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Abstract 

Background:  Fluid resuscitation is the standard treatment to restore circulating blood 
volume and pressure after massive haemorrhage and shock. Packed red blood cells 
(PRBC) are transfused to restore haemoglobin levels. Restoration of microcirculatory 
flow and tissue oxygen delivery is critical for organ and patient survival, but these 
parameters are infrequently measured. Patient Blood Management is a multidiscipli‑
nary approach to manage and conserve a patient’s own blood, directing treatment 
options based on broad clinical assessment beyond haemoglobin alone, for which 
tissue perfusion and oxygenation could be useful. Our aim was to assess utility of non-
invasive tissue-specific measures to compare PRBC transfusion with novel crystalloid 
treatments for haemorrhagic shock.

Methods:  A model of severe haemorrhagic shock was developed in an intensive care 
setting, with controlled haemorrhage in sheep according to pressure (mean arterial 
pressure 30–40 mmHg) and oxygen debt (lactate > 4 mM) targets. We compared PRBC 
transfusion to fluid resuscitation with either PlasmaLyte or a novel crystalloid. Efficacy 
was assessed according to recovery of haemodynamic parameters and non-invasive 
measures of sublingual microcirculatory flow, regional tissue oxygen saturation, repay‑
ment of oxygen debt (arterial lactate), and a panel of inflammatory and organ function 
markers. Invasive measurements of tissue perfusion, oxygen tension and lactate levels 
were performed in brain, kidney, liver, and skeletal muscle. Outcomes were assessed 
during 4 h treatment and post-mortem, and analysed by one- and two-way ANOVA.

Results:  Each treatment restored haemodynamic and tissue oxygen delivery param‑
eters equivalently (p > 0.05), despite haemodilution after crystalloid infusion to haemo‑
globin concentrations below 70 g/L (p < 0.001). Recovery of vital organ-specific perfu‑
sion and oxygen tension commenced shortly before non-invasive measures improved. 
Lactate declined in all tissues and correlated with arterial lactate levels (p < 0.0001). 
The novel crystalloid supported rapid peripheral vasodilation (p = 0.014) and tended 
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to achieve tissue oxygen delivery targets earlier. PRBC supported earlier renal oxygen 
delivery (p = 0.012) but delayed peripheral perfusion (p = 0.034).

Conclusions:  Crystalloids supported vital organ oxygen delivery after massive haem‑
orrhage, despite haemodilution to < 70 g/L, confirming that restrictive transfusion 
thresholds are appropriate to support oxygen delivery. Non-invasive tissue perfusion 
and oximetry technologies merit further clinical appraisal to guide treatment for mas‑
sive haemorrhage in the context of Patient Blood Management.

Keywords:  Haemorrhagic shock, Patient blood management, Tissue oxygen delivery, 
Oxygen debt, Microcirculation, Haemodilution, Transfusion thresholds

Introduction
Uncontrolled haemorrhage and shock results in over 1.9 million deaths worldwide annu-
ally, with trauma, surgical bleeding and post-partum haemorrhage the primary causes 
[1]. The first priority when treating acute trauma haemorrhage is mechanical or haemo-
static cessation of major bleeding, followed closely by sufficient fluids to increase oxygen 
delivery to vital organs, in the context of permissive hypotension, until major sources of 
bleeding have ceased [2–4]. The same principle applies in acute non-trauma and surgical 
haemorrhage [5]. Early use of tranexamic acid and clotting factor concentrates can sig-
nificantly reduce persistent haemorrhage and improve survival [6, 7], while pre-hospital 
packed red blood cell (PRBC) transfusion alone, which is often used in such circum-
stances, may not improve overall survival [8]. Early haemostatic resuscitation with bal-
anced blood components [9], and more recently whole blood [10], are increasingly used 
in the pre-hospital setting to increase blood volume and stabilise haemodynamic param-
eters [2], and have improved short-term survival into hospital [11].

