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Abstract

Background: Influenza infections are often complicated by secondary infections,
which are associated with high morbidity and mortality, suggesting that influenza
profoundly influences the immune response towards a subsequent pathogenic
challenge. However, data on the immunological interplay between influenza and
secondary infections are equivocal, with some studies reporting influenza-induced
augmentation of the immune response, whereas others demonstrate that influenza
suppresses the immune response towards a subsequent challenge. These contrasting
results may be due to the use of various types of live bacteria as secondary
challenges, which impedes clear interpretation of causal relations, and to differences
in timing of the secondary challenge relative to influenza infection. Herein, we
investigated whether influenza infection results in an enhanced or suppressed innate
immune response upon a secondary challenge with bacterial lipopolysaccharide
(LPS) in either the acute or the recovery phase of infection.

Methods: Male C57BL/6J mice were intranasally inoculated with 5 × 103 PFU
influenza virus (pH1N1, strain A/Netherlands/602/2009) or mock treated. After 4
(acute phase) or 10 (recovery phase) days, 5 mg/kg LPS or saline was administered
intravenously, and mice were sacrificed 90 min later. Cytokine levels in plasma and
lung tissue, and lung myeloperoxidase (MPO) content were determined.

Results: LPS administration 4 days after influenza infection resulted in a synergistic
increase in TNF-α, IL-1β, and IL-6 concentrations in lung tissue, but not in plasma.
This effect was also observed 10 days after influenza infection, albeit to a lesser
extent. LPS-induced plasma levels of the anti-inflammatory cytokine IL-10 were
enhanced 4 days after influenza infection, whereas a trend towards increased
pulmonary IL-10 concentrations was found. LPS-induced increases in pulmonary
MPO content tended to be enhanced as well, but only at 4 days post-infection.

Conclusions: An LPS challenge in the acute phase of influenza infection results in an
enhanced pulmonary pro-inflammatory innate immune response. These data
increase our insight on influenza-bacterial interplay. Combing data of the present
study with previous findings, it appears that this enhanced response is not beneficial
in terms of protection against secondary infections, but rather damaging by
increasing immunopathology.
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Background
Patients with influenza infection often suffer from severe secondary bacterial infections,

which are associated with high morbidity and mortality rates [1, 2]. A striking example

of this relationship was provided by bacteriological and histopathological analysis of in-

fected lung tissue obtained from people who died of influenza during the 1918–1919

“Spanish flu” pandemic, in whom bacterial pneumonia was found to be the predomin-

ant cause of death [1]. These data suggest that an influenza infection profoundly influ-

ences the immune response upon a secondary bacterial infection.

Several studies have evaluated immunological interactions between influenza and

bacterial infections, including infections with Gram-negative bacteria [3]. In vitro

studies in which influenza-infected alveolar macrophages were subsequently

stimulated with bacterial lipopolysaccharide (LPS), a bacterial compound that

induces a profound innate immune response, revealed increased levels of

pro-inflammatory cytokines tumor necrosis factor (TNF) α, interleukin (IL)-1β, and

IL-6 [4–8], indicative of a priming effect on these cells by influenza. Data from in

vivo animal studies are ambiguous. Similar to the in vitro data, some report

enhanced responses. For instance, influenza infection in mice was shown to enhance the

inflammatory response and neuropathogenicity resulting from LPS administration

on days 3 and 4 after influenza inoculation [9]. Likewise, murine influenza

infection resulted in increased levels of pro-inflammatory cytokines in both plasma

and lungs, and enhanced pulmonary neutrophil influx upon pneumococcal

infection 7 days later [10]. Similar results were observed in mice 14 days after

influenza infection [11]. However, two otherwise largely comparable studies

demonstrated reduced pulmonary pro-inflammatory cytokine concentrations upon

Streptococcus pneumoniae and Staphylococcus aureus infections in mice infected

with influenza 7 days before, indicative of influenza-induced immunosuppression

[12, 13]. These equivocal results may be due to differences in the severity or

kinetics of the influenza infection or the use of different bacteria as secondary

challenges, thereby targeting various complex multi-receptor signaling pathways.

