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Abstract

Background: The nature of the inflammatory response underscoring the
pathophysiology of sepsis has been extensively studied. We hypothesized that
different cell functions would be differentially regulated in a patient with sepsis.
We evaluated the modulation of monocyte functions during sepsis by simultaneously
assessing their phagocytic activity, the generation of reactive oxygen species (ROS) and
nitric oxide (NO), and the production of inflammatory cytokines (IL-6 and TNF-α).
Methods: Whole blood was obtained from patients with severe sepsis and septic
shock both at admission (D0, n = 34) and after seven days of therapy (D7, n = 15);
19 healthy volunteers were included as a control group. The cells were stimulated
with LPS, Pseudomonas aeruginosa, and Staphylococcus aureus. The ROS and NO levels
were quantified in monocytes in whole blood by measuring the oxidation of 2,7-
dichlorofluorescein diacetate and 4-amino-5-methylamino-2,7-difluorofluorescein
diacetate, respectively. Intracellular IL-6 and TNF-α were detected using fluorochrome-
conjugated specific antibodies. Monocyte functions were also evaluated in CD163+ and
CD163− monocyte subsets.

Results: The monocytes from septic patients presented with preserved phagocytosis,
enhanced ROS and NO generation, and decreased production of inflammatory
cytokines compared with the monocytes from healthy volunteers. TNF-α and IL-6
increased and ROS generation decreased in D7 compared with D0 samples. In general,
CD163+ monocytes produced higher amounts of IL-6 and TNF-α and lower amounts
of ROS and NO than did CD163− monocytes.

Conclusions: We demonstrated that monocytes from septic patients, which are
impaired to produce inflammatory cytokines, display potent phagocytic activity and
increased ROS and NO generation.
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Background
Sepsis has been defined as a systemic inflammatory response (SIRS) triggered by an

ongoing infection [1] and more recently considered as the host’s deleterious, non-

resolving inflammatory response to infection that leads to organ dysfunction [2].

Understanding the nature of how the inflammatory response underscores the patho-

physiology of sepsis would not only help clarify the mechanisms of the syndrome but

would also lead to the identification of new therapeutic targets.

Currently, it is generally accepted that infection triggers both inflammatory and anti-

inflammatory responses. Accordingly, two major mechanisms have been proposed for

the injuries caused by sepsis: sustained activation of innate immunity leading to inflam-

mation and injury [3] and a predominant initial hyperinflammatory phase followed by

impaired immunity and an anti-inflammatory state [4].

One issue with this model is that the innate immune cells would be regulated in their

global functions, and monocytes and neutrophils, for example, are thought to be

suppressed in all of their activities in protracted septic patients [4]. In fact, most studies

that evaluated blood cells from septic patients have demonstrated an impaired produc-

tion of inflammatory cytokines after in vitro stimulation [4, 5], whereas neutrophils

have been shown to have both up- and down-regulated functions [6]. Interestingly, we

observed that peripheral mononuclear cells (PBMC) [7, 8] and monocytes [9] from

septic patients, which were unable to produce inflammatory cytokines, showed an up-

regulation of reactive oxygen species (ROS) generation [10], which was confirmed in

another cohort of patients in whom the up-regulation of nitric oxide (NO) generation

was also observed [11]. These findings indicate that both a hyperresponse and a hypor-

esponse can occur, depending on the functions and cells evaluated and, importantly, on

the ongoing sepsis process [12, 13].

Reprogramming of monocyte functions was first proposed in an LPS-tolerance model

where, depending on the preconditioning treatment, LPS induced selective priming

effects on the production of TNF-α and NO in mouse peritoneal macrophages [14].

Subsequent studies demonstrated that LPS-tolerant cells do not produce inflammatory

cytokines but present potent phagocytic activity and retain the ability to generate ROS

[9, 15, 16]. The alternatively activated macrophages (AAM) also produce reduced levels

of inflammatory cytokines and exhibited regulatory or repair activity [17]. These

cells exhibited an increased expression of CD206 (mannose receptor) and CD163

(hemoglobin-haptoglobin receptor) [18] receptors, considered to be typical markers of

AAMs.