Upon cessation of major haemorrhage and subsequent volume replacement, cur-
rent guidelines recommend PRBC transfusion only if haemoglobin is below the 
restrictive threshold of 70 g/L [12–14]. To reduce risks from exposure to allogeneic 
blood products [15, 16], crystalloids or colloid-based solutions may be preferred to 
PRBC in controlled haemorrhage scenarios, even if haemoglobin levels are reduced 
below the restrictive transfusion threshold [2, 17]. The application of Patient Blood 
Management includes conservation of a patient’s own blood, tolerance of anaemia, 
and optimised regeneration of lost blood cells. In this context, the decision to trans-
fuse or use another treatment should be based on broad clinical assessment, not just 
haemoglobin levels [12–14]. For example, microvascular flow and tissue oxygenation 
are critical for organ function and survival, and, therefore, could be used more widely 
to inform treatment decisions [2]. Furthermore, transfusion to haemoglobin levels 
alone may not necessarily improve tissue oxygen delivery unless microvascular perfu-
sion was deficient before treatment [18]. Since effective oxygen exchange at the tissue 
level requires functional capillary density [19], evaluation of microcirculatory blood 
flow as a treatment decision tool is compelling [2]. In addition, second-generation 
Near Infra-Red Spectroscopy (NIRS) platforms offer improved reliability in monitor-
ing oxyhaemoglobin saturation in cerebral and peripheral tissues [20]. Elevated blood 
lactate is a reliable indicator of oxygen debt status to monitor treatment efficacy [21]. 
With further technological advances in these platforms, their reliability in predicting 
critical tissue oxygen delivery in vital organs warrants further investigation.
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Optimal treatment for massive haemorrhage remains a contested issue, but an indi-
vidualised approach in the context of Patient Blood Management is strongly supported 
[2, 22–24]. PlasmaLyte is a balanced crystalloid for treating haemorrhage and critical 
illness [25]. An experimental balanced crystalloid under development, described as an 
isotonic crystalloid aqueous solution (ICAS) containing nitrate and nitrite ions, metals 
and metalloids [26], restored microvascular flow, tissue oxygen delivery and repayment 
of oxygen debt in a porcine survival model of severe haemorrhagic shock [27]. We com-
pared tissue-specific outcomes between PRBC transfusion and these balanced crystal-
loids in the controlled haemorrhage setting using the ovine haemorrhagic shock model 
we described previously [28]. We assessed reliability of non-invasive measures of tissue 
oxygen delivery to predict organ-specific capillary flow, oxygen delivery and metabolic 
recovery.

Methods
Animals and ethics

The Queensland University of Technology Animal Ethics Committee approved this 
study (approval #1800000493). We conducted 27 experiments with non-pregnant Dor-
set-cross ewes, < 3 years. The study was designed according to ARRIVE guidelines, and 
experiments were conducted according to the Australian Code for the Care and Use of 
Animals for Scientific Purposes [29].

Resuscitation fluids and randomisation

Sheep blood donor panels were cross-matched with experimental animals. Cross-match 
reactive sheep were randomised to receive PlasmaLyte (Baxter Healthcare, QLD, Aus-
tralia), or the investigational crystalloid ICAS; a prototype formulation (sterile isotonic 
sea water) was purchased from Laboratories Quinton, (Cox, Alicante, Spain) [27]. Cross-
match negative sheep were assigned to PRBC transfusion, or randomised to crystalloids. 
Four PRBC units were produced for each transfusion experiment 2 weeks before use, 
according to validated protocols replicating production and storage of human PRBC 
[30].

Surgical instrumentation and experimental timeline

Animals were induced and remained under general anaesthesia and mechanical ventila-
tion, surgically instrumented in the right-side up position, and comprehensively moni-
tored according to standard clinical practice as described in detail elsewhere [28, 31]. 
Invasive measures of microvascular flow and oxygen tension (Oxford Optronix, UK) and 
micro-dialysis (M Dialysis AB, Sweden) were calibrated and used according to the man-
ufacturer’s instructions. To reverse the effects of anaesthesia-associated splenic relaxa-
tion on haematocrit to determine total haemoglobin at experimental baseline [32, 33], 
adrenaline (0.05–0.15 mcg/kg/min) was given briefly to constrict the spleen [34, 35]. The 
experimental timeline and summary of sampling and assessments is shown in Fig. 1.

Haemorrhage and shock protocol

Haemorrhagic shock was induced as described [28], drawing 40–60% total blood vol-
ume (%TBV) of venous blood until mean arterial pressure (MAP) < 40  mmHg and 



Page 4 of 16Dyer et al. Intensive Care Medicine Experimental           (2022) 10:12 

oxygen debt defined by lactate > 4 mM was achieved. Haemorrhage was paused when 
MAP < 30  mmHg and/or heart rate (HR) > 200  bpm. Haemorrhage proceeded for 
90 min or until development of shock targets (maximum 120 min).

