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1  Introduction
We recall that complex Hénon mappings are polynomial automorphisms of C2 given by 
the formula:

One can always assume that the polynomial P(X) of degree d is monic and centered (i.e., 
the coefficient of degree d − 1 is zero). Any such map has constant Jacobian, equal to a.

  Those maps were first studied in [5–7]. The behaviour at infinity has been addressed 
in [8] and the structure of the associated Julia sets has been considered in a long series 
of articles by Bedford and Smillie, culminating in [1, 2]. We define the escaping set U+ to 
be the set of all points of C2 with unbounded forward orbit.

The whole purpose of this article can be summarized as follows: can one recover a 
Hénon map from the knowledge of the analytic structure of its escaping set? This ques-
tion was first formulated by Hubbard, based on the explicit formulas of [6]. Our study is 
built on the methods first developed by Bousch in his unpublished manuscript [3].

1.1 � Results

Let us consider two complex Hénon mappings Hi :
(
x
y

)
�→

(
Pi(x)− aiy

x

)
, i ∈ {1, 2} 

together with their respective forward escaping sets U+
1 , U+

2 .

HP, a :
(
x
y

)
�→

(
P(x)− ay

x

)
, where P ∈ C[X] and a ∈ C

∗.

Abstract 

For any complex Hénon map HP, a :
(
x

y

)
�→

(
P(x)− ay

x

)
, the universal cover of 

the forward escaping set U+ is biholomorphic to D× C, where D is the unit disk. The 
vertical foliation by copies of C descends to the escaping set itself and makes it a rather 
rigid object. In this note, we give evidence of this rigidity by showing that the analytic 
structure of the escaping set essentially characterizes the Hénon map, up to some 
ambiguity which increases with the degree of the polynomial P.
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Theorem 1.1  (Restrictions on degrees and Jacobians) Let H1 and H2 be two complex 
Hénon mappings of respective degrees d1, d2 and Jacobians a1, a2, such that the corre-
sponding escaping sets are biholomorphic. Then one has the following:

(a)	 if one of the degrees d1, d2is prime, then necessarily d1 = d2;

(b)	 if d1 = d2  (not necessarily prime), then the quotient 
(
a1

a2

)
 is a (d − 1)th root of 

unity.

Quadratic case  Observe that the theorem above already indicates that in degree 2 the 
Jacobian is prescribed. Actually, a more precise result can be obtained in this case:

Theorem 1.2  (Quadratic case) Let H1 and H2 be two quadratic Hénon maps. Then the 
following propositions are equivalent:

(a)	the forward escaping sets are biholomorphic;
(b)	H1 = H2.

Ambiguity in higher degrees  When the degree is at least 3, then the complex Hénon 
mapping is not completely determined by the analytic structure of the escaping set. 
There is a certain ambiguity in the determination that increases with the degree. Let us 
write

Theorem 1.3  (Cubic case) The forward escaping sets of H1 and H2 are biholomorphic if 
and only if one of the following conditions is realized:

1.	 H1 and H2   are conjugate by  
(
x
y

)
�→

(
− x
− y

)
 (equivalently 

(a2, A2, B2) = (a1, A1, −B1));
2.	 (a1, A1) = (a2, − A2) and B1 = B2 = 0, and in this case the two applications are not 

conjugate on C2,  but their squares are conjugate by g :
(
x
y

)
�→

(
ix
− iy

)
.  Moreover, 

g is an explicit isomorphism between the two escaping sets.
We notice that the Jacobian is still prescribed in the cubic case. Surprisingly, this is not 

necessarily true in higher degrees:

Theorem 1.4  (Jacobian non-preserved) The two maps H1 :
(
X
Y

)
�→

(
X4 − Y

X

)
 and 

H2 :
(
X
Y

)
�→

(
X4 − jY

X

)
  where j = ei

2π
3  have biholomorphic escaping sets, and an 

explicit isomorphism from U+
2  to U+

1  is given by

H1 :
(
x

y

)
�→

(
x3 + A1x + B1 − a1y

x

)
and H2 :

(
x

y

)
�→

(
x3 + A2x + B2 − a2y

x

)
.

θ1 :
(
X
Y

)
�→

(
αX

α7Y

)
, whereα = ei

2π
9 .
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In the last theorem, the map θ1 is actually a conjugacy on C2 between H◦3
1  and H◦3

2 . 
Thus one can ask:

Conjecture  Two complex Hénon mappings of degree d have biholomorphic escaping 
sets if and only if their (d − 1)th powers are conjugate.

1.2 � Idea of the proof

The first ingredient is an explicit trivialization of the universal cover of the escaping set. 
Actually, we prefer to work in an intermediate cover described as follows:

Theorem 1.5  (Hubbard, Oberste-Vorth) There exists a cover Ũ+ of U+, isomorphic to 
(C− D)× C in which the following Hénon mapping:

 has a lift written as

   where the polynomial Q ∈ C[X] is given by

(a)	 Q(X) = X3 − a0
2 X if d = 2,

(b)	 Q(X) = Xd+1 − ad−2

d
Xd−1 − ad−3

d
Xd−2 − (

ad−4

d
− a2d−2

d2
)Xd−3 + · · · , if d ≥ 3.