There is a great interest to study CD163 in sepsis. As a receptor expressed on AAM,

it might be a surrogate marker of monocytes and macrophages modulation during

sepsis. CD163 also functions as an innate sensor for bacteria [19], and activation of cell

surface Toll-like receptors induces shedding of the receptor, as an acute response to

extracellular pathogens [20]. Finally, as a scavenger of Hb, CD163 contributes to the

anti-inflammatory response. In clinical settings, increased detection of membrane-

bound and soluble CD163 has been reported in septic patients [21, 22].

We hypothesized that different cell functions would be differentially regulated in a

patient with sepsis. Thus, we evaluated monocyte modulation during sepsis by simul-

taneously assessing their phagocytic activity, the generation of ROS and NO, and the

production of inflammatory cytokines (IL-6 and TNF-α). Furthermore, we determined
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if the modulation of monocytes’ function during sepsis is associated with the phenotype

of cells expressing CD163.

Methods
Patients and healthy volunteers

Patients admitted to the intensive care units of the Sao Paulo, Albert Einstein, and

Sirio-Libanes Hospitals with a clinical diagnosis of sepsis according to the ACCP/

SCCM consensus conference [1], from April 2014 to June 2015, were enrolled in the

study. The protocol was approved by the ethics committees of the participating

hospitals.

Blood samples were obtained from 34 septic patients at admission (D0), and 15 of the

patients had a second sample collected after 7 days (D7) of therapy. Samples were also

collected from 19 healthy volunteers who were matched according to age and gender.

LPS, gram-negative, and gram-positive bacteria

LPS from Salmonella abortus equi was a generous gift from C. Galanos (Max-Planck

Institute of Immunobiology, Germany). Pseudomonas aeruginosa (ATCC27853)

and S. aureus (ATCC 25923) were purchased from Oxoid Limited, Basingstoke,

Hampshire, UK.

Induction and detection of the production of ROS and NO in monocytes in whole blood

ROS and NO were measured constitutively and after stimulation with LPS and heat-

killed S. aureus, and P. aeruginosa for 30 min. Based on the dose-response curves,

100 ng/mL LPS and 2.4 × 108 colonies/mL S. aureus were used for induction of ROS

and NO. The concentration of P. aeruginosa was 2.4 × 107 colonies/mL for ROS and

2.4 × 108 colonies/mL for NO. The ROS and NO levels were quantified in monocytes

in whole blood by measuring the oxidation of 2,7-dichlorofluorescein diacetate (DCFH-

DA; Sigma, St. Louis, MO) and 4-amino-5-methylamino-2,7-difluorofluorescein

diacetate (DAF-FMDA; Invitrogen, Carlsbad, CA), respectively, as previously described

[11, 23]. Briefly, the tubes from each sample were incubated in the presence of

0.06 mM DCFH-DA or 0.01 mM DAF-FMDA in a 37 °C shaking water bath for

30 min. After incubation, 2 mL of 3 mM EDTA (Sigma) or phosphate-buffered saline

(PBS) was added to each tube for ROS and NO determination, respectively, and the

mixture was then centrifuged (800g for 5 min at 4 °C). Erythrocytes were lysed in

hypotonic saline, and the pellets were incubated with 6 μL of CD14-PerCP clone

MΦP9 (BD Bioscience, San Jose, CA, USA) and anti-CD163-PE clone GHI/61 (BD

Bioscience) at room temperature for 15 min in the dark. Then, 2 ml of PBS was

added to each tube, and the mixture was centrifuged (800g for 5 min at 4 °C). The

supernatants were discarded, and the pellets were resuspended in 300 μL of PBS

for flow cytometric analysis.

