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Abstract

Background: The provision of guidance in ventilator therapy by continuous monitoring
of regional lung ventilation, aeration and respiratory system mechanics is the main
clinical benefit of electrical impedance tomography (EIT). A new application was
recently described in critically ill patients undergoing diagnostic bronchoalveolar
lavage (BAL) with the intention of using EIT to identify the region where sampling
was performed. Increased electrical bioimpedance was reported after fluid instillation.
To verify the accuracy of these findings, contradicting the current EIT knowledge, we
have systematically analysed chest EIT data acquired under controlled experimental
conditions in animals undergoing a large number of BAL procedures.

Methods: One hundred thirteen BAL procedures were performed in 13 newborn piglets
positioned both supine and prone. EIT data was obtained at 13 images before, during
and after each BAL. The data was analysed at three time points: (1) after disconnection
from the ventilator before the fluid instillation and by the ends of fluid (2) instillation
and (3) recovery by suction and compared with the baseline measurements before
the procedure. Functional EIT images were generated, and changes in pixel
electrical bioimpedance were calculated relative to baseline. The data was
examined in the whole image and in three (ventral, middle, dorsal) regions-of-
interest per lung.

Results: Compared with the baseline phase, chest electrical bioimpedance fell after
the disconnection from the ventilator in all animals in both postures during all procedures.
The fluid instillation further decreased electrical bioimpedance. During fluid
recovery, electrical bioimpedance increased, but not to baseline values. All effects were
highly significant (p < 0.001). The fractional changes in individual regions-of-interest
were posture-dependent. The regional fall in electrical bioimpedance was smaller in
the ventral and larger in the dorsal regions after the fluid instillation than after the
initial disconnection to ambient pressure in supine animals (p < 0.001) whereas these
changes were of comparable amplitude in prone position.
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Conclusions: The results of this study show a regionally dissimilar initial fall in electrical
bioimpedance caused by non-uniform aeration loss at the beginning of the BAL
procedure. They also confirm a further pronounced fall in bioimpedance during
fluid instillation, incomplete recovery after suction and a posture-dependent
distribution pattern of these effects.

Keywords: EIT, Electrical bioimpedance, Functional imaging, Ventilation
monitoring, Regional ventilation, Alveolar collapse, BAL
Background
The availability of electrical impedance tomography (EIT) devices certified for clinical

use has increased the use of this method for functional chest imaging to continuously

assess regional lung ventilation and changes in regional aeration in patients [1–4]. EIT

is mainly utilised in mechanically ventilated patients in whom it provides an immediate

feedback on the adequacy of chosen ventilator settings and early identification of

adverse events like pneumothorax [5], pendelluft [6], alveolar overdistension and atelec-

tasis [7–9] or cyclic recruitment [10].

EIT assesses the electrical properties of lung tissue and their regional variation de-

pending on physiological and/or pathological changes in air volume. EIT probes the

chest by rotating application of very small alternating electrical currents and measures

the resulting electrical voltages. A change in local air volume, for instance, its increase

during inspiration or alveolar recruitment, is associated with an elongation of pathways

the current needs to pass through and this results in higher values of measured elec-

trical bioimpedance. However, local fluid content also makes a contribution to regional

pulmonary electrical bioimpedance. For instance, accumulation of fluid in the lung

tissue, as in lung oedema [11] or in the pleural space, as in empyema [12] or pleural

effusion [13], can be detected by EIT as a reduction in bioimpedance.

A recent report has tested the ability of EIT to determine regional changes in elec-

trical bioimpedance resulting from instillation of fluid into the airways of patients

undergoing diagnostic bronchoscopic and blind bronchoalveolar lavage (BAL) proced-

ure [14]. The authors reported increases in electrical bioimpedance in all studied pa-

tients during BAL. Positive deflections in regional EIT waveforms and regions of high

positive impedance change in functional EIT images were claimed to coincide with the

moment of lavage fluid instillation. These findings are surprising because instillation of

an electrically conductive saline into the lungs would have rather been expected to

lower electrical bioimpedance than increase it.

Given that to our knowledge no other studies on the instantaneous effects of BAL on

EIT findings currently exist, we have analysed a large data set of EIT recordings

acquired in experimental animals during a total of 113 standardised BAL procedures.