Resuscitation protocols

In sheep resuscitated with PlasmaLyte or ICAS, fluids were dosed to achieve 
MAP > 65 mmHg [28]. An initial 1000 mL bolus was given within 10 min, and fluid 
requirements were assessed every 15  min. If MAP > 65  mmHg, fluids were tapered 
to 20  mL/kg/h, then 10  mL/kg/h, and ultimately ceased. If MAP subsequently 
decreased, fluid dosing increased accordingly, and vasoactive drugs were given if 
MAP remained < 50 mmHg [28].

In sheep resuscitated with PRBC and Hartmann’s, fluid infusion commenced at 
20 mL/kg/h and the first PRBC unit was transfused within 10 min via a separate jugu-
lar sheath. The second unit was transfused within 15–20 min. Remaining units were 
transfused if MAP < 65 mmHg; the total number did not exceed the number of whole 
blood units lost to haemorrhage. Thereafter, Hartmann’s was continued as per the 
crystalloid protocol above, with vasopressor drug support as required.

All sheep were monitored for 4 h following commencement of resuscitation. 
After this, sheep were euthanised as described [28], and post-mortem assessments 
completed.

Primary and secondary haemodynamic and oxygen delivery outcomes

The primary composite haemodynamic outcome was time to achieve 
MAP ≥ 65  mmHg and cardiac index (CI) ≥ 2.5  L/min/m2. Secondary haemo-
dynamic targets included HR < 120  bpm, systemic vascular resistance index 
(SVRI) < 2390 dynes*s/cm5/m2, and PaO2/FiO2 ratio > 300. The haemoglobin range for 
sheep (73–116 g/L) established at our facility [36] is lower than commonly reported 
(90–150 g/L).

The primary composite tissue oxygen delivery outcome was time to achieve periph-
eral muscle regional tissue oxygen saturation (StO2) > 50% and arterial lactate < 2  mM. 
Secondary oxygen delivery targets included mixed venous saturation (SvO2) > 60%, brain 
StO2 > 60%, and base excess > − 2 mM.

Fig. 1  Experimental timeline and summary of assessments
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Organ‑specific outcomes

Investigational organ-specific outcomes included > 75% recovery-to-baseline for tissue 
oxygen tension (PtO2) and microvascular flow, reduction of tissue lactate to within one 
standard deviation of baseline, and a lactate/pyruvate ratio < 30. Sublingual microvas-
cular perfusion, measured and calculated by Cytocam software (Braedius Medical, The 
Netherlands), recovered if Proportion Perfused Vessels (PPV) > 75% baseline.

Post‑mortem and laboratory assessments

Mitochondrial function in right ventricle and renal cortex tissue was performed by 
high resolution respirometry (O2k-Oxygraph; Oroboros Instruments, Innsbruck, 
Austria); see method in Additional file  1. Plasma levels of inflammatory cytokines, 
hyaluronan and cardiac troponin-I were measured by sheep-specific ELISA as 
described [28, 37], or pig-hsCTn-I ELISA (Life Diagnostics). Full blood counts were 
performed on the Mindray BC-5000 Vet analyser, and viscoelastic tests by ROTEM 
[28]. Serum biochemistry and urinalysis was performed by QML-Vetnostics.

Statistical analyses

Statistical analyses were performed in Prism (version 8). All data were tested for normal-
ity (Kolmogorov–Smirnov) and subsequent tests chosen accordingly. Baseline measure-
ments are presented as mean and SD, and tested by one-way ANOVA or Kruskal–Wallis, 
with Tukey correction. Time-based observations between groups were presented as 
mean or geometric mean with 95% confident intervals, and analysed by mixed-effects 
models (repeated measures ANOVA) with Tukey post-hoc correction. Outliers were 
excluded by ROUT. Time-to-treat analysis of primary outcomes was performed by the 
Mantel–Cox log-rank test. End-point outcomes were compared by Mann Whitney or 
unpaired t tests. Clinical measures of tissue oxygen delivery and debt were correlated 
with organ-specific measures by Spearman or Pearson tests. p values (including recom-
mended post-tests and correction where appropriate) < 0.05 were considered significant. 
All statements of similarity between groups imply non-significance (p values > 0.05).

Results
We conducted 27 experiments with non-pregnant Dorset-cross ewes, < 3 years, of 
which 24 are reported here (eight sheep per treatment group). Two were excluded 
after pre-existing pulmonary conditions were evident, and one excluded after an 
adverse response to haemorrhage.