Intracellular detection of cytokines in monocytes in whole blood

Whole blood was diluted 1:2 in RPMI and incubated with LPS and heat-killed bacteria

(LPS: 100 ng/mL, P. aeruginosa and S. aureus: 2.4 × 108/mL), or without stimulus

in 5-mL propylene tubes at 37 °C in the presence of 5 % CO2. After 30 min, 5 μL
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(1 mg/mL) of Brefeldin A (Sigma, Saint Louis, MO, USA) was added to the samples, and

they were incubated for an additional 4 h. After washing, the red blood cells were rup-

tured with 2 mL lysis solution (FACS lysing solution, BD Bioscience). After washing with

2 mL PBS, the samples were incubated with the fluorochrome-conjugated monoclonal

antibodies CD14-PerCP clone MΦP9 (BD Bioscience) and anti-CD163-PE clone GHI/61

(BD Bioscience) for surface staining for 15 min in the dark at room temperature. The

samples were washed in 2 mL PBS, centrifuged, and fixed with 500 μL fixation buffer

(PBS 4 % paraformaldehyde) for 30 min in the dark at 4 °C. After centrifugation, 50 μL

permeabilization buffer (PBS 1 % FCS; 0.1 % saponin), anti-IL-6-APC clone MQ2-13A5

(BD Bioscience), and anti-TNF-PE-Cy7 clone Mab11 (BD Bioscience) were added to the

tubes. The tubes were incubated for 30 min in the dark on ice. Then, the samples were

washed with 2 mL permeabilization buffer, and the cells were suspended in Macs buffer

for flow cytometric analysis [15].

Phagocytosis of monocytes in whole blood

Phagocytosis of monocytes was measured using Escherichia coli conjugated to FITC

(Phagotest™, Glycotope Biotechnology, Heidelberg, Germany), accordingly to the manu-

facturer instructions.

Flow cytometry

Detection of phagocytosis and the production of ROS, NO, IL-6, and TNF-α by mono-

cytes in whole blood was performed by multiparameter flow cytometry (LSRFOR-

TESSA (BD Bioscience)). Events acquisition was performed using FACSDiva software

(BD Bioscience). For detection of the production of ROS, NO, IL-6, and TNF-α by

monocytes, 5000 events were acquired using forward- and side-scatter parameters

combined with CD14-positive cells. For the detection of phagocytosis, 15,000 events

were acquired using forward- and side-scatter parameters to determine the monocyte

population. All events were acquired and stored, and the analysis was performed using

FlowJo (Tree Star INC. Ashland, OR, USA).

Detection of the production of ROS, NO, IL-6, and TNF-α

Monocyte analysis was performed by assessing individual cells (singlets) combined with

side-scatter parameters versus CD14 positiveness. Monocytes were further character-

ized as CD163+ or CD163− cells. The quadrant for CD163+ cells was established based

on isotype control.

The productions of ROS and NO were analyzed in monocytes and in the subsets of

CD163+ and CD163− monocytes in histogram charts. They were quantified by the geo-

metric mean fluorescence intensity (MGIF) associated with the detection of DCFH and

DAF, respectively (Fig. 1). Under the experimental conditions for oxidative metabolism

measurement, the expression of CD163 on monocytes was 50.5 ± 17.7 % (mean ± SD)

in septic patients and 21.3 ± 20.2 % in healthy volunteers.

Intracellular cytokine levels were analyzed both in monocytes and in the subsets of

CD163+ and CD163− monocytes based on the quadrants established in the sample

without stimulation and are expressed as the percentage of cytokine-producing mono-

cytes (Fig. 2). Under the experimental conditions for intracellular cytokines detection,
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the expression of CD163 on monocytes was 41.6 ± 4.4 % (mean ± SD) in septic patients

and 30.9 ± 18.9 % in healthy volunteers.