Also, the use of live bacteria could have contributed to these ambiguous results.

For instance, if influenza would induce immunosuppression and thereby facilitate

outgrowth of bacteria upon a secondary live infectious challenge, the increased

bacterial burden can eventually result in fulminant inflammation, which would

wrongfully suggest influenza-induced augmentation of the immune response.

In the present study, we investigated whether influenza infection results in an en-

hanced or suppressed innate immune response upon a secondary challenge with LPS.

Furthermore, we assessed the kinetics of these influenza-induced effects by performing

the LPS challenges in either the acute or the recovery phase of influenza infection.

Methods
Ethics and animals

All procedures described were in accordance with the requirements of the Dutch

Experiments on Animals Act, the EC Directive 86/609, and approved by the Animal

Ethics Committee of the Radboud University Nijmegen Medical Center (RU-DEC

2013-029). Forty-eight male C57BL/6J mice (Charles River, Sutzfield, Germany) aged
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10–12 weeks and weighing 23–29 g were used. Mice were housed in individually venti-

lated cages, with five mice per cage at the central animal facility of the Radboud

University.

Study design

At day 0, six groups of eight mice (total n = 48) were anesthetized by isoflurane and

intranasally inoculated with a sublethal dose of influenza virus (pH1N1, strain A/

Netherlands/602/2009, 5 × 103 PFU) or mock treated (NaCl 0.9%) in a volume of

50 μL. Following infection, all mice were monitored and weighed daily. The

temperature was recorded with an infrared thermometer on the skin, and physical con-

dition was scored using a scoring and weight sheet (weight, body temperature, ruffled

coat, hunched back, reduced mobility, and moribund). At either day 4 (acute phase) or

day 10 (recovery phase), mice were placed in a temperature-controlled chamber to re-

ceive LPS (E coli, serotype 0111:B4, 5 mg/kg) or NaCl 0.9% by intravenous injection in

the tail vein. Ninety minutes after LPS or NaCl administration, mice were deeply anes-

thetized with isoflurane and exsanguinated through orbital extraction, followed by cer-

vical dislocation after which organs were collected.

Blood and tissue collection

Ethylenediaminetetraacetic acid (EDTA)-anticoagulated blood was centrifuged at

13000×g for 2 min at room temperature after which plasma was stored at − 80 °C until

analysis. Subsequently, perfusion of the lungs was performed by intracardiac injection

with phosphate-buffered saline (PBS), after which lung lobes were harvested and snap

frozen in liquid nitrogen and stored at − 80 °C until homogenization. Lung tissue was

placed in 1 mL lysis buffer containing PBS, 0.5% triton X-100, and a protease inhibitor

cocktail (complete EDTA-free tablets, Roche, Woerden, the Netherlands, 1 tablet per

50 mL lysis buffer). Subsequently, lung lobes were homogenized at 50 Hz, using a poly-

tron homogenizer, and subjected to two rapid freeze-thaw cycles using liquid nitrogen.

Finally, homogenates were centrifuged (10 min, 14,000×g, 4 °C), and the supernatant

was stored at − 80 °C until cytokine analysis.

Cytokine analysis

Concentrations of TNF-α, IL-1β, IL-6, and IL-10 in plasma and lung homogenates were

measured using a Luminex assay (Milliplex, Millipore, Billerica, MA) according to the

manufacturer’s instructions. The lower detection limit of the assay was 32 pg/mL for all

cytokines. Plasma IL-1β levels were below the detection limit in the majority of animals.

Lung homogenate cytokine concentrations were normalized to total protein content de-

termined by bicinchoninic acid assay (BCA Protein Assay; Thermo Fisher Scientific).