Baseline characteristics and treatment variables

Distribution of baseline characteristics and treatment variables suggested randomisa-
tion and treatment allocation was effective (Table 1). Primary and secondary clinical 
measures were similar at baseline, except mild tachycardia in the PlasmaLyte group.

Primary and secondary haemodynamic outcomes

There was a non-significant trend toward more animals in the PRBC group achieving 
the primary composite haemodynamic outcome (Fig. 2A). MAP recovered similarly 
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between groups (Fig. 2B). Vasopressors were given to 12 animals distributed between 
groups, which increased MAP to similar levels observed in vasopressor-free ani-
mals, but most remained below the treatment target (Fig. 2C). Crystalloids tended to 
increased CI more than PRBC transfusion (Fig. 2D).

Secondary haemodynamic outcomes were also similar between groups, including 
heart rate (Fig. 2E), whereas SVRI was lower during the first 30 min treatment with ICAS 
than PRBC (Fig. 2F). PaO2/FiO2 ratios were similar at baseline, then tended to remain 
lower in PlasmaLyte-treated animals (Fig.  2G). However, haemoglobin levels diverged 
significantly after treatment (Fig.  2H). After 30  min crystalloid treatment, haemoglo-
bin was decreased from baseline (118 ± 16 g/L to 65 ± 15 g/; (p < 0.0001); equivalent to 

Table 1  Baseline characteristics and treatment variables, and baseline primary outcome measures

TBV total blood volume, NorAd noradrenaline, MAP mean arterial pressure, SVRI systemic vascular resistance index, Hb 
haemoglobin, StO2 regional tissue oxygen saturation, SvO2 mixed venous saturation
a Baseline range: 2.5–97.5th percentile
b Total haemorrhage included 250 ml iatrogenic surgical and sampling loss
c ANOVA or Kruskal–Wallis

Baselinea Treatment groups: mean (SD) Group comparisonc

Range 1-PlasmaLyte 2-ICAS 3-PRBC (p value)

Animals (n =) 8 8 8 –

Weight (kg) 51.5 (5.2) 50.9 (7.7) 52.3 (6.3) 0.75

Haemorrhage time 
(min)

68 (15) 74 (16) 78 (14) 0.49

Total haemorrhage 
(mL)b

1427 (177) 1630 (358) 1694 (328) 0.067

Haemorrhage 
(%TBV)

41.4 (5.2) 46.8 (6.2) 48.5 (9.5) 0.145

Total resus volume 
(L)

3.64 (1.63) 4.07 (0.54) 3.16 (0.89) 0.28

Resus/haem volume 
ratio

2.5 (0.9) 2.6 (0.4) 1.9 (0.5) 0.117

Resus rate (mL/kg/h) 17.5 (6.9) 21.0 (3.3) 15.2 (4.0) 0.087

NorAd use per 
group

4/8 4/8 3/8 –

NorAd, total dose 
(mcg/kg)

0.0318 (0.0149) 0.0228 (0.0134) 0.0100 (0.0009) 0.87

Other vasopressor 
use

Dopamine: 1/8 Metaraminol: 1/8 0/8 –

MAP (mmHg) 66–95 84 (9) 84 (8) 92 (23) 0.50

Cardiac index (L/
min/m2)

1.9–6.5 4.2 (1.6) 3.1 (0.7) 3.8 (0.6) 0.144

Heart rate (beats/
min)

58–128 111 (30) 94 (20) 86 (18) 0.048

SVRI (dynes*s/cm5/
m2)

800–3200 1645 (789) 2069 (436) 1875 (403) 0.137

PaO2/FiO2 ratio 229–543 338 (77) 345 (95) 425 (90) 0.112

Hb, post-adrenaline 
(g/L)

94–14.8 112 (14) 123 (16) 125 (18) 0.26

SvO2 (%) 57–85 71 (9) 74 (8) 72 (7) 0.76

Brain StO2 (%) 51–88 76 (10) 72 (8) 67 (8) 0.132

Muscle StO2 (%) 56–78 62 (10) 69 (9) 66 (6) 0.27

Arterial lactate (mM) 0.4–1.9 1.7 (2.1) 0.7 (0.2) 1.2 (1.0) 0.192

Base excess (mM) − 4.7 to  + 5.7 1.8 (2.8) 2.3 (2.5) 0.6 (3.3) 0.92
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haemodilution at or below the restrictive transfusion threshold of 70 g/L. After 30 min 
PRBC transfusion, haemoglobin was also reduced from baseline (125 ± 18  g/L to 
107 ± 18 g/L; p = 0.0334), but remained above what is considered a liberal transfusion 
threshold at all times (Fig. 2E).