Co-location of gp91phox and p47phox by immunofluorescence

PBMCs were obtained using the Ficoll density gradient method (Ficoll-Paque PLUS;

GE Healthcare Bio-Sciences AB, Uppsala, Sweden) and stored in liquid nitrogen until

use. After defrosting, the cells were spun on glass slides. The cells were incubated over-

night with the primary antibodies goat anti-Nox2 (1:200) and rabbit anti-p47 (1:100)

and then incubated with red fluorescent Alexa Fluor 594 (donkey anti-goat; 1:400),

and/or green fluorescent Alexa Fluor 488 (donkey anti-rabbit; 1:200). Nuclear material

was stained with 4, 6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, USA). Images

of stained cells were captured using a confocal microscope SP5 (Leica, USA). The

Fig. 1 Analysis charts to detect the production of ROS and NO in monocytes and subpopulations. Individual
cells (singlets) were selected, and monocytes were characterized by light scatter and side positivity for CD14 (a).
Another side versus forward light scatter plot was used to exclude smaller cells (b). CD163+ and CD163−
subsets were established based on isotype control (c). ROS generation was measured by GMFI of DCFH
represented in histogram graphics for the CD14+ monocytes and the monocyte subsets CD14+ CD163+
and CD14+ CD163−. The graphics are representative of an experiment for ROS detection in healthy
volunteers and septic patients in unstimulated cells and after stimulation with P. aeruginosa
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images were analyzed in the program ImageJ (National Institutes of Health, Bethesda,

Maryland, USA) using the plugincolocalizationanalysis/colocalizationhighlighter (co-

localized points—8 bit). That tool generated a new image that presented the points

of co-localization of p47phox and gp91phox. Those points of co-localization were

quantified from the average fluorescence intensity corresponding to two to four

cells/randomly selected field.

Fig. 2 Strategy to detect intracellular cytokine (IL-6) in monocytes and CD163+ and CD163− subsets.
a Individual cells (singlets) were selected, and monocytes were characterized by light scatter and side
positivity for CD14. Dot plots were drawn with IL-6 versus the side scatter parameter. The quadrants for IL-6
positivity were established based on unstimulated cells (control), and the percentages of positive stained
cells were determined after stimulation. b CD163+ and CD163− subsets of monocytes were established
based on isotype control, and the percentages of cells positively stained for IL-6 were measured after
stimulation. The graphics are representative of an experiment for IL-6 detection in a healthy volunteer and
in a septic patient in unstimulated cells and after stimulation with P. aeruginosa
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Statistical analysis

The results were analyzed using SPSS (Statistical Package for Social Sciences v 19.0)

(IBM, Armonk, NY, USA). The Shapiro-Wilk test was applied to determine the normality

of the results. Comparisons between healthy volunteers and patients were performed

using the Mann-Whitney U test, and comparisons between patient samples (D7 vs. D0)

were performed using the Wilcoxon signed-rank test. Group comparisons were

performed by using the Kruskal-Wallis test. The variables that showed differences among

the three groups were compared group to group by the Mann-Whitney test.

The interactions of CD163 with ROS, NO, IL-6, and TNF levels were analyzed by

two-way repeated measures analysis of variance (ANOVA) with the Bonferroni posttest.

P values ≤0.05 were considered significant.

Results
Patient demographic and clinical data

Thirty-four patients with severe sepsis and septic shock and 19 healthy volunteers

matched for gender and age were enrolled in the study. The clinical and demographic

data of the patients is shown in Table 1. The mean age of the healthy volunteers was

59.9 years, ranging from 30 to 88 years, and 52.6 % were male.

Table 1 Demographic data and outcomes from septic patients included in the study

Cohort of septic patients (n = 34)

Age [mean (SD)] 62.4 (19)

Gender [N (%)]

Male 18 (52.9)

Female 16 (47.1)

Stages of sepsis [N (%)]

Severe sepsis 19 (55.9)

Septic shock 15 (44.1)

SOFA score (D0) 5.5 (1–16)

In hospital mortality [N (%)]

Survivors 30 (88.2)

Non-survivors 4 (11.8)

Outcome accordingly to stage at enrollment [N (%)]

Severe sepsis

Survivors 19 (100)

Non-survivors 0 (0)

Septic shock

Survivors 11 (73.4)

Non-survivors 4 (26.6)

Sources of infection [N (%)]

Respiratory tract 16 (47.1)

Abdomen 7 (20.6)

Urinary tract 8 (23.5)