Myeloperoxidase content

Myeloperoxidase (MPO) content was measured in lung homogenates using an enzyme-linked

immunosorbent assay (Hycult biotech, Uden, the Netherlands) according to the

manufacturer’s instructions. Concentrations were normalized to total protein con-

tent as described above.
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Statistical analysis

All data were normally distributed according to the Shapiro-Wilk test. The Grubbs

test (extreme studentized deviate method) was used to exclude significant outliers

from analysis (maximum of one exclusion per dataset). To determine the number

of animals required per group, we performed a power calculation based on a min-

imal detectable difference of 50% in LPS-induced plasma TNF-α levels between

influenza-infected and non-influenza-infected mice. Mean ± SD (533 ± 163 pg/mL)

TNF-α plasma levels were obtained from previous work from our group, in which

male C57BL/6J mice were also injected intravenously with 5 mg/kg LPS and sacri-

ficed 90 min later [14]. Using a two-sided α of 0.05 and a power of 80% (β of 0.2)

in an unpaired t test design, six animals per group were required. To account for

potential loss of animals due to influenza infection, eight animals per group were

used. The effect size was based on previous work [9], in which influenza infection

modulated the plasma cytokine response to LPS administration by at least 50%.

Comparisons were analyzed using unpaired Student’s t tests and repeated measures

one-way analysis of variance (ANOVA) as indicated in the figure legends. Statistical

analyses were performed in GraphPad Prism 5.03 for Windows (GraphPad

Software, San Diego, CA). Two-tailed p values < 0.05 were considered statistically

significant.

Results
Clinical signs of influenza infection

All influenza-inoculated mice showed clinical signs of infection, including weight loss,

lethargy, and pyrexia. Four influenza-infected mice were prematurely taken out of the

experiment because of signs of severe infection. Body weight decreased in all

influenza-infected mice in the acute phase of infection, whereas it remained stable in

mock-inoculated mice (Fig. 1). From day 7 onwards, body weight started to increase,

marking the recovery phase of influenza infection (Fig. 1).

Cytokines in plasma and lung homogenates

Influenza infection by itself did not result in increased plasma levels of any of the cyto-

kines measured at both 4 and 10 days post-infection (Fig. 2). Expectedly, LPS

Fig. 1 Body weight of influenza- or mock-inoculated mice. Data are presented as mean with SEM. Dagger
indicates the two time points at which mice in the respective groups were sacrificed
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administration led to profoundly increased plasma concentrations of TNF-α, IL-6, and

IL-10. Although TNF-α and IL-6 plasma levels appeared to be somewhat higher in mice

challenged with LPS 4 days after influenza infection compared with mock-inoculated

mice, this did not reach statistical significance (p = 0.12 and p = 0.86, respectively).

Plasma concentrations of the anti-inflammatory cytokine IL-10 were however signifi-

cantly enhanced in mice challenged with LPS 4 days after influenza infection. No differ-

ences in any of the plasma cytokine levels were measured between influenza-infected

and mock-inoculated mice at 10 days.

In lung homogenates, influenza by itself caused mildly elevated levels of TNF-α,

IL-1β, IL-6, and IL-10 at 4 days post-infection and to a lesser extent at 10 days after in-

fection (Fig. 3). Similar to what was found in plasma, LPS challenge also led to in-

creased concentrations of all measured cytokines in lung tissue. A synergistic increase

of all pro-inflammatory cytokines in the lungs was found in influenza-infected mice

challenged with LPS 4 days later and, to a lesser extent, in mice challenged with LPS

10 days post-influenza infection. For IL-10, the potentiating effect was additive rather

Fig. 2 Plasma levels of TNF-α, IL-6, and IL-10 in mice that received influenza/mock followed by LPS/NaCl 4
or 10 days later. Data are presented as scatter-dot plots with horizontal lines indicating the mean value.
*p < 0.05, **p < 0.01, ***p < 0.001 (calculated by unpaired Student’s t tests)

Fig. 3 Levels of TNF-α, IL-1β, IL-6, and IL-10 in lung homogenates of mice that received influenza/mock
followed by LPS/NaCl 4 or 10 days later. Data are presented as scatter-dot plots with horizontal lines
indicating the mean value. *p < 0.05, **p < 0.01, ***p < 0.001, #p = 0.05–0.10 (calculated by unpaired
Student’s t tests)
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than synergistic, only observed at 4 days post-influenza infection, and reached a trend

towards statistical significance.