Primary and secondary tissue oxygen delivery outcomes

Overall recovery of tissue oxygen delivery and debt was similar between groups, but the 
time to achieve the primary composite tissue oxygen delivery outcome (muscle StO2 and 
arterial lactate) tended to be shorter in the ICAS group (Fig. 3A). ICAS treatment tended 
to support increased muscle StO2 (Fig. 3B). Arterial lactate peaked 15 min into resusci-
tation after the initial fluid bolus flushed acid metabolites from tissues and tended to 
decline more consistently with crystalloid treatment (Fig. 3C).

The secondary tissue oxygen delivery outcomes were also similar between groups, 
showing comparable increases in SvO2 and brain StO2 (Fig.  3D, E). Base consump-
tion after acidic metabolite wash-out was greater after ICAS bolus, and these animals 
remained in base deficit compared animals that received fluids containing bicarbonate 
equivalents (PlasmaLyte and Hartmann’s; Fig. 2F).

Invasive organ‑specific oxygen delivery verified clinical measures

Invasive assessments of organ-specific oxygen tension (PtO2), lactate and microvascular 
flow confirmed recovery of tissue oxygen delivery observed by clinical measures (Fig. 4). 
Kidney PtO2 was higher during the first hour of PRBC than ICAS treatment (p = 0.012) 
but similar thereafter (Fig. 4A). However, kidney and liver PtO2 tended to be higher at 
baseline in PRBC animals. Clearance of lactate from all tissues was equivalent between 
groups (Fig. 4B). Microvascular flow also partially recovered before resuscitation started, 

Fig. 2  Primary and secondary haemodynamic outcomes. A Time to treat analysis of composite 
haemodynamic target (MAP ≥ 65 mmHg and CI ≥ 2.5 L/min/m2). B Mean arterial pressure (MAP). C 
Vasopressor use and MAP during the final treatment hour. D Cardiac index. E Heart rate. F Systemic vascular 
resistance index. G P/F ratio; and (H) haemoglobin. Shaded areas represent levels outside the normal 
range, or treatment targets. Data shown as mean or geometric mean according to normality test, with 
95% confidence intervals. Mixed model ANOVA with Tukey correction for multiple comparisons; *p < 0.05, 
**p < 0.01, ***p < 0.001
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Fig. 3  Primary and secondary tissue oxygen delivery outcomes. A Time to treat analysis of composite 
tissue oxygen delivery target (muscle StO2 ≥ 50% and arterial lactate ≤ 2 mM). B Regional tissue oxygen 
saturation-muscle. C Arterial lactate. D Venous oxygen saturation. E Regional tissue oxygen saturation-brain. F 
Arterial base excess. Shaded areas represent levels outside the normal range or treatment target. Data shown 
as mean or geometric mean according to normality test, with 95% confidence intervals. Mixed model ANOVA 
with Tukey correction for multiple comparisons; *p < 0.05

Fig. 4  Invasive measures of oxygen tension, lactate concentration and microvascular blood flow in brain, 
kidney, liver and muscle. A Organ-specific oxygen tension (PtO2). B Organ-specific lactate concentration. C 
Organ-specific microvascular blood flow. Data shown as mean or geometric mean according to normality 
test, with 95% confidence intervals. Mixed model ANOVA with Tukey correction for multiple comparisons; 
*p < 0.05
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and on average recovered to baseline after 1-h treatment (Fig. 4C), except delayed mus-
cle recovery with PRBC treatment (p = 0.034).

