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1 Introduction
All over the text, � will denote an irreducible symmetric cone in Rn , and D = R

n + i� 
the tube domain over � . As in [10] we denote by r the rank of the cone � and by � the 
associated determinant function in Rn . We recall that for n ≥ 3 , when r = 2 , as example 
of symmetric cones, we have the Lorentz cone �n which is defined by

its associated determinant function is given by the Lorentz form

As usual, we denote by H(D) the space of holomorphic functions on D.
For 1 ≤ p < ∞ and ν ∈ R , we write dVν(x + iy) = �ν− n

r (y) dxdy . Given 1 ≤ p < ∞ 
and ν ∈ R , Lpν(D) = Lp(D, dVν) denotes the space of all functions f satisfying the 
condition

The weighted Bergman space Ap
ν(D) is the closed subspace of Lpν(D) consisting of holo-

morphic functions in D . Following [9], this space is not trivial (i.e., Ap
ν(D) �= {0} ) only 

if ν > n
r − 1 . The weighted Bergman projection Pν is the orthogonal projection of the 

�n = {(y1, . . . , yn) ∈ R
n : y21 − · · · − y2n > 0, y1 > 0};

�(y) = y21 − · · · − y2n.

�f �p,ν = ||f ||Lpν (D) :=

(∫

D

|f (x + iy)|p�ν− n
r (y) dxdy

)1/p

< ∞.
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Hilbert space L2ν(D) onto its closed subspace A2
ν(D). It is well known that Pν is an inte-

gral operator given by

where Kν(z,w) = cν �
−(ν+ n

r )((z − w)/i) is the weighted Bergman kernel, i.e., the repro-
ducing kernel of A2

ν(D) (see [10]). Here, we use the notation dVν(w) := �ν− n
r (v) dudv , 

where w = u+ iv is an element of D . The unweighted case corresponds to ν = n
r .

For µ a positive Borel measure on D , the Toeplitz operator Tµ is the operator defined 
for functions f with compact support by

where Kν is the weighted Bergman kernel.
Schatten class Sp ( 0 < p ≤ ∞ ) criteria of the Toeplitz operators have been obtained 

by several authors on bounded domains of Cn (see [1, 8, 12, 21, 22] and the references 
therein). For unbounded domains, Schatten classes have been also characterized in Fock 
spaces by several authors (see for example [11, 14] and the references therein). In [13], 
we extended these results for 1 ≤ p ≤ ∞ to weighted Bergman spaces of tube domains 
over symmetric cones. To be more precise, let us introduce more notations.

For δ > 0 , we denote by

the Bergman ball centered at z with radius δ , d is the Bergman distance on D . For 
ν > n

r − 1 and w ∈ D , the normalized reproducing kernel of A2
ν(D) at w is given by

Let µ be a positive measure on D . For w ∈ D , we define

The function µ̃ is the Berezin transform of the measure µ . For z ∈ D and δ ∈ (0, 1) , we 
define the average of the positive measure µ at z by

Consider the measure d�(z) = �−2n/r(Iz) dV (z). The following  was obtained in [13].

Theorem 1.1 Let µ be a positive Borel measure on D, and ν > n
r − 1. Then for p ≥ 1,   

the following assertions are equivalent:

(i) The Toeplitz operator Tµ belongs to the Schatten class Sp(A
2
ν(D)).

Pν f (z) =

∫

D

Kν(z,w)f (w) dVν(w),

(1)Tµf (z) :=

∫

D

Kν(z,w)f (w) dµ(w),

Bδ(z) = {w ∈ D : d(z,w) < δ}

(2)kν(·,w) =
Kν(·,w)

�Kν(·,w)�2,ν
= �−ν− n

r

(

· − w̄

i

)

�
1
2
(ν+ n

r )(Iw).

µ̃(w) :=

∫

D

|kν(z,w)|
2
dµ(z).

µ̂δ(z) =
µ(Bδ(z))

Vν(Bδ(z))
.
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(ii) For any δ-lattice ( δ ∈ (0, 1) ) {ζj}j∈N in the Bergman metric of D, the sequence 
{µ̂δ(ζj)} belongs to lp.

(iii) For any β ∈ (0, 1), the function z �→ µ̂β(z) belongs to Lp(D, d�), with d� the invari-
ant measure on D.

(iv) µ̃ ∈ Lp(D, d�).

Our first concern in this note is for the extension of the above result to the range 
0 < p < 1 . We prove that the equivalences (i) ⇔ (ii) ⇔ (ii) still hold for 2(

n
r −1)

ν+ n
r

< p < 1 . 
This cut-off is due to integrability conditions of the determinant function. The equiv-
alence with the last assertion in the above result still also holds if we restrict to 
2
n
r −1

ν+ n
r
< p < 1 . The last cut-off point is also due to integrability conditions of the deter-

minant function and one can prove that it is sharp. Our result is then as follows.

Theorem  1.2 Let µ be a positive Borel measure on D, and ν > n
r − 1. Then for 

n
r −1

ν+ n
r
< p < 1.  the following assertions are equivalent:

(i) The Toeplitz operator Tµ belongs to the Schatten class Sp(A
2
ν(D)).

(ii) If 2(
n
r −1)

ν+ n
r

< p < 1, then for any δ-lattice ( δ ∈ (0, 1) ) {ζj}j∈N in the Bergman metric of 
D,   the sequence {µ̂δ(ζj)} belongs to lp.

(iii) For any β ∈ (0, 1), the function z �→ µ̂β(z) belongs to Lp(D, d�).

 Moreover, if p >
2
n
r −1

ν+ n
r
,  then the above assertions are equivalent to the following

(iv) µ̃ ∈ Lp(D, d�).

We note that in the above result, all the relevant norms are equivalent. We also have 
that the implication (iii) ⇒ (i) actually holds for the full range 0 < p ≤ 1.

The main difficulty in the proof of the above theorem is the implication (i) ⇒ (ii) . The 
idea in [22] is to replace the measure µ by a measure supported on a disjoint union of 
Bergman balls, then split the associated Toeplitz operator into its diagonal and off-diag-
onal parts. It is not hard to prove that the Schatten norm of the diagonal part dominates 
the lp-norm of the sequence {µ̂δ(ζj)} . The difficulty is to prove that the latter norm domi-
nates (up to a pretty small constant) the Schatten norm of the off-diagonal operator. A 
part of the techniques in [22] uses the fact that the unit ball is bounded, and so it cannot 
be used in our setting. We overcome this difficulty by using a technical lemma originally 
due to Békollé and Temgoua [7]. Considered even in the unit ball, our contribution heav-
ily simplifies the proof of Zhu in [22].