Pulmonary MPO content

In accordance with pulmonary cytokine levels, influenza infection by itself led to in-

creased MPO content in the lungs 4 days after infection and tended to result in increased

MPO content 10 days post-infection (Fig. 4). Again, LPS administration also resulted in

increased MPO levels in lung tissue, and there was a trend towards enhanced MPO con-

tent in influenza-infected mice challenged with LPS 4 days after infection.

Discussion
In the present study, we demonstrate that a systemic LPS challenge in the acute phase

of influenza infection (4 days post-infection) results in an enhanced pulmonary, but not

systemic pro-inflammatory cytokine response. This effect was synergistic rather than

additive, indicating that influenza infection actually modulates the immune response to

a subsequent challenge with LPS. Furthermore, this effect remained present, although

less pronounced, in the recovery phase of influenza infection (10 days post-infection).

The LPS-induced increase in MPO content in lung homogenates, reflecting pulmonary

neutrophil influx or sequestration, tended to be enhanced in the acute phase of influ-

enza infection as well. These results suggest that influenza infection, especially in the

acute phase, may cause a more pronounced pulmonary pro-inflammatory immune re-

sponse upon a secondary bacterial infection.

Our results are in accordance with in vitro data reporting a cellular priming effect of influ-

enza observed upon secondary stimulation with LPS [4–8], as well as with other murine in

vivo studies that report increased inflammation and pulmonary neutrophil influx or seques-

tration upon a secondary bacterial infection or LPS challenge in the acute phase of influenza

infection [9, 10]. For example, a preceding influenza infection in mice gravely enhanced

lung injury induced by a secondary infection with Streptococcus pneumoniae 7 days later,

resulting in a severe necrotic pneumonia accompanied by increased mortality [10]. Also,

Fig. 4 MPO content in lung homogenates of mice that received mock/influenza followed by NaCl/LPS 4 or
10 days later. Data are presented as scatter-dot plots with horizontal lines indicating the mean value.
*p < 0.05, **p < 0.01, ***p < 0.001, #p = 0.05–0.10 (calculated by unpaired Student’s t tests)
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the increased MPO content observed in our study is an important hallmark of acute re-

spiratory distress syndrome (ARDS) [15, 16], a severe complication of influenza infection

caused by excessive pulmonary inflammation. These and our study reveal that the enhan-

cing effect on the pro-inflammatory innate immune response is most evident in the lungs,

probably because the influenza-induced damage and consequent inflammatory effects are

most pronounced at this site. In this context, our data are in line with the recommendation

to use corticosteroids in patients with severe influenza infections in the Intensive Care

Unit to counteract the pulmonary hyperinflammatory response causing ARDS. Several

underlying mechanisms may contribute to the observed effects. At the cellular level, stud-

ies have shown that influenza and certain bacterial pathogens, such as Haemophilus influ-

enzae and Streptococcus pneumoniae, utilize similar immunological pathways and that the

overlap in the inflammatory mediators produced thereby creates augmentation of the im-

mune response during sequential infection, in turn causing immunopathology [17, 18].

Furthermore, it has been hypothesized that influenza stimulates TNF-α gene transcription

activators or may interfere with labile transcription repressor proteins and stabilizes

TNF-α mRNA by delaying its degradation [8]. Alternatively, the increased lung MPO

levels observed do not necessarily reflect PMN infiltration into the lungs, but may (also)

result from PMNs trapped in the vasculature, as circulating activated neutrophils become

rigid and can be trapped within the small capillaries of the lung [19]. As such, increased

entrapment of leukocytes in the pulmonary vasculature during influenza infection could

also contribute to the enhanced inflammatory cytokine levels upon LPS challenge. We

can only speculate on this, because no histological data are available, which represents a

limitation of this work.