Others 3 (8.8)

SOFA sequential organ failure assessment

Santos et al. Intensive Care Medicine Experimental  (2016) 4:5 Page 7 of 16



Phagocytosis, ROS and NO production, and intracellular detection of cytokines in

monocytes in whole blood

No differences were found in monocyte phagocytosis of opsonized E. coli between

healthy volunteers (median, GMFI, 15.499; range 8.722–24.879) and septic patients at

D0 (median, GMFI, 19.707; range 5.207–35.075) (P = 0.178). Similarly, no differences

were found when patients were classified as having severe sepsis or septic shock: severe

sepsis (median, GMFI, 23.733; range 6.118–35.075) and septic shock (median, GMFI,

17.116; range 5.207–32.877) (P = 0.112).

ROS and NO generation were higher in septic patients than in healthy volunteers in

all conditions tested (Table 2). In contrast, the percentages of monocytes producing

TNF-α and IL-6 were lower in septic patients than in healthy volunteers following LPS,

P. aeruginosa, and S. aureus stimulation (Table 2).

ROS and NO generation differed when healthy volunteers, severe sepsis patients, and

septic shock patients were compared in all conditions tested (P < 0.001, Kruskal-Wallis)

(Fig. 3a, b). The pairwise comparison (Mann-Whitney) showed that patients with

severe sepsis and septic shock had higher ROS and NO generation than did healthy

volunteers in all conditions tested (Fig. 3a, b). ROS generation was higher in septic

shock patients than in sepsis patients in unstimulated cells and after LPS, and P.

aeruginosa stimulation (Fig. 3a), whereas no differences were found in NO production

between patients with severe sepsis and septic shock (Fig. 3b).

Table 2 Production of ROS, NO, IL-6, and TNF-α by monocytes of septic patients and healthy
volunteers

Septic patients Healthy volunteers

Median Percentiles 25–75 Median Percentiles 25–75

ROS (GMFI) Pa

Control 2459 1735 4546 1005 761 1487 <0.001

LPS 3387 2049 6205 1177 829 1503 <0.001

P. aeruginosa 3972 2257 6514 1372 928 1560 <0.001

S. aureus 9296 5573 18507 2479 1749 3275 <0.001

NO (GMFI)

Control 479 362 621 209 176 305 <0.001

LPS 572 448 792 284 243 389 <0.001

P. aeruginosa 917 631 1493 517 422 667 <0.001

S. aureus 840 617 1103 372 309 663 <0.001

IL-6 (%)

LPS 10.9 4.9 41.2 70.8 60.2 77.5 <0.001

P. aeruginosa 24.1 4.9 51.8 70.4 54.1 78.1 <0.001

S. aureus 9 · 6 4.1 25.1 24.8 18.9 41.9 0.002

TNF-α (%)

LPS 18.6 6.5 36.2 66.7 47.8 72.1 <0.001

P. aeruginosa 33.4 17.5 56.8 70.7 61.4 86.8 <0.001

S. aureus 19.6 9.3 42.4 33.6 26.5 43.9 0.023

Values for ROS and NO are shown as geometric mean fluorescence intensities (GMFIs) of DCFH and DAF, respectively.
Cytokine values are shown as percentages of cells producing IL-6 and TNF-α
aMann-Whitney U test
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The percentages of monocytes producing IL-6 was lower in severe sepsis and septic

shock patients than in healthy volunteers following LPS, P. aeruginosa, and S. aureus

stimulation (P < 0.05, Kruskal-Wallis); no differences were found between patients with

severe sepsis and septic shock (Fig. 3c).

Similarly, TNF-α production differed among healthy volunteers, severe sepsis patients

and septic shock patients in all conditions tested (P < 0.05, Kruskal-Wallis). In this case,

differences were found in the septic group, with lower detection in patients with septic

shock than in those with severe sepsis for all stimuli tested (Fig. 3d).