The experiments were conducted in a controlled environment without any interference

that may occur in the ICU setting. We thus expected that our results would provide

definitive information about the impact of BAL on bioimpedance within the lung

and clarify what alterations might be expected on EIT recordings during BAL in

the clinical setting.
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Methods
The study was approved by the Committee for Animal Care at the University of

Geneva, Switzerland (protocol number 03-63, approval number 31.1.1051/2230/I) and

adhered with the guidelines on animal experimentation. The experiments were

designed to examine the effects of surfactant administration and alveolar recruitment

on regional lung ventilation, aeration and respiratory system mechanics in an animal

model of infant respiratory distress syndrome. These results have been reported before

[15, 16]. Repeated BAL procedures were performed to induce acute lung injury, and

EIT data was obtained during each BAL in 13 animals. This data has not been analysed

before and is reported here for the first time.
Animal preparation

Detailed description of animal preparation and instrumentation is provided in [15, 16].

Briefly, the animals were premedicated with midazolam and atropine. General anaes-

thesia was induced by ketamine and maintained with midazolam and fentanyl. Muscle

paralysis was achieved by continuous infusion of pancuronium. The animals were

tracheotomised, intubated and mechanically ventilated (Galileo Gold; Hamilton

Medical, Switzerland). Arterial, venous and urinary catheters were placed. The pressure

at the airway opening and airflow were monitored continuously (Florian respiratory

monitor; Acutronic Medical Systems, Zug, Switzerland) and arterial partial pressures of

oxygen (PaO2) and carbon dioxide (PaCO2) recorded (Paratrend 7; Diametrics Medical,

High Wycombe, UK). EIT examinations were carried out at a scan rate of 13 images/s

using alternating currents of 5 mArms and 70 kHz (Goe-MF II EIT system; Viasys

Healthcare, Höchberg, Germany).
Experimental protocol

The intubated animals were ventilated in a pressure-controlled mode with a fraction of

inspired O2 of 1.0 throughout. The initial settings before the first BAL are given in

Additional file 1: Table S1, along with the values recorded half an hour after the last BAL.

All whole-lung BAL procedures were performed in a standardised way using warmed

saline (50 ml/kg body weight). The criterion for termination of the procedures was

stable PaO2 lower than 100mmHg for 30 min. The first four lavages in each animal

were performed in the supine posture, the next series of up to four in the prone pos-

ition, with any further lavages in supine.

EIT data was recorded for 150 s during each BAL procedure. The recording started

shortly before the disconnection of the endotracheal tube from the ventilator (t0) and

covered the whole further period of fluid instillation, recovery of the fluid by suction

and the initial phase of resumed mechanical ventilation (Fig. 1). After each BAL, posi-

tive end-expiratory pressure (PEEP) was transiently increased if necessary to assist in

recovery from hypoxaemia.

To characterise the EIT findings during the BAL procedure three distinct reprodu-

cible time points were chosen: (1) after ventilator circuit disconnection, immediately

before lavage fluid instillation (t1), (2) at the end of fluid instillation (t2) and at the end

of fluid recovery by suction (t3) (Fig. 1.). EIT data was analysed in all 912 image pixels

in the whole image, and in functional regions-of-interest [17] corresponding to the



Fig. 1 Global and regional EIT waveforms with highlighted measurement phases before, during and after
bronchoalveolar lavage. The global waveform shows the sum of all image pixel values of relative
impedance changes (rel. ΔZ) in arbitrary units (AU) (top), the regional ones in the ventral (middle) and
dorsal image sections (bottom). The recording continued through five phases: I, continuous mechanical ventilation;
II, disconnection of the endotracheal tube from the ventilator; III, administration of the lavage fluid through the
endotracheal tube; IV, fluid recovery by suction, V, re-connection of the endotracheal tube to the ventilator and
resumption of mechanical ventilation. (The small dent in the waveforms after approximately 60% of the suction
phase IV (i.e. at 52 s of the recording) was associated with the temporary evacuation of the fluid from the suction
syringe. The clearly discernible change in the waveforms with higher tidal variation amplitude and
increased end-expiratory values after the resumption of ventilation in phase V at time point 89 s resulted
from the adjustment in ventilator settings with higher PEEP.) EIT data was analysed at three standardised
time points: t1, after disconnection from the ventilator directly prior to the fluid instillation into the lungs;
t2, at the end of fluid instillation and t3, at the end of suction of the lavage fluid immediately before the
resumption of mechanical ventilation, in each case compared with bioimpedance at baseline phase I
prior to the disconnection from the ventilator at t0
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ventral, middle and dorsal areas of the left and right lung regions. The individual

regions-of-interests were delineated using equidistant ventral to dorsal gridlines [15].