It may be argued that the enhanced pro-inflammatory immune response induced by

influenza serves as a means to efficiently eliminate the primary pathogen and to en-

hance host defense towards a secondary infection. For instance, pro-inflammatory cyto-

kines are induced in influenza-infected cells to limit viral replication and to initiate

downstream immune responses [20]. However, this is not supported by previous work,

where an increased bacterial burden was observed irrespective of an enhanced or sup-

pressed response [11–13]. Several explanations for this observation may be put for-

ward. First, next to potentiating pro-inflammatory cytokine responses, the present

study and work by others [11] have shown that influenza infection also potentiates pro-

duction of the key anti-inflammatory cytokine IL-10, which was demonstrated to be

crucial in facilitating bacterial outgrowth upon secondary challenge with Streptococcus

pneumoniae [11]. Second, influenza may on the one hand prime for production of in-

nate cytokines produced by myeloid cells, but impair T cell-derived cytokines that are

instrumental for the adaptive immune response. This was elegantly demonstrated by

Kudva et al., who showed that, in line with our results, infection with Staphylococcus

aureus 6 days after influenza resulted in increased pulmonary levels of innate cytokines

such as IL-6 and MCP-1, and increased neutrophil influx to the lungs, but decreased

concentrations of T-cell-derived IL-17 and IL-22, which were demonstrated to play a

pivotal role in fending off the staphylococcal infection [21].

Whereas the enhancing effects of influenza on pro-inflammatory innate immune pa-

rameters were less pronounced at 10 days post-infection, a suppressed response was

neither evident. This could be partly biased by the exclusion of two mice in both

recovery groups due to severe influenza infection. However, it might also be argued
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that 10 days post-infection is too soon for these effects to manifest. For example, pro-

found desensitization towards LPS and flagellin, another Toll-like receptor (TLR) ligand,

was observed in alveolar macrophages obtained from mice up to 6 weeks after influenza

infection [22]. Furthermore, the direction of the response upon a secondary challenge is

probably highly dependent on the pathogen or stimulus used, each using distinct intracel-

lular signaling pathways. With regard to this, it is well-known that influenza virus particu-

larly predisposes to Aspergillus fumigatus, which is present in 25% of all influenza patients

[23, 24], causing infections such as invasive pulmonary aspergillosis that are associated

with very high mortality rates. As different mechanisms may be important in host defense

towards various pathogens, the specific response towards Aspergillus fumigatus could be sup-

pressed by a preceding influenza infection. The use of corticosteroids may be another im-

portant factor in the observed vulnerability towards particular secondary infections, as

steroid use was shown to be independently associated with the presence of Aspergillus fumi-

gatus in sputum of cystic fibrosis patients [25] and with a substantially increased risk of

community-acquired Staphylococcus aureus bacteremia [26]. Furthermore, a meta-analysis

revealed that the use of corticosteroids was significantly associated with nosocomial infec-

tions [27]. To the best of our knowledge, these putative detrimental effects of corticosteroid

treatment during influenza on secondary infections have yet to be studied systematically

in animal models. In any case, it remains to be determined whether the overall effects of

corticosteroid treatment are beneficial or not, as they may lead to increased susceptibility

in a subset of influenza virus-infected patients but may also provide health benefits in an-

other subset of influenza virus-infected patients.

Conclusions
An LPS challenge in the acute phase of influenza infection results in an enhanced

pulmonary pro-inflammatory innate immune response. These data increases our

insight concerning viral-bacterial interplay. Combined with previous findings, it ap-

pears that this enhanced pro-inflammatory response does not lead to protection

against secondary infections but rather causes immunopathology leading to dam-

age, and thereby to organ failure.

Abbreviations
ANOVA: One-way analysis of variance; ARDS: Acute respiratory distress syndrome; BCA: Bicinchoninic acid assay;
IL: Interleukin; LPS: Lipopolysaccharide; MPO: Myeloperoxidase; TNF: Tumor necrosis factor

Acknowledgements
The authors thank Fred van Opzeeland, Elles Simonetti, Francine van der Poll, Ilona van de Brink, and Jelle Gerretsen
for their help with the mouse experiments and laboratory analyses.

Funding
This work was supported by an EFRO (Dutch: “Europees Fonds voor Regionale Ontwikkeling,” English: “European
Regional Development Fund”) grant (2011-013287). EFRO had no role in the design of the study; in the collection,
analysis, and interpretation of data; and in writing the manuscript.