ROS generation was positively correlated with SOFA score in the control condition

(R = 0.371, P = 0.034) and after LPS (R = 0.414, P = 0.017) and P. aeruginosa (R = 0.409,

P = 0.018) stimulation, but not with S. aureus (R = 0.109, P = 0.545). No correlations

were found between the organ dysfunction score and any other cell functions evaluated

in any of the conditions tested (Pearson correlation test).

Interaction between monocyte functions and cell surface expression of CD163

We assessed whether the differences in the modulation of the generation of ROS, NO

IL-6, and TNF-α observed between septic patients and healthy volunteers were

influenced by CD163 expression on the surfaces of monocytes. CD163 expression was

found to be associated with IL-6 production after stimulation with LPS and S. aureus

and with TNF-α production after stimulation with LPS, P. aeruginosa, and S. aureus

(Fig. 4). In all conditions, CD163+ monocytes produced higher amounts of cytokines

Fig. 3 Detection of ROS, NO, IL-6, and TNF-α in monocytes of healthy volunteers and patients with severe
sepsis and septic shock. Whole blood was obtained from 19 healthy volunteers (blank boxes), 19 patients
with severe sepsis (boxes in light gray), and 15 patients with septic shock (boxes in dark gray). Monocyte
analysis was performed by assessing individual cells (singlets) combined with the side-scatter parameter
versus CD14 positiveness. The values for ROS and NO are shown as geometric mean fluorescence intensities
(GMFI) of DCFH and DAF, respectively. Cytokine values are shown as percentages of cells producing IL-6
and TNF-α. P < 0.001 for all stimuli compared between groups (Kruskal-Wallis). *P < 0.05 compared to healthy
volunteers, #P < 0.05 compared to severe sepsis patients (Mann-Whitney)
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than CD163− monocytes in both septic patients and healthy subjects (P < 0.05). The

levels of TNF-α and IL-6 were higher in healthy volunteers than in septic patients in

both CD163+ and CD163− monocytes (P < 0.05) in all tested conditions, except for

CD163− monocytes after stimulation with S. aureus (P = 0.958). An interaction was also

Fig. 4 Interaction of CD163 expression on monocytes with the production of ROS, NO, IL-6, and TNF-α.
Whole blood of 34 septic patients (D0) (solid line) and 19 healthy volunteers (dot line) were analyzed after
stimulation with LPS, P. aeruginosa, and S. aureus. Values represent the means for each variable in CD163+
and CD163− monocytes. Monocyte analysis was performed by assessing individual cells (singlets) combined
with side-scatter parameters versus CD14 positiveness. Monocytes were further characterized as CD163+ and
CD163− cells. The productions of ROS and NO were analyzed in histogram charts and quantified as the
geometric mean fluorescence intensities (GMFIs) associated with the detection of DCFH and DAF, respectively.
Intracellular cytokine level was based on quadrants established in the sample without stimulation and are
expressed as the percentage of cytokine-producing monocytes. *P values denote the interaction between
CD163 expression and the groups of healthy volunteers and septic patients for each parameter and condition
evaluated (ANOVA)
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found between CD163 expression and ROS generation after stimulation with S. aureus

and P. aeruginosa. The difference in ROS generation between CD163− and CD163+

cells was only observed in septic patients, with CD163− cells producing higher amounts

of ROS (P < 0.001). ROS generation was higher in septic patients than in healthy

volunteers following S. aureus and P. aeruginosa stimulation in both CD163− and

CD163 +monocytes (P < 0.001). Finally, an interaction between CD163 expression and

NO generation was found after LPS stimulation, with the highest values observed in

CD163− cells (Fig. 4).

Dynamics of monocyte functions in patient follow-up samples

There was no difference in the phagocytic activity of monocytes from septic patients

at admission (D0) (Median, GMFI, 19.473; range 5.207−35.075) and after 7 days of

follow-up (Median, GMFI, 18.887; range 6.023−31.803) (P = 0.875).

ROS generation was lower at D7 than at D0 in all conditions tested (Fig. 5). A similar

trend was seen for NO generation, but a significant change was only observed after P.

aeruginosa stimulation (Fig. 5). In contrast, increased levels of IL-6 and TNF-α were

found at D7 compared with those observed at D0 following LPS, P. aeruginosa, and S.

aureus stimulation (Fig. 5).