To determine if non-invasive clinical measures were reliable surrogates for inva-
sive organ-specific measures, data from all animals were combined and normalised 
to % baseline for correlations and mixed effects models (Fig. 5). Brain StO2 increased 
when brain PtO2 increased (Fig.  5A). Muscle StO2 mirrored internal organ PtO2 
during haemorrhage, but liver PtO2 recovered earlier than muscle StO2 (p = 0.004; 

Fig. 5  Utility of non-invasive measures to estimate organ-specific outcomes. A Concurrent recovery of PtO2 
and StO2 in brain. B Liver PtO2 recovered (> 75% baseline) before other tissues and muscle StO2. C Arterial 
lactate was associated with brain and kidney lactate but delayed liver and muscle lactate clearance (< 4 mM; 
baseline mean + SD). D Arterial lactate was associated with recovery in organ-specific lactate/pyruvate 
ratios (< 30). E Sublingual capillary flow (proportion perfused vessels; PPV) recovered similarly between 
treatment groups; (F) and an increase in sublingual capillary flow indicated that organ-specific capillary flow 
had improved (> 75% baseline). Data shown as mean or geometric mean according to normality test, with 
95% confidence intervals. Mixed model ANOVA with Tukey correction for multiple comparisons; *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p, 0.0001
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Fig.  5B). Combining hourly measures during recovery, brain StO2 correlated with 
brain PtO2 (r = 0.257; p = 0.0048; n = 119), and muscle StO2 correlated with muscle 
PtO2 (r = 0.4036; p < 0.0001; n = 112), but not with kidney or liver PtO2 which recov-
ered earlier. Clearance of arterial lactate correlated with lactate in brain (r = 0.356; 
p < 0.0001; n = 119), kidney (r = 0.790; p, 0.0001; n = 119), liver (r = 0.754; p < 0.0001; 
n = 118) and muscle (r = 0.583; p < 0.0001; n = 118), but lactate remained elevated in 
liver and muscle (p < 0.01) compared to arterial lactate (Fig.  5C). Lactate/pyruvate 
ratios < 30 define metabolic recovery, and improvements tracked with arterial lac-
tate (Fig.  5D). Sublingual capillary flow (PPV) recovered similarly between groups 
(Fig. 5E). Organ-specific capillary flow tended to increase more rapidly than sublin-
gual flow during the first hour (Fig. 5F), but both measurements confirmed maximal 
recovery of capillary flow at 2 h treatment. If measured earlier, PPV nadir may also 
have occurred at 60 min haemorrhage, as measured by Doppler probes in each organ.

Fig. 6  Treatment effects on inflammation and organ function. A Serum magnesium. B 10 min ROTEM 
amplitude (A10) in FIBTEM. C Circulating neutrophil count. D Serum hyaluronan; inflammatory cytokines 
in plasma (E) IL-1β, (F) IL-6, (G) IL-8, and (H) IL-10. I Urinary output. J Proteinuria. K Serum cardiac troponin-I. 
L Serum creatine phosphokinase. M Serum aspartate aminotransferase. N Cardiac and renal tissue 
mitochondrial oxygen consumption (FCR: flux-controlled ratio), background vs. complex I and II. O Total 
mitochondrial electron transfer capacity; and (P) lung wet/dry ratios. Data shown as mean or geometric 
mean according to normality test, with 95% confidence intervals. Mixed model ANOVA with Tukey correction 
for multiple comparisons; *p < 0.05, **p < 0.01, ***p < 0.001, ****p, 0.0001
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Treatment effects on inflammation and organ function

We assessed effects of treatment on haematological, inflammatory and tissue/organ 
function markers (Fig.  6). ICAS increased serum magnesium levels (p < 0.0001) into 
mild hypermagnesemia associated with increased peripheral vasodilation (Fig.  6A). 
Fibrinogen levels decreased during instrumentation, haemorrhage and fluid treatment, 
but remained higher (p < 0.05) in PlasmaLyte-treated animals (Fig.  6B). PRBC tended 
to increase circulating neutrophils in more animals compared to crystalloid treatment 
(Fig. 6C). Plasma hyaluronan levels tended to increase more during crystalloid treatment 
(Fig.  6D). The inflammatory cytokine response was similar between groups (Fig.  6E–
H). IL-1β and IL-8 declined throughout the procedure. IL-6 and IL-10 increased dur-
ing surgical instrumentation and haemorrhage. However, IL-6 tended to increase more 
during crystalloid treatment. After 3 h treatment, IL-6 levels correlated positively with 
average fluid rates (Spearman r = 0.506; p = 0.012), which tended to be higher in crys-
talloid-treated animals. Urinary output and proteinuria recovered similarly between 
groups (Fig. 6I, J), whereas cardiac troponin-I remained elevated in all groups (Fig. 6K). 
Creatine phosphokinase increased in all groups (Fig.  6L), while aspartate aminotrans-
ferase increased (p < 0.05) after crystalloid treatment (Fig. 6M). Increased creatine phos-
phokinase and aspartate aminotransferase were associated with muscle injury and not 
liver, because the liver-specific enzymes gamma-glutamyl transpeptidase declined and 
alkaline phosphatase remained at normal levels (Additional file: 1: Fig. S1). High-reso-
lution respirometry demonstrated no significant difference in respiratory capacities at 
any level of the mitochondrial electron transfer system in heart or kidney (Fig. 6N, O). 
Post-mortem lung wet/dry ratios (Fig. 6P) were similar between groups, and comparable 
to published data from control anaesthetised sheep [38], which demonstrated that fluid 
resuscitation did not significantly increase lung oedema after haemorrhagic shock.