We are also interested here in some other possible equivalent characterizations of 
Schatten class Toeplitz operators. For this, we denote by �z the natural extension to 
C
n = R

n + iRn of the wave operator �x on the cone:

which is the differential operator of degree r defined by the equality:

�z = �

(

1

i

∂

∂z

)
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We recall (see [5]) that �z acts on the Bergman kernel as follows:

Let m be a positive integer. For simplicity, we use the following notation for higher order 
derivatives of the Bergman kernel,

and

Define the quantity

We also have the following equivalent characterization.

Theorem 1.3 Let ν > n
r − 1,  and 

n
r −1

ν+ n
r
≤ p < ∞. Assume µ is a positive measure on D.   

Then the following assertions are equivalent.

(a) The Toeplitz operator Tµ belongs to the Schatten class Sp(A
2
ν(D)).

(b) For every integer m ≥ 0 with p >
2
n
r −1

ν+ n
r +2m

, we have µ̃m ∈ Lp(D, d�).

(c) For some integer m ≥ 0 with p >
2
n
r −1

ν+ n
r +2m

, we have µ̃m ∈ Lp(D, d�).

Again the condition p ≥ max

{ n
r −1

ν+ n
r
,

2
n
r −1

ν+ n
r +2m

}

 is due to integrability conditions of the 

determinant function. We note that when m = 0 , the result corresponds to the equiva-
lence (i) ⇔ (iv) in Theorem 1.2. We also observe that the  relevant norms in the above 
result are equivalent.

For the proof of Theorem 1.3, we derive the necessary condition for 1 ≤ p < ∞ and 
the sufficient condition for 0 < p < 1 from a more general result for any positive opera-
tor. The proof of the other parts essentially uses the properties of Bergman balls and the 
δ-lattices. We also refer to [15, 17] for this type of results.

We are essentially motivated here by the idea of extending the results in [13] for Toe-
plitz operators Tµ in Schatten classes Sp(A

2
ν(D)) for p ≥ 1 , to the case 0 < p < 1 , and 

settling the problem of the characterization of Schatten class Sp(A
2
ν(D)) for 1 ≤ p < 2 

for the Cesàro-type operator introduced in [13].
The paper is organized as follows: In the next section, we present some useful tools 

and results needed in the proofs of the above results. The proof of Theorem 1.2 is given 
in Sect. 3. In Sect. 4, we provide characterization of Schatten class for general positive 
operators. We prove Theorem 1.3 in Sect. 5. In the last section, we apply our results to 
extend to the range 1 ≤ p < 2 , the characterization of Schatten class Sp(A

2
ν(D)) for the 

Cesàro-type operator obtained in [13].

(3)�z [e
i(z|ξ)] = �(ξ)ei(z|ξ), z ∈ C

n
, ξ ∈ R

n
.

�zKν(z,w) = CνKν+1(z,w).

K ν,m
z (w) := �m

z Kν(z,w)

kν,mz (w) :=
K ν,m
z (w)

�K ν,m
z (z, ·)�2,ν

= Cν,m�
−(ν+m+ n

r )

(

z − w̄

i

)

�
1
2
(ν+2m+ n

r )(Iw).

µ̃m(z) := �Tµk
ν,m
z , kν,mz �ν =

∫

D

|kν,mz (w)|2 dµ(w).
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As usual, given two positive quantities A and B, the notation A � B (resp. A � B ) 
means that there is an absolute positive constant C such that A ≤ CB (resp. A ≥ CB ). 
When A � B and B � A , we write A ≈ B and say A and B are equivalent. Finally, 
throughout the text, C, Ck , Ck ,j will denote positive constants depending only on the 
displayed parameters but not necessarily the same at distinct occurrences. The same 
remark holds for lower case letters.

2  Preliminary results
In this section, we give some fundamental facts about symmetric cones, Berezin trans-
form, and related results.

2.1  Symmetric cones, Bergman metric, and estimations of the determinant function

It is well known that a symmetric cone � induces in V ≡ R
n a structure of Euclidean 

Jordan algebra, in which � = {x2 : x ∈ V } . We denote by e the identity element in V. 
Denote by G(�) the group of transformations of Rn leaving invariant the cone � . It is 
also well known that the group G(�) acts transitively on �. We denote by H the sub-
group of G(�) that acts simply transitively on � , that is for x, y ∈ � there is a unique 
h ∈ H such that y = hx. Observe that if we still denote by Rn the group of translations by 
vectors in Rn , then the group G(D) = R

n ×H acts simply transitively on D.
Recall that δ > 0,

is the Bergman ball centered at z with radius δ , where d(·, ·) is the Bergman distance (for 
a definition, see for example [13]).

We recall the following (see [2, Theorem 5.4]).

Lemma 2.1 Given δ ∈ (0, 1), there exists a sequence {ζj} of points of D called δ-lattice 
such that, if Bj = Bδ(ζj) and B′

j = B δ
2
(ζj), then

(i) The balls B′
j are pairwise disjoint;

(ii) The balls Bj cover D with finite overlapping, i.e., there is an integer N (depending only 
on D) such that each point of D belongs to at most N of these balls.

We recall that

for any ζ ∈ D.
We also recall that the measure d�(z) = �−2n/r(Iz) dV (z) is an invariant measure on 

D under the actions of G(D) = R
n ×H .

Remark 2.2 Let A > 0 be fixed. Assume that 0 < δ < A . Then any δ-lattice {ζj} admits 
a decomposition into a finite number of sequences {ζjk } satisfying d(ζjk1 , ζjk2 ) ≥ A for 
jk1 �= jk2 (see for example [19, Lemma 2.1]).

Bδ(z) = {w ∈ D : d(z,w) < δ}

∫

Bδ(ζ )
dVν(z) ≈

∫

B δ
2

(ζ )

dVν(z) ≈ Cδ�
ν+n/r(Iζ )
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We refer to [2, Theorem 5.6] for the following sampling theorem.

Lemma 2.3 Let {ζj}j∈N be a δ-lattice in D , δ ∈ (0, 1). Then the following assertions hold.

(1) There is a positive constant Cδ such that every f ∈ A
p
ν(D) satisfies 

(2) Conversely, if δ is small enough, there is a positive constant Cδ such that every 
f ∈ A

p
ν(D) satisfies 

We have the following atomic decomposition with change of weight which is derived 
from [13, Theorem 3.2].

Theorem 2.4 Let σ , ν > n
r − 1.  Assume that the operator Pσ is bounded on L2ν(D) and 

let {ζj}j∈N be a δ-lattice in D. Then the following assertions hold.

(i) For every complex sequence {�j}j∈N in l2,  the series 

 is convergent in A2
ν(D). Moreover, its sum f satisfies the inequality 

 where Cδ is a positive constant.
(ii) For δ small enough, every function f ∈ A2

ν(D) may be written as 

 with 

 where Cδ is a positive constant.

We remark that for σ > n
r − 1 sufficiently large, Pσ is bounded on L2ν(D) (see for exam-

ple [17, Theorem 1.1]).
We will need the following consequence of the mean value theorem (see [2, Proposi-

tion 5.5]).

