In this process, the leader–follower method

and the behavior-based methods may be integrated into
the framework provided by graph theory.

Morphable and adaptive mechanism
Collective robot systems live and work in a dynamic and
open space, which can be projected into physical, infor-
mation, cognitive and social domains simultaneously.
Moreover, collective robots themselves are extremely
heterogeneous and suffer from high hardware and soft-
ware failure rate. Therefore, some researchers on robot-
ics have reached a consensus that implementing a static,
complete and generic robot operating system is a daunt-
ing work, if not impossible [33].

We adopt a morphable and adaptive design in micROS,
in order to provide both generality and usability with
acceptable system complexity. The resulting system can
effectively adapt to heterogeneous collective robots sys-
tems and the dynamic and open environments that they
operate in. As shown in Fig. 5, the morphable and adap-
tive mechanism of micROS is based on control theory
and adaptive software model [34]. It consists of three
modules, i.e., self-sensing of software/hardware status,
adaptive operation and control and morphable recon-
struction. The three constituent modules together make
the robot system in the target layer adaptive to changes of
the environment, tasks and the system itself.

Self‑sensing of software/hardware status
This module is able to detect dynamic, unstructured and
unpredictable changes of the robots themselves, tasks
and environments. Self-sensing of robot software status
is based on program and resource analysis, and the tar-
get is the entire ecosystem that the software system of
collective robots resides in, including libraries, middle-
ware, services, protocols, models, drivers. Self-sensing of
hardware status is achieved by adding extra introspection

Fig. 5  micROS morphable and adaptive framework based on control
theory and adaptive software technology

Page 7 of 9Yang et al. Robot. Biomim. (2016) 3:21

sensors and corresponding drivers and is able to detect
changes in hardware components such as sensors, actua-
tors and processors, as well as unexpected hardware
failures.

Adaptive operation and control
The adaptive operation and control module takes the
detected software and hardware status changes as input.
By giving the strategies, goals and constraints, this
module may evaluate the system performances after
the logical or physical changes occurred in operational
environment, resources and hardware devices. Then,
decisions on following control operations can be made
according to the given strategies, goals and constraints.
This module is based on learning-based and experience-
based software evolution approaches to achieve intel-
ligent and autonomous software operation and control,
including software redeployment and upgrading. Impacts
on the robot system are fed back by the previous self-
sensing module and used to decide control operations to
take in the next step, until the controlled system reaches
the target state. These modules form a closed feedback
control loop for the adaptive operation and control
mechanisms of micROS.

Morphable reconstruction
The morphable reconstruction module contains the
common functionalities of adaptive software system. It
embodies the adaptive control operations triggered by
the previous module by performing reconfiguration and
reconstruction on the robot software system accordingly.

The specific approaches that micROS utilizes include
high-level programming languages, formal modeling and
analysis tools, automated program transformation, vir-
tual machines supporting cross-platform execution. The
operation objects of this module are the entire robot soft-
ware system, including the self-sensing and adaptive con-
trol modules.

Results and discussion
micROS is an open-source project based on the Robot
Operating System (ROS) project [35]. It focuses on mor-
phable resource management and autonomous behavior
management, and provides support for collective intelli-
gence. Related codes and resources are available online at
http://micros.nudt.edu.cn.

micROS can be applied to various types of robots. We
choose a NuBot soccer robot [36] from National Uni-
versity of Defense Technology, which is designed for
RoboCup Middle Size League, as an exemplary platform.
micROS is installed on every NuBot soccer robot, provid-
ing common functionalities such as collective communi-
cation, collective perception and collective collaboration.
NuBot soccer robots can be found in Fig. 6, with cyan
markers.

The NuBot goalkeeper robot, as shown in Fig. 7, is used
for experiments on real-time performance of behavior
managements of micROS.

Installed on the goalkeeper robot, Kinect sensor is
utilized to capture RGB-D images in the frame rate of
30 Hz, which are used to produce color segmentation
results and point clouds for localization and motion

Fig. 6  NuBot soccer robots in a cooperative attack

http://micros.nudt.edu.cn

Page 8 of 9Yang et al. Robot. Biomim. (2016) 3:21

prediction of the soccer. Thus, the robot can make deci-
sions on whether and how to intercept the soccer. The
image processing algorithm is scheduled to process each
frame at the rate of 30 Hz, and it must finish before next
frame comes. So it is a typical real-time problem.