For each image pixel, change in EIT impedance was calculated relative to the baseline

phase during mechanical ventilation (rel. ΔZ, dimensionless arbitrary units (AU)) at the

three time points described above. The values of rel. ΔZ were then summed for all

image pixels and within all six regions-of-interest.

Statistical analysis

All statistical analyses were performed with GraphPad Prism 5.01 (GraphPad Software

Inc., San Diego, CA, USA). Data is presented as mean ± SD, unless otherwise indicated.

The data was first tested using the D’Agostino-Pearson normality test. To test the effect of

the time point on electrical bioimpedance, repeated measures ANOVA with Bonferroni’s

multiple comparison test or the Friedman test with subsequent Dunn’s multiple compari-

son were applied. To test the effect of body posture, one-way analysis of variance with

Bonferroni’s multiple comparison test or the Kruskal-Wallis test with Dunn’s multiple

comparison test were used. p values < 0.05 were considered significant.

Results
The studied newborn piglets had a body weight of 2.2 ± 0.3 kg. In total, 113 BAL proce-

dures were performed. Fifty-one BALs were accomplished in the supine, 46 in the

prone and 16 in the repeated supine position. The individual numbers of lavages

differed among the animals, the mean number per animal was 8.7 ± 1.8. (The general

effects of the repeated BAL procedures on the respiratory system mechanics and

pulmonary gas exchange are summarised in Additional file 1: Table S1.)

Figure 1 demonstrates the changes in electrical bioimpedance during the whole EIT

recording during one BAL procedure: the ventilation-related breath-by-breath signal

variation observed during mechanical ventilation in phase I, the rapid fall in electrical

bioimpedance after the disconnection to ambient pressure (phase II), the slightly more

protracted further fall during the lavage fluid instillation (phase III), the initial imped-

ance increase during early suction that was slowed down and regionally even slightly

reversed during later suction (phase IV) followed by the increase in impedance after

the resumption of mechanical ventilation with reappearance of ventilation-related tidal

impedance variation (phase V).

The typical changes in regional electrical bioimpedance during the BAL procedure in

the supine and prone positions at the three time points are readily discernible in exem-

plary functional EIT images (Fig. 2). After the disconnection from the ventilator, a fall

in lung impedance was noted in the lung regions, especially in the non-dependent areas

(i.e. the ventral ones in the supine and dorsal ones in the prone position). The instilla-

tion of the lavage fluid led to a further pronounced decrease in electrical bioimpedance

in all lung regions. The recovery of fluid by suction slightly increased electrical bio-

impedance, but not to pre-lavage values.

The analysis of all 113 EIT data sets revealed that the three distinct time points dur-

ing the BAL procedure at which EIT data were quantitatively evaluated were reprodu-

cible among the animals. The time point t1 occurred at 4.8 (4.0–6.2) s (median

(interquartile range)) after disconnection from the ventilator, t2 was 21.0 (18.3–23.8) s

beyond t0, and t3 at 70.8 (60.0–79.2) s.
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Fig. 2 Example functional EIT images. The images show the regional fall in electrical bioimpedance in lung
areas in one of the examined animals in the supine (top) and the prone positions (bottom) at three time
points during the bronchoalveolar lavage procedure. The impedance decrease is shown in dark tones after
the disconnection of the endotracheal tube from the ventilator before the fluid instillation (t1), after the
fluid instillation (t2) and after the fluid suction before the resumption of ventilation (t3) in each case relative
to baseline. v, ventral; d, dorsal; r, right; l, left
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The sums of all calculated pixel values of rel. ΔZ obtained for all data sets in the

supine I, prone and supine II positions at t1, t2 and t3 show a highly consistent pattern:

a decrease in bioimpedance (fall in rel. ΔZ) after disconnection from the ventilator, a

further significant fall after the fluid instillation, and an increase after suction (Fig. 3).