Lemma 2.5 There exists a constant C > 0 such that for any f ∈ H(D) and δ ∈ (0, 1], 
the following holds:

||{f (ζj)�
1
p (ν+

n
r )(Iζj)}||lp ≤ Cδ||f ||p,ν .

||f ||p,ν ≤ Cδ||{f (ζj)�
1
p (ν+

n
r )(Iζj)}||lp .

∑

j

�jKσ (z, ζj)�
σ+ 1

2
( nr −ν)(Iζj)

||f ||2,ν ≤ Cδ||{�j}||l2 ,

f (z) =
∑

j

�jKσ (z, ζj)�
σ+ 1

2
( nr −ν)(Iζj)

(4)||{�j}||l2 ≤ Cδ||f ||2,ν

(5)|f (z)|p ≤ Cδ−n

∫

Bδ(z)
|f (ζ )|p

dV (ζ )

�2n/r(Iζ )
.
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We recall the following integrability conditions for the determinant function (see [2, 
Lemma 3.20]).

Lemma 2.6 Let α be real. Then the function f (z) = �−α( z+it
i ), with t ∈ �,  belongs to 

L
p
ν(D) if and only if ν > n

r − 1 and pα > ν + 2n
r − 1. In this case,

The following integration by parts is a consequence of the Plancherel formula and 
Paley–Wiener characterization of A2

ν(D) (see [2, Lemma 3.11]).

Lemma 2.7 Let ν > n
r − 1, Then for any f , g ∈ A2

ν(D) and any integer m ≥ 0, we have 
the formula

The following can also be proved using the Plancherel formula and Paley–Wiener 
characterization of A2

ν(D).

Lemma 2.8 Let ν > n
r − 1, and let m > 0 be an integer. Then there is a constant 

Cν,m > 0 such that for any f ∈ A2
ν(D),

We will be using the following Korányi’s lemma.

Lemma 2.9 [6, Theorem 1.1] For every ρ > 0, there is a constant Cρ > 0 such that

 for all ζ , z,w ∈ D, with d(z,w) ≤ ρ.

We close this subsection by recalling the following consequence of [2, Corollary 3.4] 
and the above Korányi’s lemma for ρ = 1.

Lemma 2.10 Let ν > n
r − 1. Then the following assertions hold.

(a) There is a positive constant Cν such that for all δ ∈ (0, 1], w ∈ D and z ∈ Bδ(w), 

(b) There is a positive constant c such that if δ ∈ (0, 1] is sufficiently small, then for any 
w ∈ D and for every z ∈ Bδ(w), we have 

 In the latter, C is the constant in Lemma 2.9 corresponding to ρ = 1.

The following was obtained in [16, Lemma 3.1] for symmetric homogeneous domains in 
C
n and extended to the case of homogeneous Siegel domains of type II in [7, Lemma 5.1].

||f ||
p
p,ν = Cα,p�

−pα+ n
r +ν(t).

(6)
∫

D

f (z)g(z) dVν(z) = Cν,m

∫

D

f (z)�mg(z)�m(Iz) dVν(z).

(7)�f �2,ν = Cν,m��
mf �2,2m+ν .

∣

∣

∣

∣

K (ζ , z)

K (ζ ,w)
− 1

∣

∣

∣

∣

≤ Cρd(z,w)

Vν(Bδ(w))|kν(z,w)|
2 ≤ C .

Vν(Bδ(w))|kν(z,w)|
2 ≥ c(1− Cδ).



Page 8 of 25Sehba  Complex Anal Synerg  (2018) 4:3 

Lemma 2.11 Let β > 2n
r − 1 and α > β + n

r − 1. Then for any ε > 0, there exists Aε > 0 
such that if {zj = xj + iyj} is a sequence of points of D satisfying inf j �=k d(zj , zk) ≥ Aε , then 
for any integer j, the following estimate holds

Proof Let us give ourselves A > 1 . We assume that the sequence {zj = xj + iyj} is such 
that d(zj , zk) ≥ A for all j �= k . We first observe with Lemma 2.5 that

It follows that

where B :=
⋃

k �=j B
′
k .

Now observe that if w ∈ B , then w ∈ B′
k for some k and so

for k �= j , and so

Let g ∈ G(D) be the transformation such that g(ie) = zj , and put w = g(ζ ) . Observe that 
for any s ∈ R,

and

It follows that

(8)
∑

{k:k �=j}

|�−α(zk − z̄j)|�
β(yk) ≤ ε�−α+β(yj).

|�−α(zk − z̄j)| ≤ C(1/3)−n

∫

B′k

|�−α(w − z̄j)|
dV (w)

�
2n
r (Iw)

.

S :=
∑

{k:k �=j}

|�−α(zk − z̄j)|�
β(yk)

≤ C(1/3)−n
∑

{k:k �=j}

∫

B′k

|�−α(w − z̄j)|�
β(Iw)

dV (w)

�
2n
r (Iw)

= C(1/3)−n

∫

D

|�−α(w − z̄j)|�
β(Iw)

dV (w)

�
2n
r (Iw)

,

d(w, zk) <
A

2

d(w, zj) ≥ d(zj , zk)− d(w, zk) > A−
A

2
=

A

2
.

�s(Iw) = (Detg)
r
n s�s(Iζ ) = �s(Izj)�

s(Iζ ),

�s(w − z̄j) = �s(g(ζ + ie)) = (Detg)
r
n s�s(ζ + ie) = �s(Izj)�

s(ζ + ie)

dV (w) = (Detg)2 dV (ζ ) = �2 n
r (Izj) dV (ζ ).
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From the assumptions on α and β together with Lemma 2.6, one has that the integral

converges. Hence, there exists Aε > 0 such that for all A ≥ Aε , the following inequality 
holds

The proof is complete.  �

2.2  Averaging functions and Berezin transform

The following was proved in [13] for 1 ≤ p ≤ ∞ . A careful observation of the proof of 
[13, Lemma 2.9] shows that the result extends to 0 < p < 1.

Lemma 2.12 Let 0 < p ≤ ∞, ν ∈ R, and δ,β ∈ (0, 1). Assume that µ is a positive Borel 
measure on D. Then the following assertions are equivalent.

(i) The function D ∋ z �→ µ(Bδ(z))

�ν+ n
r (Iz)

 belongs to Lpν(D).

(ii) The function D ∋ z �→
µ(Bβ(z))

�ν+ n
r (Iz)

 belongs to Lpν(D).

Note that, the above lemma allows flexibility on the choice of the radius of the ball. 
This fact is quite useful as seen in [13].

We have the following result.

Lemma 2.13 Let 0 < p ≤ 1, ν > n
r − 1, β , δ ∈ (0, 1). Let {ζj}j∈N be a δ-lattice in D, and 

let µ̂β and µ̃ be in this order, the average function and the Berezin transform associated to 
the weight ν.  Then the following assertions are equivalent.