Availability of data and materials
Data sharing is not applicable to this article as no reusable datasets were generated or analyzed during the current
study.

Authors’ contributions
RK designed and conducted the study, analyzed and interpreted the data, and drafted the manuscript. DD and GF
aided in the study design and conduct, interpreted the data, and critically revised the manuscript. PP and MdJ
supervised the study, interpreted the data, and critically revised the manuscript. MK designed and supervised the
study, interpreted the data, and critically revised the manuscript. All authors read and approved the final manuscript.

Koch et al. Intensive Care Medicine Experimental  (2018) 6:15 Page 8 of 10



Ethics approval
All procedures described were in accordance with the requirements of the Dutch Experiments on Animals Act, the EC
Directive 86/609, and approved by the Animal Ethics Committee of the Radboud University Nijmegen Medical Center
(RU-DEC 2013-029).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Intensive Care Medicine, Radboud university medical centre, Nijmegen, The Netherlands. 2Section
Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences,
Radboud university medical centre, Nijmegen, The Netherlands. 3Radboud Center for Infectious Diseases (RCI),
Radboud university medical centre, Nijmegen, The Netherlands.

Received: 14 March 2018 Accepted: 22 June 2018

References
1. Morens DM, Taubenberger JK, Fauci AS (2008) Predominant role of bacterial pneumonia as a cause of death in

pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 198(7):962–970
2. Morris DE, Cleary DW, Clarke SC (2017) Secondary bacterial infections associated with influenza pandemics. Front

Microbiol 8:1041
3. Lee B, Robinson KM, McHugh KJ, Scheller EV, Mandalapu S, Chen C et al (2015) Influenza-induced type I interferon

enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice. Am J Physiol Lung Cell
Mol Physiol 309(2):L158–L167

4. Lehmann C, Sprenger H, Nain M, Bacher M, Gemsa D (1996) Infection of macrophages by influenza A virus:
characteristics of tumour necrosis factor-alpha (TNF alpha) gene expression. Res Virol 147(2–3):123–130

5. Bender A, Sprenger H, Gong JH, Henke A, Bolte G, Spengler HP et al (1993) The potentiating effect of LPS on tumor
necrosis factor-alpha production by influenza A virus-infected macrophages. Immunobiology 187(3–5):357–371

6. Lundemose JB, Smith H, Sweet C (1993) Cytokine release from human peripheral blood leucocytes incubated
with endotoxin with and without prior infection with influenza virus: relevance to the sudden infant death
syndrome. Int J Exp Pathol 74(3):291–297

7. Nain M, Hinder F, Gong JH, Schmidt A, Bender A, Sprenger H et al (1990) Tumor necrosis factor-alpha production of
influenza A virus-infected macrophages and potentiating effect of lipopolysaccharides. J Immunol 145(6):1921–1928

8. Gong JH, Sprenger H, Hinder F, Bender A, Schmidt A, Horch S et al (1991) Influenza A virus infection of
macrophages. Enhanced tumor necrosis factor-alpha (TNF-alpha) gene expression and lipopolysaccharide-
triggered TNF-alpha release. J Immunol 147(10):3507–3513

9. Tanaka T, Sunden Y, Sakoda Y, Kida H, Ochiai K, Umemura T (2010) Lipopolysaccharide treatment and inoculation
of influenza A virus results in influenza virus-associated encephalopathy-like changes in neonatal mice. J
Neurovirol 16(2):125–132

10. Smith MW, Schmidt JE, Rehg JE, Orihuela CJ, McCullers JA (2007) Induction of pro- and anti-inflammatory
molecules in a mouse model of pneumococcal pneumonia after influenza. Comparative medicine 57(1):82–89

11. van der Sluijs KF, van Elden LJ, Nijhuis M, Schuurman R, Pater JM, Florquin S et al (2004) IL-10 is an important
mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J Immunol
172(12):7603–7609

12. Sun K, Metzger DW (2008) Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery
from influenza infection. Nat Med 14(5):558–564