Discussion
The principal findings of this study using a sheep model were (i) no apparent differences 
in outcomes when PRBC or two different crystalloid solutions were used to treat severe 
haemorrhagic shock, (ii) non-invasive technologies appear appropriate for estimating 
vital organ oxygen delivery and metabolism, and (iii) recovery of tissue oxygen delivery 
after substantial haemodilution to below 70 g/L, confirmed that restrictive transfusion 
thresholds are appropriate, and may be advantageous. The novel crystalloid ICAS exhib-
ited vasodilatory activity and tended to reduce time to achieve the primary composite 
oxygen delivery outcome. Reliable estimation of oxygen delivery to vital tissues may 
augment Patient Blood Management protocols to accommodate reduced haemoglobin 
thresholds where possible. Adaptation of this model to explore tissue oxygen delivery 
under increasing haemodilution may reveal the organ-specific, haemodynamic and 
physiologic parameters that define “critical haemoglobin”, reportedly ≤ 50  g/L in most 
acute haemorrhage scenarios [17, 39, 40].

PRBC transfusion did not significantly reduce the time to achieve the composite 
haemodynamic outcome compared to crystalloid treatment. In agreement with other 
studies [41], we observed non-significant trends toward lower CI and higher SVRI after 
PRBC compared to fluid treatment, but PRBC transfusion did not significantly increase 
MAP nor decrease HR compared to crystalloid treatment. The inability to recover 
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MAP to baseline levels in all treatment arms was likely due to plasma protein dilution 
and reduced oncotic pressure [42]. Reduced fibrinogen levels in all animals may have 
contributed to increased plasma hyaluronan from glycocalyx breakdown [43], as fre-
quently observed in traumatic haemorrhagic shock [44]. Non-haemoglobin interven-
tions to increase plasma viscosity after haemodilution may improve renal perfusion [45], 
in the same way that increased haematocrit-associated blood viscosity improves tissue 
perfusion [46]. Therefore, appropriate Patient Blood Management is not necessarily 
haemoglobin-dependent.

Despite trends for ICAS to increase peripheral vasodilation and fluid requirements, 
equivalent outcomes were observed for lung wet/dry ratio, endothelial glycocalyx integ-
rity, renal and cardiac function, mitochondrial function, inflammatory cytokine levels, 
and other tissue function markers. ICAS has a physiological mineral composition simi-
lar to plasma, except vasoactive levels of magnesium, and includes trace concentrations 
of nitrate, nitrite, metals and metalloids [27]. Early 1900’s canine haemorrhagic shock 
experiments demonstrated increased post-resuscitation vitality and survival with this 
fluid compared to saline [47]. Recently, a porcine haemorrhagic shock model demon-
strated equivalent haemodynamic, oxygen delivery and survival outcomes with this fluid 
compared to whole blood transfusion [27]. In our ovine model, outcomes from ICAS 
treatment were also comparable to PRBC with Hartmann’s. During the first treatment 
hour, peripheral muscle perfusion and PtO2 recovered earlier after ICAS, but renal per-
fusion and PtO2 recovered earlier after PRBC, but these differences were insignificant 
thereafter. Although lactate levels were similar between groups, more animals treated 
with ICAS remained in base deficit, due to lack of bicarbonate equivalents compared to 
PlasmaLyte and Hartmann’s. These combined observations suggest an optimised treat-
ment for haemorrhagic shock could include a mineral-diverse fluid such as ICAS but 
with less magnesium to moderate peripheral vasodilation, supplemented with bicarbo-
nate equivalents, and used with a colloid to increase MAP and fibrinogen to maintain 
haemostasis and glycocalyx integrity.