(i)  µ̂β ∈ Lp(D, d�).

(ii) {µ̂δ(ζj)}j∈N ∈ lp.

If moreover, p >
2
n
r −1

ν+ n
r
, then the above assertions are equivalent to

(iii) µ̃ ∈ Lp(D, d�).

S ≤ C(1/3)−n

∫

d(zj ,w)>A/2
|�−α(w − z̄j)|�

β(Iw)
dV (w)

�
2n
r (Iw)

≤ C(1/3)−n�−α+β(yj)

∫

d(ie,ζ )>A/2
|�−α(ζ + ie)|�β(Iζ )

dV (ζ )

�
2n
r (Iζ )

.

∫

T�

|�−α(ζ + ie)|�β(Iζ )
dV (ζ )

�
2n
r (ζ )

∫

d(ie,ζ )>A/2
|�−α(ζ + ie)|�β(Iζ )

dV (ζ )

�
2n
r (Iζ )

≤
ε

C
.
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Proof The equivalence (i) ⇔  (ii) follows as in [13, Lemma 2.12]. That (iii) ⇒  (i) fol-
lows from the fact that for any δ ∈ (0, 1) , there exists a constant Cδ > 0 such that for any 
z ∈ D,

(see [13, Lemma 2.8]). To finish the proof, let us prove that (ii) ⇒ (iii). First using Lemma 
2.9, we obtain

As 0 < p ≤ 1 , it follows that

Hence using that p >
2
n
r −1

ν+ n
r

 together with Lemma 2.6, we obtain

The proof is complete.  �

From the above proof, it is clear that the implication (iii) ⇒  (i) is valid for every 
p ∈ (0, 1].

2.3  Schatten class operators

Let H1 and H2 be two Hilbert spaces. Let B(H1,H2) and K(H1,H2) denote the sets of 
bounded and compact operators from H1 to H2 , respectively. It is well known that any 
operator T ∈ K(H1,H2) has a Schmidt decomposition, that is there exist orthonormal 
basis {ej} and {σj} of H1 and H2 respectively and a sequence {�j} of complex numbers 
converging to 0 such that

µ̂β(z) ≤ Cδµ̃(z)

µ̃(z) :=

∫

D

|Kν(z,w)|
2�ν+ n

r (Iz) dµ(w)

≤
∑

k

∫

Bk

|Kν(z,w)|
2�ν+ n

r (Iz) dµ(w)

≤ C
∑

k

|Kν(z, ζk)|
2�ν+ n

r (Iz)µ(Bk)

≤ C
∑

k

|Kν(z, ζk)|
2�ν+ n

r (Iz)�ν+ n
r (Iζk)µ̂δ(ζk).

(µ̃(z))p ≤ C
∑

k

|Kν(z, ζk)|
2p�p(ν+ n

r )(Iz)�p(ν+ n
r )(Iζk)

(

µ̂δ(ζk)
)p
.

L :=

∫

D

(µ̃(z))p d�(z)

≤ C
∑

k

�p(ν+ n
r )(Iζk)

(

µ̂δ(ζk)
)p

∫

D

|Kν(z, ζk)|
2p�p(ν+ n

r )−2 n
r (Iz) dV (z)

≤ C
∑

k

(

µ̂δ(ζk)
)p

< ∞.

(9)Tf =

∞
∑

j=0

�j�f , ej�σj , f ∈ H1.
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For 0 < p < ∞ , a compact operator T with such a decomposition belongs to the Schat-
ten–Von Neumann p-class Sp(H1,H2) if and only if

When H1 = H2 = H , we simply write B(H) = B(H,H) and K(H) = K(H,H) for the 
spaces of bounded and compact linear operators on H respectively. The norm on H will 
be denoted � · �H or simply � · � when there is no ambiguity. We recall that for any pos-
itive operator T ∈ K(H) there exist an orthonormal basis {ej} of H and a sequence of 
nonnegative numbers {�j} that decreases to 0 such that

For p = 1 , S1 = S1(H) is the trace class and for T ∈ S1 , the trace of T is defined by

where {ej} is any orthonormal basis of the Hilbert space H.
It is known that a compact operator T on H belongs to the Schatten class Sp if and 

only if the positive operator (T ∗T )1/2 belongs to Sp , where T ∗ denotes the adjoint of 
T. In this case, we have ||T ||Sp = ||(T ∗T )1/2||Sp . It is also well known that a positive T 
belongs to Sp if and only if the operator Tp belongs to the trace class S1 . In this case, 
||T ||Sp = ||Tp||S1

.
We also recall that if T is a compact operator on H , and p ≥ 1 , then that T ∈ Sp is 

equivalent to

for any orthonormal set {ej} in H (see [20, Theorem 1.27]). In particular, if T ∈ S1 is a 
positive operator, then ||T ||S1

= Tr(T ).
The following can be found in [20, Corollary 1.32].

Lemma 2.14 Suppose that  T is a positive operator on H, and that {ej} is an orthonor-
mal basis on H. Then if 0 < p < 1 and

then T belongs to Sp.

||T ||Sp =





∞
�

j=0

|�j|
p





1
p

< ∞.

(10)Tf =

∞
∑

j=0

�j�f , ej�ej , f ∈ H.

Tr(T ) =

∞
∑

j=0

�Tej , ej�

(11)
∑

j

|�Tej , ej�|
p < ∞

∞
∑

j=1

�Tej , ej�
p < ∞,
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We also observe the following (see [20, Proposition 1.30])

Lemma 2.15 Let T be any bounded operator on H and assume that A is bounded sur-
jective operator on H. Then T belongs to Sp if and only if the operator A∗TA belongs to Sp.

Finally, we will need the following result (see [12, Lemma 5] and [20, Proposition 1.29])

Lemma 2.16 Let T be any compact operator on H and let {ek} be an orthonormal basis 
of H. Then for any 0 < p ≤ 2, we have

3  Schatten class membership of Toeplitz operators
The aim of this section is to give criteria for Schatten class membership of Toeplitz oper-
ators on the weighted Bergman space A2

ν(D).

3.1  Proof of Theorem 1.2

We start by proving the following which is actually the implication (ii)  ⇒  (i) in 
Theorem 1.2.

Lemma 3.1 Let µ be a positive Borel measure on D, and ν > n
r − 1. Assume that 

n
r −1

ν+ n
r
< p < 1. Suppose that for any δ-lattice ( δ ∈ (0, 1) ) {ζj}j∈N in the Bergman metric of 

D, the sequence {µ̂δ(ζj)} belongs to lp, that is

 Then the Toeplitz operator Tµ belongs to the Schatten class Sp(A
2
ν(D)). Moreover,

Proof Let σ be large enough so that Pσ is bounded on L2ν(D) . Thanks to Lemma 2.12, 
we can suppose that δ is small enough so that any f ∈ A2

ν(D) can represented as in Theo-
rem 2.4. That is

with ||{�j}||l2 ≈ ||f ||2,ν .