As such, this theorem is a rather straightforward generalization to any degree d of a 
theorem due to Hubbard and Oberste-Vorth (compare [6] for the quadratic case). As 
these authors notice, we can obtain an explicit representation of the fundamental group 
as a group of biholomorphisms of (C− D)× C:

Theorem 1.6  (Hubbard, Oberste-Vorth) Let H be a complex Hénon mapping given by

  where Pis of degree d and let us call H̃ the following lift of H to (C− D)× C:

   where Q is of degree (d + 1). Then we have the following:

(1)	 the fundamental group of U+ is isomorphic to Z
[
1
d

]
;

(2)	 the element 
[

k
dn

]
        of π1(U

+)is represented by the biholomorphism 

H :
(
x
y

)
�→

(
xd + ad−2x

d−2 + · · · + a0 − ay
x

)

H̃ :
(
ζ

z

)
�→

(
ζ d

a
d
z + Q(ζ )

)
,

H :
(
x
y

)
�→

(
P(x)− ay

x

)
,

H̃ :
(
ζ

z

)
�→

(
ζ d

a
d
z + Q(ζ )

)
,

γ k
dn

:
�
ζ

z

�
�→




ei2π
k
dn · ζ

z + d
a

�∞
l=0

�
d
a

�l
�
P
�
ζ d

l
�
− P

��
ei2π

k
dn ζ

�dl
��


.
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The second ingredient of our proof is a construction used by Bousch [3]. Any biholo-
morphism between escaping sets that induces the identity on the fundamental groups 
can be lifted to an isomorphism (C− D)× C. But these have a very simple form, and 
due to the very particular form of the fibers of π : Ũ+ → U+, it turns out that very few 
of these isomorphisms can satisfy the additional requirement of sending the fibers of π1 
to the fibers of π2 : Ũ+

2 → U+
2 . The rigidity derives exactly from this fact.

2 � Equality of degrees
Our objective is the following:

Theorem 2.1  (Conditions on degrees) Let U+
1  be the escaping set of a complex Hénon 

mapping of degree d, with d being a prime integer. Assume that the escaping set U+
2  of 

some other Hénon mapping is biholomorphic to U+
1 ; then necessarily the polynomials 

P1, P2 have the same degree d.

Let us prove first an easy lemma:

Lemma 2.2  The degree d′of H2is a power of d.

Proof  Let θ : U+
1 → U+

2  be the biholomorphism. The map 
ψ = θ−1 ◦H2 ◦ θ : U+

1 → U+
1  induces an automorphism on the fundamental group of 

U+
1 = Z

[
1
d

]
. These automorphisms are the multiplications by an invertible element of 

Z

[
1
d

]
. Therefore, ψ induces the multiplication by a power of d. Since H2 induces the multi-

plication by d′ and all the induced maps θ⋆, θ−1
⋆  commute (being multiplications by some 

integer), we deduce that d′ = dn for some integer n. �

Lemma 2.3  There exists a biholomorphism between the escaping sets that induces the 
identity on the fundamental groups.

Proof  Since d′ = dn, we deduce that Z[1/d′] = Z[1/d]. Therefore, the biholomorphism 
θ must induce an automorphism of Z[1/d]. These are made of multiplication by a power 
of d. By precomposing θ with an iterate of H1, we can assume that θ induces ± Id on 
Z[1/d]. Now we notice that the projection π : (C− D)× C → U+ induces on the fun-
damental groups the map π⋆ : Z �→ Z ⊂ Z[1/d]. Therefore, by standard covering the-
ory θ can be lifted to a self-map of (C− D)× C. If needed, one can postcompose with 
a deck transformation and assume that the lifted map θ̃ is actually an isomorphism of 
(C− D)× C.

Lemma 2.4  The isomorphisms of (C− D)× C are given by 

φ :
(
ζ

z

)
�→

(
αζ

α(ζ )z + β(ζ )

)
, where α ∈ C and α(ζ ), β(ζ ) are two holomorphic functions.

Proof  Left to the reader. See Bousch’s thesis [3] for details. �
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This implies, as Bousch notices, that θ̃  actually induces + Id, because a loop (
R · ei2π t

0

)
 in (C− D)× C descends to the generator + 1 of π1(U

+) in U+
1  and is sent to 

the loop 
(

αR · ei2π t
β(R · ei2π t)

)
 which descends to the same generator in U+.

2.1 � Lifting of biholomorphisms

Let us prove now that the degree d′ must be equal to d itself. At this point, we have the 
following situation: 

(C− D)× C
θ

π1

(C− D)× C

π2

U+
1 θ

U+
2

 where θ̃ :
(
ζ

z

)
�→

(
αζ

α(ζ )z + β(ζ )

)
.