Analysis of groups, including healthy volunteers and patients at D0 and D7, showed

that differences between D7 and healthy volunteers were no longer significant for NO

after P. aeruginosa and IL-6 and TNF-α after S. aureus stimulation.

Fig. 5 Detection of ROS, NO, IL-6, and TNF-α in monocytes of patients in admission and follow-up samples.
Samples of 15 septic patients were assessed at D0 and D7 under different stimuli. Monocyte analysis was
performed by assessing individual cells (singlets) combined with the side-scatter parameter versus CD14
positiveness. Data are shown as the geometric mean fluorescence intensities (GMFIs) of DCFH and DAF for
ROS and NO, respectively, and as the percentages of cells producing IL-6 and TNF-α. *P < 0.05 compared to
D0 (Wilcoxon)
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Co-location of gp91phox and p47phox by immunofluorescence

At D0, monocytes from septic patients presented with higher Nox2 activation, as

assessed by co-location of gp91phox and p47phox, than did monocytes from healthy

volunteers. A significant decrease in Nox2 activation was observed after 7 days of

follow-up (D7) (P < 0.05) (Fig. 6).

Discussion
Our results show that monocytes from septic patients are modulated during the

ongoing infection process, with preserved phagocytosis, increased ROS and NO gener-

ation, and decreased production of inflammatory cytokines. These results are consistent

with our previously reported findings obtained in monocytes from septic patients

[7, 9–11] and further support the concept of “reprogramming,” or modulation of

cell functions rather than hyporesponsiveness during sepsis [12, 24].

These results also indicate the similarities between monocyte modulation in LPS-

tolerance models and monocyte modulation in sepsis [12, 15, 16]. Multiple mechanisms

have been shown to be involved in tolerance to LPS. Foster et al. reported the epigen-

etic mechanisms driving the modulation of LPS-response in LPS-tolerant cells. They

found two groups of differentially regulated genes: the “tolerizeable” (T) and the “non-

tolerizeable” (NT) genes. The pro-inflammatory cytokine genes were found to be

down-regulated (T), whereas antimicrobial genes were found to be up-regulated (NT),

thus supporting their hypothesis that TLR-induced gene expression with different

biological functions is distinctly regulated [25]. These findings were extended to human

monocytes by Del Fresno and coworkers, who found down-regulation of pro-

inflammatory cytokines and antigen presentation genes and up-regulation of anti-

inflammatory factors, such as IRAK-M, and antimicrobial effectors [16]. In our own

study, which focused on the TLR pathway, we observed down-regulation of TNF-α,

IL-12, and CCL2 and up-regulation of IL-10 and colony stimulating factors (CSF2

and CSF3) in tolerant cells [26].

Down-regulation of inflammatory cytokines, measured at intracellular level in our

study, has been consistently reported in the literature upon the in vitro stimulation of

monocytes from septic patients [8, 27, 28]. Modulation of the monocyte response

during sepsis occurred despite preservation of LPS binding to monocytes and of TLR2

and TLR4 expression on the monocyte cell surface [7, 9, 13]. The regulation of

IL-10 production is more controversial. In this study, we found no differences in

intracellular levels of IL-10 in monocytes in a subset of patients (N = 12) and

healthy volunteers (N = 12) (data not shown); this finding is consistent with our

previous results in whole blood supernatants [8].

Monocytes in whole blood presented increases in ROS and NO generation in vitro

after stimulation with LPS, and Gram-negative and Gram-positive clinically significant

bacteria, P. aeruginosa, and Staphylococcus aureus, respectively. This finding is consist-

ent with our previously reported results in two other series of septic patients [10, 11].