Let {ek}k≥1 be a fixed orthonormal basis on A2
ν(D) . Consider the operator 

S : A2
ν(D) → A2

ν(D) defined by

�T�
p
Sp

≤
∑

k

∑

j

|�Tek , ej�|
p
.

∑

j

(

µ(Bj)

�ν+n/r(Iζj)

)p

< ∞.

�Tµ�
p
Sp

�
∑

j

(

µ(Bj)

�ν+n/r(Iζj)

)p

.

f (z) =
∑

j

�jKσ (z, ζj)�
σ+ 1

2
( nr −ν)(Iζj)

S(ek) = fk
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where

Then it follows from Theorem 2.4 that S is a bounded and surjective operator on A2
ν(D) . 

We know from Lemma 2.15 that the positive operator Tµ belongs to Sp(A
2
ν(D)) if and 

only if T = S∗TµS belongs to Sp(A
2
ν(D)) . It follows from Lemma 2.14 that we only have 

to prove that

We first observe that

Hence using Lemma 2.10, we obtain

Recalling that 0 < p < 1 , we then obtain

Thus

Using the fact that each point in D belongs to at most N balls Bk and the condition 
n
r −1

ν+ n
r
< p < 1 , and assuming σ large enough so that

fk(z) = Kσ (z, ζk)�
σ+ 1

2
( nr −ν)(Iζk).

L :=

∞
∑

k=1

�Tek , ek�
p < ∞.

�Tek , ek� = �Tµfk , fk� =

∫

D

|fk(z)|
2
dµ(z).

�Tek , ek� ≤

∞
∑

j=1

∫

Bδ(ζj)
|fk(z)|

2
dµ(z)

≤ C

∞
∑

j=1

|fk(ζj)|
2µ(Bδ(ζj)).

�Tek , ek�
p ≤ C

∞
∑

j=1

|fk(ζj)|
2p(µ(Bδ(ζj)))

p

≈

∞
∑

j=1

|fk(ζj)|
2p�p(ν+ n

r )(Iζj)(µ̂δ(ζj))
p
.

L :=

∞
∑

k=1

�Tek , ek�
p

≤ C

∞
∑

k=1

∞
∑

j=1

|fk(ζj)|
2p�p(ν+ n

r )(Iζj)(µ̂δ(ζj))
p

≤ C

∞
∑

j=1

�p(ν+ n
r )(Iζj)(µ̂δ(ζj))

p
∞
∑

k=1

|fk(ζj)|
2p
.



Page 14 of 25Sehba  Complex Anal Synerg  (2018) 4:3 

we obtain using Lemmas 2.5 and 2.6, the following for the inner sum

Using the latter, we conclude that

We next prove the reverse of the above result. This corresponds to the implication 
(i) ⇒ (ii) in Theorem 1.2.  �

Lemma 3.2 Let µ be a positive measure on D. Assume that Tµ ∈ Sp(A
2
ν(D)) for some 

2( nr −1)

ν+ n
r

< p < 1. Let {ζj}j∈N be a δ-lattice in D. Then the sequence {µ̂δ(ζj)} belongs to lp. 

Moreover,

Proof We start by considering σ large enough so that Pσ is bounded on L2ν(D) and 
α = p(σ + n

r ) and β = p(σ + 1
2
(nr − ν)) satisfy the conditions in Lemma 2.11. Let ε > 0 

and let Aε be as in Lemma 2.11. Following Remark 2.2, we may assume that our sequence 
{ζj} is such that d(ζj , ζk) > Aε for j �= k . We further assume that Aε is large enough so 
that the corresponding balls Bk are disjoint. Consider the following measure:

Then 0 ≤ ω ≤ µ , ω = µ on each ball Bk . We also have the inequality �Tω�
p
Sp

≤ �Tµ�
p
Sp
.

Now as in the proof of the previous result, we fix an orthonormal basis {ek} of A2
ν(D) 

and consider the same operator S defined on A2
ν(D) by S(ek) = fk with

2p

(

σ +
1

2

(n

r
− ν

)

)

> 2
n

r
− 1,

Lj :=

∞
∑

k=1

|fk(ζj)|
2p

=

∞
∑

k=1

|Kσ (ζj , ζk)|
2p�2p(σ+ n

r −
1
2
(ν+ n

r ))(Iζk)

≤ C

∞
∑

k=1

∫

Bδ(ζk )
|Kσ (ζj , z)|

2p�2p(σ+ 1
2
( nr −ν))−2

n
r (Iz) dV (z)

≤ CN

∫

D

|Kσ (ζj , z)|
2p�2p(σ+ 1

2
( nr −ν))−2

n
r (Iz) dV (z)

≤ CN�−p(ν+ n
r )(Iζj).

L :=

∞
∑

k=1

�Tek , ek�
p

≤ C

∞
∑

j=1

(µ̂δ(ζj))
p < ∞.

∑

j

(

µ̂δ(ζj)
)p

� �Tµ�
p
Sp
.

dω(z) =
∑

k

χBk (z) dµ(z).
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We recall with Theorem  2.4 that S is bounded and surjective on A2
ν(D) . Put again 

T = S∗TωS . Then as Tω ∈ Sp(A
2
ν(D)) , T also belongs to Sp(A

2
ν(D)) and we have

The main idea of the proof is to show that the lp-norm of the sequence {µ̂δ(ζj)} is up to 
a constant a lower bound for ‖T‖Sp . For this we decompose T as T = D + R , where D is 
the positive diagonal operator on A2

ν(D) given by

and R = T − D . We observe that

Hence, if we can prove that

and

with c2 as small as we want, then the proof will be completed.
We start by estimating the diagonal operator D. As D is positive, we have

That is

We now turn to the estimation of ‖R‖p
Sp

 . First, using Lemma 2.16, we obtain

fk(z) = Kσ (z, ζk)�
σ+ 1

2 (
n
r −ν)(Iζk).

�T�Sp ≤ �S�2�Tω�Sp ≤ C�Tµ�Sp .

Df :=
∑

k

�Tek , ek��f , ek�ek , f ∈ A2
ν(D)

�T�
p
Sp

≥ �D�
p
Sp

− �R�
p
Sp
.

�D�
p
Sp

≥ c1
∑

j

(

µ̂δ(ζj)
)p

�R�
p
Sp

≤ c2
∑

j

(

µ̂δ(ζj)
)p

�D�
p
Sp

=
∑

k

�Tek , ek�
p =

∑

k

�Tωfk , fk�
p

=
∑

k

(∫

D

|fk(z)|
2
dω(z)

)p

≥
∑

k

(∫

Bk

|fk(z)|
2
dω(z)

)p

=
∑

k

(∫

Bk

|fk(z)|
2
dµ(z)

)p

≍
∑

k

(

µ̂δ(ζk)
)p
.