After deploying micROS on the goalkeeper robot, a
significantly improvement in real-time performance, in

terms of period jitter, of the Kinect node is achieved com-
pared with the original ROS. Period jitter, which is one of
the main benchmarks to evaluate real-time performance,
equals to the difference between any actual frame period
and the average frame period. The actual frame period
is usually not kept stable due to multitasking of the pro-
cessor. The comparative results are shown in Fig. 8. The
maximum period jitters, with the first and last frames
excluded to eliminate the startup and cleanup over-
head, on ROS and micROS are 0.038018 and 0.000777 s,
respectively. We found that the period jitter on micROS
is reduced by two orders of magnitude compared with
that on ROS. It implies that the image processing task
is more accurately started upon each incoming frame.
This eliminates the possible delay and leaves as possible
as more time for the algorithm. Consequently, the aver-
age per frame image processing time of the Kinect node
decreases from 0.0403 s on ROS to 0.0366 s on micROS,
which implies a 9.2% improvement.

Conclusions
We present in this paper the design of micROS, a mor-
phable, intelligent and collective robot operating system
for collective and cooperative robots, including the archi-
tecture, the autonomous behavior and collective intelli-
gence, as well as the morphable and adaptive framework.

Fig. 7  NuBot goalkeeper robot

Fig. 8  Comparison in image processing time per frame of the Kinect node using ROS (top) and micROS (bottom)

Page 9 of 9Yang et al. Robot. Biomim. (2016) 3:21

We also apply micROS on NuBot football robots and
achieve two orders of magnitude improvement of real-
time performance in terms of period jitter.

We present in this paper a high-level micROS design.
Detailed design would be continuously polished in our
long-term future work. Based on the open-source ROS
project, we will be devoted to implementing a modular
and common software platform for usual robot applica-
tion scenarios. We will also improve micROS by apply-
ing it to more kinds of individual robots and collective
robots.

Authors’ contributions
XY is the originator and chief designer of micROS. HD and XY are responsible
for the detailed design and implementation organization. XY, YW, SY, BZ, ZW,
YZ and XP are the main contributors of the micROS research and engineering.
They carried out all experiments, performed data processing and analysis and
drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors are very grateful to Dr. Huimin Lu and Dr. Junhao Xiao from the
College of Mechatronic and Automation in our university for their great help
with applying and testing micROS on NuBot soccer robots. This work was sup-
ported by Research on Foundations of Major Applications Programs of NUDT
under Grant No. ZDYYJCYJ20140601 and “Twelfth Five-Year” Plan Key Programs
of NUDT under Grant No. 434513322532 and 434513322412.

Competing interests
The authors declare that they have no competing interests.

Received: 13 November 2016 Accepted: 14 November 2016

References
	1.	 Rifkin J. The third industrial revolution: how lateral power is transforming

energy, the economy, and the world. Basingstoke: Palgrave Macmillan;
2013.

	2.	 Gates B. A robot in every home. Scientific American (2007).
	3.	 Utz H, Sablatnorg S, Enderle S, Kraetzschmar G. Miro—middleware for

mobile robot applications. IEEE Trans Robot Autom. 2002;18(4):493–7.
	4.	 Makarenko A, Brooks A. Orca: components for robotics. In: Proceedings of

IROS’06, Beijing, China; 2006.
	5.	 Ando N, Suehiro T, Kitagaki K, Kotoku T, Yoon WK. RT-middleware: distrib-

uted component middleware for RT (Robot Technology). In: Proceedings
of IROS’05, Edmonton, Alberta, Canada; 2005.

	6.	 Gerkey B, Vaughan R, Howard A. The player/stage project: tools for
multi-robot and distributed sensor systems. In: Proceedings of ICAR’03,
Coimbra, Portugal; 2003.

	7.	 Côté C, Brosseau Y, Létourneau D, Raïevsky C, Michaud F. Robotic software
integration using MARIE. Int J Adv Rob Syst. 2006;3(1):55–60.

	8.	 Yoo J, Kim S, Hong S. The robot software communications architecture
(RSCA): QoS-aware middleware for networked service robots. In: Proceed-
ings of SICE-ICASE’06; 2006. p. 330–5.

	9.	 Bruyninckx H, Soetens P, Koninckx B. The real-time motion control core of
the Orocos project. In: Proceedings of ICRA’03; 2003. p. 2766–71.

	10.	 Johns K, Taylor T. Professional microsoft robotics developer studio. Bir-
mingham: Wrox Press; 2008.

	11.	 Quigley M, Conley K, Gerkey B, et al. ROS: an open-source robot operat-
ing system. In: Proceedings of the workshop on open source software
(ICRA’09); 2009.

	12.	 Aircrew Labor In-cockpit Automation System (ALIAS) Proposers’ Day.
2014. www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-SN-14-32/packages.
html.

	13.	 Robonaut: Home. 2015. http://robonaut.jsc.nasa.gov/.
	14.	 Horling B, Lesser V. A survey of multi-agent organizational paradigms.