The rel. ΔZ values remained significantly lower by the end of fluid recovery than after
Fig. 3 Change in pulmonary electrical bioimpedance at distinct time points during the bronchoalveolar
lavage procedure. The sums of all image pixel values of relative impedance changes (rel. ΔZ) in arbitrary
units (AU) are given after the disconnection of the endotracheal tube from the ventilator before the lavage
fluid instillation (t1), after the fluid instillation (t2) and after the fluid suction before the resumption of
ventilation (t3), in each case compared to baseline before the disconnection to ambient pressure. The
data originate from lavages performed first in supine (left), then prone (middle) and final supine (right) positions
(supine I, prone and supine II, respectively). The numbers of analysed bronchoalveolar lavages in each posture
are given at the top of each diagram. p values given in the diagrams highlight the highly significant effect of
the time point. The significance of differences between the individual time points was obtained from
post analyses at **p < 0.01 and ***p < 0.001. Significantly different values from the supine I position
at corresponding time points are given as ††p < 0.01 and †††p < 0.001 and from supine II position
as ‡‡p < 0.01
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the initial disconnection to ambient pressure. Overall, positive impedance changes

compared with the baseline phase of initial mechanical ventilation were not observed

in any of the BAL procedures in either animal at any of the three time points.

The regional changes in rel. ΔZ in the ventral, middle and dorsal regions-of-interest

at t1, t2 and t3, given as fractions of the overall impedance changes in the lung regions,

exhibited different distribution patterns (Fig. 4). The fractional changes in rel. ΔZ were

larger in the ventral regions in the supine posture after the disconnection to ambient

pressure at t1 and fluid recovery at t3 than after fluid instillation at t2 (Fig. 4, left top

and left bottom panels). In the dorsal regions, the fractional change in rel. ΔZ was the

largest at t2 (Fig. 4, right top and right bottom panels). These effects were partially

reversed in the prone posture but less marked (Fig. 4, middle row of panels). The frac-

tional impedance changes were significantly lower in the ventral regions in the prone

than in both supine positions at time points t1 and t3 (Fig. 4, left middle panel) and
Fig. 4 Fractional bioimpedance change in ventral, middle and dorsal regions-of-interest. The fractional changes
are given at three time points during the bronchoalveolar lavage procedure: after the disconnection of the
endotracheal tube from the ventilator before the lavage fluid instillation (t1), after the fluid instillation (t2) and
after the fluid suction before the resumption of ventilation (t3). The data was obtained first in supine (top row),
then prone (middle row) and supine (bottom row) animals (supine I, prone and supine II, respectively). The
significance of differences between the individual time points was derived from post analyses at *p < 0.05,
**p < 0.01 and ***p < 0.001. Significantly different values from the supine I position at corresponding time
points are given as †††p < 0.001 and from supine II position as ‡‡p < 0.01 and ‡‡‡p < 0.001
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significantly higher in the dorsal regions (Fig. 4, right middle panel). The regional

evaluation also confirmed that only negative values of rel. ΔZ (i.e. decreasing bio-

impedance) were found in all regions-of-interest during all BAL procedures at all three

studied time points compared with the baseline phase before t0.

Discussion
The results of our study showed that the instillation of fluid into the lungs during BAL

led to a consistent pronounced decrease in electrical bioimpedance that could be visua-

lised and quantitatively assessed by EIT. It occurred in the whole left and right lung

regions with spatially different distribution patterns in the supine and prone positions.

This data is novel since the instantaneous effects of BAL on chest EIT findings have

not been described before in spite of its previous use to induce experimental acute lung

injury (e.g. [18–21]).

Since the lavage fluid was instilled in an open procedure and EIT data acquisition

began before the disconnection from the ventilator, we could examine the effects of

exposure to ambient pressure on regional electrical bioimpedance. Each disconnection

led to a fall in rel. ΔZ resulting from a loss in gas volume. This corresponds to earlier

EIT findings obtained in supine pigs [18]. The regional effects were posture-dependent,

showing a higher fraction of rel. ΔZ fall in the ventral regions in the supine than in

prone animals with an opposite behaviour in the dorsal regions. Our data also showed

a smaller decrease in bioimpedance in the prone than in the supine position indicating

a less pronounced relative aeration loss in this posture.