13. Small CL, Shaler CR, McCormick S, Jeyanathan M, Damjanovic D, Brown EG et al (2010) Influenza infection leads to
increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung. J
Immunol 184(4):2048–2056

14. Langereis JD, Pickkers P, de Kleijn S, Gerretsen J, de Jonge MI, Kox M (2017) Spleen-derived IFN-gamma induces
generation of PD-L1(+)-suppressive neutrophils during endotoxemia. J Leukoc Biol 102(6):1401–1409

15. Ichikawa A, Kuba K, Morita M, Chida S, Tezuka H, Hara H et al (2013) CXCL10-CXCR3 enhances the development of
neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care Med 187(1):65–77

16. Sugamata R, Dobashi H, Nagao T, Yamamoto K, Nakajima N, Sato Y et al (2012) Contribution of neutrophil-derived
myeloperoxidase in the early phase of fulminant acute respiratory distress syndrome induced by influenza virus
infection. Microbiol Immunol 56(3):171–182

17. McCullers JA (2006) Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev
19(3):571–582

18. Koch RM, Kox M, de Jonge MI, van der Hoeven JG, Ferwerda G, Pickkers P (2016) Patterns in bacterial- and viral-
induced immunosuppression and secondary infections in the ICU. Shock 47(1):5–12

19. Phillipson M, Kubes P (2011) The neutrophil in vascular inflammation. Nat Med 17(11):1381–1390
20. Guo XJ, Thomas PG (2017) New fronts emerge in the influenza cytokine storm. Semin Immunopathol 39(5):541–550

Koch et al. Intensive Care Medicine Experimental  (2018) 6:15 Page 9 of 10



21. Kudva A, Scheller EV, Robinson KM, Crowe CR, Choi SM, Slight SR et al (2011) Influenza A inhibits Th17-mediated
host defense against bacterial pneumonia in mice. J Immunol 186(3):1666–1674

22. Didierlaurent A, Goulding J, Patel S, Snelgrove R, Low L, Bebien M et al (2008) Sustained desensitization to
bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 205(2):323–329

23. Wauters J, Baar I, Meersseman P, Meersseman W, Dams K, De Paep R et al (2012) Invasive pulmonary aspergillosis is a
frequent complication of critically ill H1N1 patients: a retrospective study. Intensive Care Med 38(11):1761–1768

24. van de Veerdonk FL, Kolwijck E, Lestrade PP, Hodiamont CJ, Rijnders BJ, van Paassen J et al (2017) Influenza-
associated aspergillosis in critically ill patients. Am J Respir Crit Care Med. [Epub ahead of print]. https://www.ncbi.
nlm.nih.gov/pubmed/?term=28387526

25. Noni M, Katelari A, Dimopoulos G, Kourlaba G, Spoulou V, Alexandrou-Athanassoulis H et al (2014) Inhaled
corticosteroids and Aspergillus fumigatus isolation in cystic fibrosis. Med Mycol 52(7):715–722

26. Smit J, Kaasch AJ, Sogaard M, Thomsen RW, Nielsen H, Froslev T et al (2016) Use of glucocorticoids and risk of
community-acquired Staphylococcus aureus bacteremia. A Population-Based Case-Control Study Mayo Clin Proc
91(7):873–880

27. Yang JW, Fan LC, Miao XY, Mao B, Li MH, Lu HW, et al. Corticosteroids for the treatment of human infection with
influenza virus: a systematic review and meta-analysis. Clinical microbiology and infection: the official publication
of the European Society of Clinical Microbiology and Infectious Diseases. 2015;21(10):956–963

Koch et al. Intensive Care Medicine Experimental  (2018) 6:15 Page 10 of 10

https://www.ncbi.nlm.nih.gov/pubmed/?term=28387526
https://www.ncbi.nlm.nih.gov/pubmed/?term=28387526

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Ethics and animals
	Study design
	Blood and tissue collection
	Cytokine analysis
	Myeloperoxidase content
	Statistical analysis

	Results
	Clinical signs of influenza infection
	Cytokines in plasma and lung homogenates
	Pulmonary MPO content

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