To further link ROS generation to phagocytosis, we evaluated the co-localization of

p47phox and NOX-2 (gp91phox) in monocytes of septic patients. Co-localization was

found in septic patients, mainly in the admission samples, and not in healthy volun-

teers, indicating that increased NADPH-oxidase activity is a source of ROS in septic

patients. In addition to the role of ROS in antimicrobial defense, ROS is associated with
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Fig. 6 Co-localization of gp91phox (red) and p47phox (green) by immunofluorescence. PBMCs were obtained
from septic patients at admission (D0; n= 20) and after 7 days of follow-up (D7; n= 10) and from healthy subjects
(n= 10). a. The cell nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI, blue) and gp91phox and p47phox
using specific antibodies. The images were obtained using a confocal microscope (objective ×60; ×5 amplification).
b. The graph represents the mean fluorescence intensity (MFI) obtained by co-localization analysis (colocalization
highlighter) using ImageJ software (National Institutes of Health, Bethesda, MD, USA). *P< 0.05
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cell and organ toxicity in sepsis. Consistent with previous findings [10], we found that

ROS generation correlated with the SOFA score in most conditions.

In the follow-up samples, decreased production of ROS and increased production of

inflammatory cytokines were observed under all stimuli compared to the admission

samples, which indicated a trend toward the restoration of homeostasis. Interestingly,

under S.aureus, stimulation levels of IL-6 and TNF-α in patients’ follow-up samples did

not differ from healthy volunteers.

In further support of modulation rather than hyporesponse in monocytes during

sepsis, we found that the phagocytic activity of monocytes was preserved during the

ongoing infection process, even in patients with septic shock. This finding is in

agreement with previous studies of LPS-induced tolerance in vitro [15, 16].

In addition to the above described similarities with LPS-tolerant monocytes, the

pattern of activities of monocytes from septic patients in this study resembles that

described for macrophages under the effects of pro-resolving mediators, which present

enhanced phagocytic activity without evoking pro-inflammatory responses [29].

We evaluated whether the differences in the modulation of inflammatory cytokines

and ROS/NO generation observed between septic patients and healthy volunteers were

influenced by the expression of CD163 on monocytes. In general, CD163+ monocytes

produced higher amounts of TNF-α and IL-6 and lower amounts of ROS and NO than

did CD163− monocytes. An interaction between the expression of CD163 with cytokine

production was found upon stimulation with LPS or bacteria, with CD163+ monocytes

producing higher amounts of cytokines in both patients and healthy volunteers. An

interaction between the expression of CD163 and ROS generation was also found after

S. aureus and P. aeruginosa stimulation. In this case, differences between CD163+ and

CD163− cells were only observed in septic patients; under both bacterial stimuli, ROS

generation was higher in sepsis patients than in healthy volunteers for both CD163+

and CD163− monocytes.

Detection of higher levels of inflammatory cytokines in CD163+ cells than in CD163−
cells was unexpected because of the anti-inflammatory role of alternatively activated

macrophages [17]. However, this finding is consistent with the concept of a dual role of

CD163+ monocytes in sepsis. CD163 may be important for controlling inflammation by

removing free hemoglobin secondary to hemolysis and converting heme to its anti-

inflammatory metabolites, but it also may function as a sensor of bacteria [30].

Accordingly, Fabriek and coworkers demonstrated the binding of Gram-positive

and Gram-negative bacteria to CD163 and induction of inflammatory cytokines in

CD163-expressing CHO cells and suppression of bacteria-induced cytokines in

human monocytes by blocking antibodies against CD163 [19]. Supporting our

results with septic patients, we observed that modulation of cytokines production

in a model of LPS tolerance occurred regardless of the expression of CD163 on

monocytes cell surface [31].

Conclusions
We demonstrated that monocytes from septic patients, which have impaired inflamma-

tory cytokine production, display potent phagocytic activity and increased ROS and

NO generation. This modulation represents a state in which the host attempts to

control the initial systemic inflammatory response while maintaining control over
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infection. As we previously suggested, this modulation may represent the return to

homeostasis in cases of successful antimicrobial therapy and recovery of underlying

disease. In contrast, failure to mount a robust inflammatory response may represent a

state of immunosuppression in protracted patients [12].
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