The recovery of the fluid by suction led to an increase in electrical bioimpedance, but

not to the values seen prior to the fluid instillation. This can be attributed not only to

the incomplete recovery of the lavage fluid but also to de-recruitment and further

aeration loss caused by suction. These effects differed regionally and exhibited a

posture-dependent behaviour. Although a few studies exist reporting the use of EIT to

analyse the effects of endotracheal tube suctioning on lung aeration [18, 22–25], they

cannot be directly compared with our data, which reports specifically on the effects

noted during large volume saline lavage. Nevertheless, these previous studies reported

a fall in global rel. ΔZ during suctioning compared with the preceding baseline phase

of mechanical ventilation [23, 24]. The steepest fall in rel. ΔZ was found in dorsal lung

regions in supine animals [18]. This was attributed to larger suction-induced

de-recruitment in the dependent regions. Tingay et al. [25] examined the effects of

open and closed suction in ventral and dorsal regions in supine piglets showing that

pronounced regional fall in rel. ΔZ during suction could only be prevented by closed

suction using a small-calibre catheter. In our study, suctioning removed the free fluid

from the lungs, and this led to an increase in rel. ΔZ mainly in the dependent lung

where the fluid had accumulated. By the end of the fluid recovery, the non-dependent

regions experienced a fall in rel. ΔZ in supine animals, highlighting the deleterious

effects of suction on lung aeration.

A recent clinical study, which prompted our systematic analysis of EIT findings

obtained during BAL procedures, evaluated bioimpedance in patients undergoing bron-

choscopic and blind BALs [14]. In that study, transient increases in electrical bioimpe-

dance were identified in the EIT waveforms and attributed to the instillation of lavage

fluid. Regions of high positive rel. ΔZ change, identified in the functional EIT images of
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the studied patients during the BAL procedures, were considered to represent the lung

regions with fluid accumulation during the instillation. Our findings are clearly contra-

dictory to these clinical observations, with instillation of lavage fluid consistently pro-

ducing a decrease in rel. ΔZ. Our results are in harmony with theoretical

considerations in relation to electrical resistivity of body tissues and sodium chloride

solutions. The electrical resistivity of lung tissue in vivo is generally given at about 750

to 2100Ω cm (depending on the frequency of excitation currents, temperature, species

and degree of lung inflation) [26, 27] whereas warm 0.9% saline at body temperature

has a resistivity of 51Ω cm [26]. The instillation of a highly electrically conductive

crystalloid solution into the less conductive lung must therefore lead to a decrease

in the chest electrical bioimpedance measured by EIT, and our results unambi-

guously confirm this.

Why a theoretically anticipated fall in electrical bioimpedance was not identified in

the previous study in patients during BAL [14] could be explained as follows. Based on

the original screen-captured EIT waveforms and the described methodological

approach with the signals ‘later reviewed by three different physicians with no expertise

in EIT who were blind to the procedures performed’, we presume that the blinded

reviewers performing the offline analyses of the data erroneously identified the largest

positive peaks in electrical bioimpedance signals as being associated with BAL. They

selected these as representing the effects of fluid instillation and used them to generate

functional EIT images of the presumed effects of fluid instillation on the spatial distri-

bution of electrical bioimpedance in the chest cross-section.

These infrequent positive peaks could have theoretically resulted from spontaneous

breaths; however, the patients were described as sedated and paralysed for the proce-

dure. They also could have been caused by undocumented manual inflations. In that

case, the functional images generated from these peaks would rather show the inflation

of lung regions unobstructed by the catheter or bronchoscope than the lavaged region.

Finally, we would like to address a few limitations of our study: (1) EIT scanning was

performed at a relatively low scan rate compared with the most modern EIT devices.

However, the rate of 13 images/s was more than sufficient to reliably identify the relevant

time points and obtain the corresponding data needed for the analysis. (2) We have per-

formed only open BAL procedures. It can be presumed that a closed procedure would not

result in a pronounced fall in electrical bioimpedance seen in our data after the discon-

nection to ambient pressure as previously shown [25]. It is probable that the rel. ΔZ values

after the closed suctioning might have also been different as can be implied from a

previous study [24]. We expect that the effects of fluid instillation should be similar in

open and closed BAL; however, the present data do not allow to confirm this.
Conclusions
Our study has described for the first time the global and regional pulmonary effects of

lavage fluid instillation and subsequent suctioning in an in vivo animal model using

EIT. A marked fall in chest electrical bioimpedance resulted from BAL which was only

partially reversed by fluid recovery by suction. The spatial distribution of these effects

was posture-dependent. Based on our results, we recommend re-evaluation of the

effects of BAL on bioimpedance in the clinical setting.
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