�D�
p
Sp

≥ c1
∑

j

(

µ̂δ(ζj)
)p
.
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As the balls Bl are disjoint, using Lemma 2.10, we obtain

As 0 < p < 1 , it follows that

where

with

and

�R�
p
Sp

≤
∑

k

∑

j

|�Rej , ek�|
p

=
∑

{j,k:j �=k}

|�Tej , ek�|
p

=
∑

{j,k:j �=k}

|�Tωfj , fk�|
p

=
∑

{j,k:j �=k}

∣

∣

∣

∣

∫

D

fj(z)fk(z) dω(z)

∣

∣

∣

∣

p

≤
∑

{j,k:j �=k}

(∫

D

|fj(z)||fk(z)| dω(z)

)p

.

∫

D

|fj(z)||fk(z)| dω(z) =
∑

l

∫

Bl

|fj(z)||fk(z)| dµ(z)

≤ C
∑

i

|fj(ζl)||fk(ζl)|µ(Bl)

≍
∑

l

|fj(ζl)||fk(ζl)|�
ν+ n

r (Iζl)µ̂δ(ζl).

�R�
p
Sp

≤ C
∑

l

�p(ν+ n
r )(Iζl)

(

µ̂δ(ζl)
)p
Ll

Ll :=
∑

{j,k: j �=k}

|fj(ζl)|
p|fk(ζl)|

p

=
∑

{j,k: j �=k}

|�−p(σ+ n
r )

(

ζj − ζ l

i

)

|�
p
(

σ+ 1
2
( nr −ν)

)

(Iζj)

× |�−p(σ+ n
r )
(

ζk − ζ l

i

)

|�
p
(

σ+ 1
2
( nr −ν)

)

(Iζk)

= 2L1l + L2l

L1l := �−
p
2 (ν+

n
r )(Iζl)

∑

{j: j �=l}

|�−p(σ+ n
r )

(

ζj − ζ l

i

)

|�
p
(

σ+ 1
2
( nr −ν)

)

(Iζj)

L2l :=
∑

{j,k: j �=l and k �=l}

|�−p(σ+ n
r )

(

ζj − ζ l

i

)

|�
p
(

σ+ 1
2
( nr −ν)

)

(Iζj)

× |�−p(σ+ n
r )
(

ζk − ζ l

i

)

|�
p
(

σ+ 1
2
( nr −ν)

)

(Iζk).



Page 17 of 25Sehba  Complex Anal Synerg  (2018) 4:3 

Using Lemma 2.11, we obtain

and

It follows that

Hence

Taking ε small enough so that c1
2
− c2(2ε + ε2) > 0 , we conclude that

The proof is complete.  �

We can now prove Theorem 1.2.

Proof of Theorem 1.2 We start by proving the necessity of the condition p >
2
n
r −1

ν+ n
r

 
in assertion (iv). We recall that e is the identity element of V. We may suppose that 
µ(B1(ie)) > 0 (if not change the radius of the Bergman ball). Then using Lemma 2.9, we 
obtain

It follows that if µ̃(z) ∈ Lp(D, d�) , then we should have

which by Lemma 2.6 is possible only if p
(

ν + n
r

)

> 2n
r − 1.

Now the equivalences (ii)  ⇔  (iii)  ⇔  (iv) are from Lemma 2.13. The equivalence 
(i) ⇔ (ii) is derived from Lemmas 3.1 and 3.2. The proof is complete.  �

L1l ≤ ε�−p(ν+ n
r )(Iζl)

L2l ≤ ε2�−p(ν+ n
r )(Iζl).

�R�
p
Sp

≤ c2(2ε + ε2)
∑

j

(

µ̂δ(ζj)
)p
.

�T�
p
Sp

≥
[ c1

2
− c2(2ε + ε2)

]

∑

j

(

µ̂δ(ζj)
)p
.

∑

j

(

µ̂δ(ζj)
)p

< ∞.

µ̃(z) =

∫

D

|kνz (w)|
2
dµ(w)

≥

∫

B1(ie)
|kνz (w)|

2
dµ(w)

≥ Cµ(B1(ie))|�
−(ν+ n

r )
(z

i
+ e

)

|2�ν+ n
r (Iz).

∫

D

|�−(ν+ n
r )
(z

i
+ e

)

|2p�p(ν+ n
r )(Iz)

dV (z)

�2 n
r (Iz)

< ∞
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3.2  Schatten class for general operators

We consider here Schatten class criteria for an arbitrary operator defined on A2
ν(D) 

with values in a Hilbert space H . We denote by B(A2
ν(D),H) the set of bounded oper-

ators from A2
ν(D) to H . To avoid any confusion, we denote by �·, ·�H and �·, ·�ν the 

inner products in H and A2
ν(D) respectively. We start with the Hilbert-Schmidt class 

S2 := S2(A
2
ν(D),H).

Proposition 3.3 Let T ∈ B(A2
ν(D),H) then

for every integer m ≥ 0.

Proof This result was proved in [18]. As the definition of Bergman spaces here is quite 
different, let us give a proof here for completeness. Let {ej} be an orthonormal basis of H . 
Then using Lemma 2.8, we obtain

 �

We will deduce some results from the above one. The first one is the following which is 
obtained as in [18, Lemma 3.2].

Proposition 3.4 Suppose that T ∈ B(A2
ν(D),H). Let m ≥ 0 be an integer. Then

(i)  if T ∈ Sp(A
2
ν(D),H) for 2 < p < ∞, then 

(ii) If for 0 < p < 2 , 

||T ||2
S2(A2

ν (D),H)
= Cn,m

∫

D

||T (kν,mz )||2
H
d�(z),

I :=

∫

D

||T (K ν,m
z )||2

H
�2m+ν− n

r (Iz) dV (z)

=

∫

D

∞
∑

j=0

|�TK ν,m
z , ej�H|2�2m+ν− n

r (Iz) dV (z)

=

∞
∑

j=0

∫

D

|�K ν,m
z ,T ∗ej�ν |

2�2m+ν− n
r (Iz) dV (z)

=

∞
∑

j=0

∫

D

|�m
z T

∗ej(z)|
2�2m+ν− n

r (Iz) dV (z)

= Cν,m

∞
∑

j=0

∫

D

|T ∗ej(z)|
2
dVν(z)

= Cν,m

∞
∑

j=0

||T ∗ej||
2

A2
ν

= Cν,m||T
∗||2

S2
= Cn,m||T ||2

S2
.

∫

D

||T (kν,mz )||
p
H
d�(z) ≤ Cn,m||T ||

p

Sp(A2
ν (D),H)

.

∫

D

||T (kν,mz )||
p
H
d�(z) < ∞,
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 then T ∈ Sp(A
2
ν(D),H). Moreover, 

We next have the following which is in fact implicit in the proof of the above result in 
[18].