Knowl Eng Rev. 2005;19(04):281.
	15.	 Boyd JR. The essence of winning and losing. Retrieved from http://

dnipogo.org/john-r-boyd/.
	16.	 Chaimowicz L, Campos MFM, Kumar V. Dynamic role assignment for

cooperative robots. Robotics and automation, 2002. In: Proceedings.
ICRA’02. IEEE international conference on. vol. 1. IEEE; 2002.

	17.	 Lin L, Ji X, Zheng Z. Multi-robot task allocation based on market and
capability classification. Robot. 2006;28(3):337–43.

	18.	 Ge S, Ma D, Huai J. A role-based group awareness model. J Softw.
2001;12(6):864–71.

	19.	 Zhu Haibin, Zhou MengChu. Role-based collaboration and its
kernel mechanisms. IEEE Trans Syst Man Cybern Part C Appl Rev.
2006;36(4):578–89.

	20.	 Aggarwal A. et al. A model for hierarchical memory. In: Proceedings of the
nineteenth annual ACM symposium on theory of computing. ACM; 1987.

	21.	 Yi F, Ren L. A maths model on studying and recalling. J Math Med.
1997;10(2):105–8.

	22.	 Serrano R. Fifty years of the Nash program, 1953–2003. Investigaciones
Económicas. 2005;XXIX(2):219–58.

	23.	 Chalkiadakis G, Elkind E, Wooldridge M. Computational aspects of
cooperative game theory. In: Synthesis lectures on artificial intelligence
and machine learning, 1st ed. San Rafael: Morgan & Claypool; 2011.
doi:10.2200/S00355ED1V01Y201107AIM016.

	24.	 Pavlidis NG, Parsopoulos KE, Vrahatis MN. Computing Nash equilibria
through computational intelligence methods. J Comput Appl Math.
2005;175(1 SPEC. ISS.):113–36.

	25.	 Porter R, Nudelman E, Shoham Y. Simple search methods for finding a
Nash equilibrium. Games Econ Behav. 2008;63(2):642–62.

	26.	 Dias MB, Zlot R, Kalra N, Stentz R. Market-based multirobot coordination:
a survey and analysis. Proc IEEE 2006;94(7):1257–70.

	27.	 Jia X, Meng M. A survey and analysis of task allocation algo-
rithms in multi-robot systems. Robot Biomime ROBIO.
2013;2013(December):2280–5.

	28.	 Yan Z, Jouandeau N, Cherif AA. A survey and analysis of multi-robot
coordination. Int J Adv Robot Syst. 2013;10.

	29.	 Reynolds CW. Flocks, herds and schools: a distributed behavioral model.
ACM SIGGRAPH Comput Graph. 1987;21(4):25–34.

	30.	 Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O. Novel type of
phase transition in a system of self-driven particles. Phys Rev Lett.
1995;75(6):1226–9.

	31.	 Song P, Kumar V. A potential field based approach to multi-robot manipu-
lation. In: International conference on intelligent robots and systems,
(May); 2002. p. 1217–22.

	32.	 Hu J, Hong Y. Leader-following coordination of multi-agent systems with
coupling time delays. Phys A. 2007;374(2):853–63.

	33.	 Smart W. Is a common middleware for robotics possible? In: Proceedings
of the IROS 2007 workshop on measures and procedures for the evalua-
tion of robot architectures and middleware; 2007.

	34.	 Kokar M, Baclawski K, Eracar YA. Control theory-based foundations of self-
controlling software. IEEE Intell Syst. 1999;14(3):37–45.

	35.	 Quigley M et al. ROS: an open-source robot operating system. In: ICRA
workshop on open source software; 2009, vol. 3, no. 3.2.

	36.	 Xiao J, Lu H, Zeng Z et al. NuBot team description paper 2015. In: Pro-
ceedings of RoboCup 2015, CD-ROM; 2015.

http://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-SN-14-32/packages.html
http://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-SN-14-32/packages.html
http://robonaut.jsc.nasa.gov/
http://dnipogo.org/john-r-boyd/
http://dnipogo.org/john-r-boyd/
http://dx.doi.org/10.2200/S00355ED1V01Y201107AIM016

	micROS: a morphable, intelligent and collective robot operating system
	Abstract
	Background
	Methods
	micROS architecture
	Organization structures for collective robots
	The distributed architecture of micROS
	The layered structure for micROS Nodes

	Autonomous behavior and collective intelligence
	Collective behavior of robots
	Autonomous observation and collective perception
	Autonomous orientation and collective cognition
	Autonomous decision and collective game
	Autonomous action and collective dynamics

	Morphable and adaptive mechanism
	Self-sensing of softwarehardware status
	Adaptive operation and control
	Morphable reconstruction

	Results and discussion
	Conclusions
	Authors’ contributions
	References