We demonstrated utility of non-invasive point-of-care measures of tissue microvascu-
lar perfusion and oxygen delivery as reliable surrogates of vital organ status. Functional 
capillary density is closely associated with tissue oxygen delivery and organ survival 
[2, 19, 48, 49]. Our data confirmed that recovery of sublingual capillary perfusion mir-
rored recovery of vital organ perfusion; also confirmed for renal perfusion in another 
haemodilution study [45]. Arterial lactate was a reliable non-invasive surrogate of lactate 
clearance from vital organs. NIRS measures regional tissue oxygen delivery as oxyhae-
moglobin saturation in all blood vessels, including venous blood which remains rela-
tively desaturated until tissue oxygen supply is adequately reinstated. Laser-optic probe 
assessment of interstitial dissolved oxygen (PtO2) represents the local balance between 
oxygen supply from perfused capillaries and oxygen consumption in cells. Hepatic and 
renal PtO2 recovered earlier than muscle StO2 but brain PtO2 and StO2 recovered con-
currently. Therefore, improved StO2 may predict adequate vital organ oxygen delivery. 
However, reliability of NIRS in not universal. First-gen NIRS platforms were not consid-
ered acceptable for cerebral assessment because of interference from extracranial blood 
[50]. The next-gen NIRS platform used in our study controlled for extracranial saturation 
using five wavelengths with deep and shallow tissue sensors [51], and cerebral cortex and 
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peripheral muscle oxygen re-saturation occurred independently. Furthermore, theoreti-
cal signal contamination between cerebral and skin oxygen saturation during shock is 
trivial when peripheral tissue saturation is low; a conclusion supported by hypoxia stud-
ies using next-gen NIRS platforms [52]. Innovative point-of-care technologies worthy of 
appraisal for Patient Blood Management include broadband NIRS which measures tis-
sue oxygen saturation and metabolite levels [53], and transdermal respirometry for real-
time mitochondrial oxygen tension [54].

Limitations of this animal model of haemorrhagic shock and species-specific response 
to resuscitation were outlined previously [28]. We could not confirm the long-term 
impact of fluid dosing on organ function outcomes, which was not feasible with this 
highly invasive protocol. Early restrictive fluid dosing in trauma is associated with 
reduced inflammation and improved organ and survival outcomes [3, 4], while goal-
directed fluid dosing may benefit both surgical and trauma settings [55, 56]. Our haem-
orrhagic shock model was designed for controlled perioperative bleeding and fluid 
management. Although we used goal-directed fluid dosing targeting MAP > 65 mmHg, 
high fluid rates correlated with inflammatory IL-6 levels. Therefore, in the absence of 
extended survival analysis, our observations of tissue oxygen delivery and short-term 
organ function outcomes cannot be extrapolated to organ survival in clinical practice.

Other technical limitations of our model included the effect of invasive instrumen-
tation on baseline inflammation, although this is also observed in surgical and trauma 
patients. We could not determine the proximity of invasive Doppler probe tips to larger 
blood vessels, which may have contributed to high variability in organ-specific micro-
vascular flow data, although overall trends were credible. Management of FiO2 and other 
ventilatory parameters was representative of ICU care, but less relevant in pre-hospital 
scenarios. Randomisation was largely effective, but did not eliminate tendency to low 
P/F ratios in PlasmaLyte-treated animals and higher baseline kidney PtO2 in PRBC-
treated animals. Haemodynamic response to haemorrhage, particularly tachycardia, was 
not evenly distributed among groups, which reflects real-world variation in patients pre-
senting with haemorrhagic shock. Notwithstanding cost and ethical considerations, an 
increased number of animals may not have overcome the inherent variability observed 
in large animal models.

Conclusions
Blood volume restitution restored haemodynamic parameters and tissue oxygen deliv-
ery, whether haemoglobin was maintained at normal levels after PRBC transfusion, or 
haemodiluted to below what is considered a restrictive transfusion threshold after fluid 
resuscitation. Non-invasive sublingual microvascular imaging, NIRS, and blood lactate, 
are promising point-of-care technologies that could be used to predict microvascular 
blood flow, tissue oxygen delivery and metabolic recovery in vital organs. These physi-
ological measures could be used to guide Patient Blood Management-associated treat-
ments for massive haemorrhage, and determine whether transfusion is warranted when 
haemoglobin levels fall below 70  g/L. Further investigation of novel vasoactive fluids 
such as ICAS for haemorrhagic shock is warranted, along with clinical studies to assess 
the role and impact of NIRS and sublingual microvascular imaging in the management 
of acute haemorrhage.
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