Proposition 3.5 Suppose that T ∈ B(A2
ν(D)) is a positive operator. Let m ≥ 0 be an 

integer. Then,

(i)  if T ∈ Sp(A
2
ν(D)) for 1 ≤ p < ∞, then 

(ii) If for 0 < p ≤ 1 , 

 then T ∈ Sp(A
2
ν(D)). Moreover, 

Proof From Proposition 3.3 , we have that if T ∈ S1(A
2
ν(D)) is a positive operator, then

Recalling that ||T ||
p
Sp

= Tr(Tp) , the proof follows from the fact that for any unit 
vector(see [20]) g ∈ L2(D) , we have

and

3.3  Proof of Theorem 1.3

In this subsection, we establish a reproducing kernel thesis for Tµ . First taking T = Tµ in 
Proposition 3.5, we obtain the following corollary.

Corollary 3.6 Let µ be a positive measure on D, and let m ≥ 0 be an integer. Then the 
following assertions hold.

(i) If Tµ ∈ Sp(A
2
ν(D)) for 1 ≤ p < ∞, then 

||T ||
p

Sp(A2
ν (D),H)

≤ Cn,m

∫

D

||T (kν,mz )||
p
H
d�(z).

∫

D

|�T (kν,mz ), kν,mz �ν |
p
d�(z) ≤ Cn,m||T ||

p

Sp(A2
ν (D))

.

∫

D

|�T (kν,mz ), kν,mz �ν |
p
d�(z) < ∞,

||T ||
p

Sp(A2
ν (D))

≤ Cn,m

∫

D

|�T (kν,mz ), kν,mz �ν |
p
d�(z).

Tr(T ) = �T 1/2�2
S2

= Cn,m

∫

D

|�T (kν,mz ), kν,mz �ν | d�(z).

�Tg , g�pν ≤ �Tpg , g�ν , if p ≥ 1

�Tpg , g�ν ≤ �Tg , g�pν if 0 < p ≤ 1.

∫

D

�Tµ(k
ν,m
z ), kν,mz �pν d�(z) ≤ Cn,m||Tµ||

p

Sp(A2
ν (D))

.
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(ii) If for 0 < p ≤ 1,  

 then Tµ ∈ Sp(A
2
ν(D)). Moreover, 

We next prove the following sufficient condition.

Lemma 3.7 Let 1 ≤ p < ∞, and let m ≥ 0 be an integer. Assume that µ is a positive 
measure on D. Then if the Toeplitz operator Tµ satisfies

 then Tµ ∈ Sp(A
2
ν(D)). Moreover,

Proof By [20, Theorem  1.27] , as p ≥ 1 , we only need to prove that there is positive 
constant C such that for any orthonormal sequence {ek} on A2

ν(D),

We recall our notation

We start by noting that by Lemma 2.5, we have

It follows from this and Lemma 2.10 that

Hence

∫

D

�Tµ(k
ν,m
z ), kν,mz �pν d�(z) < ∞,

||Tµ||
p

Sp(A2
ν (D))

≤ Cn,m

∫

D

�Tµ(k
ν,m
z ), kν,mz �pν d�(z).

∫

D

�Tµ(k
ν,m
z ), kν,mz �pν d�(z) < ∞,

||Tµ||
p

Sp(A2
ν (D))

≤ Cn,m

∫

D

�Tµ(k
ν,m
z ), kν,mz �pν d�(z).

∑

k

�Tµek , ek�
p
ν ≤ C

∫

D

�Tµ(k
ν,m
z ), kν,mz �pν d�(z) = C

∫

D

(

µ̃m(z)
)p

d�(z).

µ̃m(z) := �Tµk
ν,m
z , kν,mz �ν =

∫

D

|kν,mz (w)|2 dµ(w).

|ek(z)|
2 ≤ Cδ−n

∫

Bδ(z)
|ek(w)|

2
d�(w).

|ek(z)|
2 ≤ C

∫

D

|ek(w)|
2|kν,mz (w)|2 dVν(w)

�Tµek , ek�ν =

∫

D

|ek(z)|
2
dµ(z)

≤

∫

D

|ek(w)|
2µ̃m(w) dVν(w)
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and so using Hölder’s inequality, that the ek are orthonormal and

we obtain

The proof is complete.  �

We now prove the following necessary condition.

Lemma 3.8 Let m ≥ 0 be an integer such that max

{

2
n
r −1

ν+ n
r +2m

,
n
r −1

ν+ n
r

}

< p ≤ 1. Assume 
that µ is a positive measure on D. Then if the Toeplitz operator Tµ belongs to the Schatten 
class Sp(A

2
ν(D), then

Moreover,

Proof Assume that the Toeplitz operator Tµ belongs to the Schatten class Sp(A
2
ν(D) . 

Then by Lemma 3.2, this implies that for any δ-lattice {ζk} of points of D , the sequence 
{µ̂δ(ζk)} belongs to lp with

It follows that to prove the above lemma, it is enough to prove that there is positive con-
stant C such that for any δ-lattice {ζk} of points of D,

Recalling that 0 < p ≤ 1 and using Lemma 2.9, we first obtain

∑

k

|ek(z)|
2 = Kν(z, z),

∑

k

�Tµek , ek�
p
ν ≤

∑

k

(∫

D

|ek(w)|
2µ̃m(w) dVν(w)

)p

≤

∫

D

(

µ̃m(w)
)p

(

∑

k

|ek(w)|
2

)

dVν(w)

≤

∫

D

(

µ̃m(w)
)p
Kν(w,w) dVν(w)

�

∫

D

(

µ̃m(w)
)p

d�(w).

∫

D

�Tµ(k
ν,m
z ), kν,mz �pν d�(z) < ∞.

∫

D

�Tµ(k
ν,m
z ), kν,mz �pν d�(z) � ||Tµ||

p

Sp(A2
ν (D))

.

∑

k

(

µ̂δ(ζk)
)p

� �Tµ�
p
Sp
.

L :=

∫

D

�Tµ(k
ν,m
z ), kν,mz �pν d�(z) ≤ C

∑

k

(

µ̂δ(ζk)
)p
.



Page 22 of 25Sehba  Complex Anal Synerg  (2018) 4:3 

The condition on p and Lemma 2.6 give us

We then conclude that

The proof is complete.  �

Theorem 1.3 clearly follows from Corollary 3.6, Lemma 3.7 and Lemma 3.8.

4  Application to Cesàro‑type operators
Let us consider

and set

We define for g ∈ H(D) the operator Tg : H(D) → Hn(D) as follows: for f ∈ H(D) , Tg f  
is the equivalence class of the solutions F of the equation

The operator Tg was called in [13] Cesàro-type operator.
We consider in this part, criteria for Schatten class membership of the Cesàro-type 

operator above on the weighted Bergman space A2
ν(D) . In fact a characterization of 

Schatten classes for this operator was obtained in [13] for the range 2 ≤ p ≤ ∞ . Our aim 
here is to extend this result to the range 1 ≤ p < 2 . We refer to [8, 12, 21, 22] for the cor-
responding results on some classical domains.

L =

∫

D

(∫

D

|kν,mz (w)|2 dµ(w)

)p

d�(z)

≤

∫

D

(

∑

k

∫

Bk

|kν,mz (w)|2 dµ(w)

)p

d�(z)

≤ C

∫

D

(

∑

k

|kν,mz (ζk)|
2µ(Bk)

)p

d�(z)

≤ C

∫

D

(

∑

k

|K ν,m
z (ζk)|

2µ(Bk)

)p
�p(ν+2m+ n

r )(Iz)

�2
n
r (Iz)

dV (z)

≤ C
∑

k

(µ(Bk))
p

∫

D

|K ν,m
z (ζk)|

2p�
p(ν+2m+ n

r )(Iz)

�2
n
r (Iz)

dV (z).

∫

D

|K ν,m
z (ζk)|

2p�p(ν+2m+ n
r )−2 n

r dV (z) = C�−p(ν+ n
r )(Iζk).

L ≤ C
∑

k

(µ(Bk))
p�−p(ν+ n

r )(Iζk)

≈
∑

k

(

µ̂δ(ζk)
)p
.

Nn := {F ∈ H(D) : �nF = 0}

Hn(D) = H(D)/Nn.

�nF = f�ng .
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Let us recall that the Besov space Bp(D) is the subspace of Hn(D) consisting of equiva-
lence classes f such that the function �n�nf  defined by (�n�nf )(z) := �n(Iz)�nf (z) 
belongs to Lp(D, d�) . For f ∈ Bp(D) , we write �f �Bp;= ��n�nf �Lp(D,d�) . For more on 
Besov spaces of tube domains over symmetric cones, we refer the reader to [3, 4].

We now obtain the following.

Theorem 4.1 Let 1 ≤ p < 2, ν > n
r − 1. If g is a given holomorphic function in D, then 

the Cesàro-type operator Tg belongs to Sp(A
2
ν(D)) if and only if g ∈ Bp(D). Moreover,

Proof Let us first assume that Tg ∈ Sp(A
2
ν(D)) . Then by Proposition 3.5, we have that

Using Lemma 2.7 and reproducing formula, we obtain

Hence g ∈ Bp(D) if Tg ∈ Sp(A
2
ν(D)).

Now assume that g ∈ Bp(D) . We consider the following measure

We first observe the following. Let δ ∈ (0, 1] be small enough and let {ζk} be a δ-lattice of 
points of D . Using Lemmas 2.3, 2.5, and 2.9, we obtain

||Tg ||Sp(A2
ν (D)) ≈ �g�Bp .

∫

D

|�Tg (k
ν,n
z ), kν,nz �ν |

p
d�(z) ≤ C||Tg ||

p

Sp(A2
ν (D))

.

||Tg ||
p

Sp(A2
ν (D))

≥ C

∫

D

|�Tg (k
ν,n
z ), kν,nz �ν |

p
d�(z)

= Cn

∫

D

|��n
·

(

Tgk
ν,n
z (·)

)

, kν,nz (·)�ν+n|
p
d�(z)

= Cn

∫

D

|��ng(·)kν,nz (·),K ν,n
z (·)�ν+n|

p�
p
2 (ν+

n
r +2n)(Iz) d�(z)

= Cn

∫

D

|
(

�ng(z)
)

kν,nz (z)|p�
p
2 (ν+

n
r +2n)(Iz) d�(z)

= Cn

∫

D

|�n(Iz)�ng(z)|p d�(z).

dµ(z) = |�ng(z)|2�2n+ν−n/r(Iz) dV (z).

∫

D

|�n(Iz)�ng(z)|p d�(z) ≈
∑

j

(

|�ng(ζj)|
2�2n(Iζj)

)p/2

�
∑

j

(

∫

Bj

|�ng(z)|2�2n(Iz)
dV (z)

�2n/r(Iz)

)p/2

≈
∑

j

(

1

�ν+n/r(Iζj)

∫

Bj

dµ(z)

)p/2

=
∑

j

(

µ(Bj)

�ν+n/r(Iζj)

)p/2

.
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That is

We next observe the following. Let {ej} be any orthonormal basis of A2
ν(D) . Then using 

Lemma 2.7, the definition of Tg and Hölder’s inequality, we obtain

It follows that

Hence, by (11), as p ≥ 1 , to prove that Tg belongs to Sp(A
2
ν(D)) , it suffices by (13) to 

prove that

This follows from Lemma 3.1, using that as g ∈ Bp(D) , we have by (12) that

The proof is complete.  �

5  Conclusion and further observations
In this paper, we obtained some characterizations of Schatten class Sp(A

2
ν(D)) of Toe-

plitz operators on the Bergman space A2
ν(D) where D is a tube domain over a symmetric 

cone, for 0 < p ≤ 1 . We observe that in our first main result Theorem 1.2, depending on 
the assertion, there are some restrictions on the exponent p of the Schatten class that are 
due to our method of proof that involves integrability conditions of the Bergman kernel. 
As a consequence, our result does not cover the whole range 0 < p ≤ 1.

We proved that the condition p >
2
n
r −1

ν+ n
r

 in assertion (iv) of Theorem  1.2 is sharp, 
meaning that one can not go below the critical index 2

n
r −1

ν+ n
r

 . Unfortunately, we do not 
know if the restrictions in the other assertions in the same theorem are sharp; for exam-
ple, does assertion (ii) still hold for 

n
r −1

ν+ n
r
≤ p ≤

2( nr −1)

ν+ n
r

?
Another interesting question is to know if there are other characterizations of Schat-

ten class of Toeplitz operators considered in this paper other than those given in Theo-
rems 1.2 and 1.3.

We note that although all the restrictions on our results, they allow us to complete 
Schatten class characterization of some Cesàro-type operators introduced in [13].

(12)
∫

D

|�n(Iz)�ng(z)|p d�(z) ≈
∑

j

(

µ(Bj)

�ν+n/r(Iζj)

)p/2

.

�Tgej , ej�
2
ν = Cn,ν��

nTgej , ej�
2
ν+n

= Cn,ν��
n�nTgej , ej�

2
ν

≤ Cn,ν

∫

D

|ej(z)|
2
dµ(z)

= Cn,ν�Tµej , ej�ν .

(13)
∑

j

|�Tgej , ej�ν |
p ≤ Cn,ν

∑

j

�Tµej , ej�
p/2
ν .

∑

j

�Tµej , ej�
p/2
ν < ∞.

∑

j

(

µ(Bj)

�ν+n/r(Iζj)

)p/2

< ∞.
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