2.2 � Fibers of π : Ũ
+
→ U

+ are mapped to fibers

Theorem 2.5  (Hubbard, Oberste-Vorth) Let H :
(
x
y

)
�→

(
P(x)− ay

x

)
 where P is of 

degree d. If a lift of H to (C− D)× C is given by

 where Q is a monic polynomial of degree d + 1, then the element 
[

k
dn

]
 of π1(U

+) is repre-
sented by this biholomorphism:

Proof  Once we know γ 1
dn
, we can easily deduce the expression of γ−1

dn
, and then the 

expression of all its iterates, in other words of all the other elements. Let us prove the 
result for γ 1

dn
 by induction on n:

• • for n = 1, we get the identity;
• • then we notice that H̃ ◦ γ 1

dn+1
= γ 1

dn
◦ H̃ . Hence 

 and also 

H̃ :
(
ζ

z

)
�→

(
ζ d

a
d
z + Q(ζ )

)
,

γ k
dn

:
�
ζ

z

�
�→




ei2π
k
dn · ζ

z + d
a

�∞
l=0

�
d
a

�l
�
Q
�
ζ d

l
�
− Q

��
ei2π

k
dn ζ

�dl
��


.

z′′ =
a

d
z′ + Q

(
e
i 2π

dn+1 · ζ
)

z′′ = a

d
z + Q(ζ )+

d

a

∞∑

l=0

(
d

a

)l(
Q
(
ζ d

l
)
− Q

((
ei2π

1
dn ζ

)dl))
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 �

Conservation of fibers This whole section is an application of Bousch’s procedure.
Let us express the condition that θ̃  must send the fiber of π1 above a point p ∈ U+ 

on the fiber of π2 above θ(p). The fiber Fp above p ∈ U+
1 . Let H1 be the Hénon mapping 

of Jacobian a1, and the corresponding polynomial P(X) = Xd1 + A
(1)
d1−2X

d1−2 + · · ·A(1)
0 . 

Let p̃ =
(
ζ

z

)
 be a point in the fiber of p ∈ U+

1 . The other points in the fiber are

where Q1(ζ ) = ζ d1+1 −
A
(1)
d1−2

d1
ζ d1−1 − · · · − A

(1)
0
d1

.

Points having the same projection as θ̃ (p̃). Since we have

we deduce that the other points having the same projection by π2 as the point θ̃ (p̃) are 
the following (for readability reasons, we write d2 instead of d′, which is actually a power 
dk of d):

where Q2 is a polynomial of degree d2 + 1. Notice that the sums involved are actually 
finite sums. The image by θ̃  of the fiber Fp. This image is made of all the points with the 

first coordinate 
(
α · e

i 2kπ
dn
1 ζ

)
 and the second coordinate

Now the remarkable insight of Bousch is that the comparison of these fibers yields all the 
information we need. Namely we get: comparison of the two fibers.

Lemma 2.6  The degree d2 = d′ = dt is equal to d.

Proof  Fix z = 0 and take a fixed ζ . Fix also k = 1 and see what happens for the par-
ticular choice of integers n = t · b, with b going to infinity. It turns out that all the terms 

α

(
e
i· 2π
dn
1 · ζ

)
, β

(
e
i· 2π
dn
1 · ζ

)
 remain bounded, whereas the rest grows like the leading 

terms in the sum which are ζ (d2+1).db−1
2 = ζ (d

t+1).dt.(b−1) in one case, and ζ (d+1).dbt−1 in 

a

d
z′ + Q

(
e
i 2π

dn+1 · ζ
)

= a

d
z + Q(ζ )+

d

a

∞∑

l=0

(
d

a

)l(
Q
(
ζ d·d

l
)
− Q

((
ei2π

1
dn ζ d

)dl))
.




e
i 2kπ
dn
1 ζ

z + d1
a1

�∞
l=0

�
d1
a1

�l

Q1

�
ζ d

l
1

�
− Q1



�
e
i 2kπ
dn
1 ζ

�dl1







,

θ̃ :
(
ζ

z

)
�→

(
αζ

α(ζ )z + β(ζ )

)
,

(
α · e

i 2sπ
d
q
2 ζ , α(ζ )z + β(ζ )+

d2

a2

∞∑

l=0

(
d2

a2

)l
[
Q2

(
(αζ )d

l
2

)
− Q2

((
e
i 2sπ
d
q
2 αζ)d

l
2

))])
,

α

�
e
i 2kπ
dn
1 ζ

�
·


z + d1

a1

∞�

l=0

�
d1

a1

�l

Q1

�
ζ d

l
1

�
− Q1



�
e
i 2kπ
dn
1 ζ

�dl1






+ β

�
e
i 2kπ
dn
1 ζ

�
.
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the other. This implies that t must be equal to one, and therefore d2 = dt = d1, which is 
what we wanted. �

Summary At this point, we have proved that if an escaping set of a Hénon map with 
prime degree d is biholomorphic to another escaping set, then necessarily the other 
Hénon map has degree d as well.

2.3 � Condition on the Jacobians

Now that we have an explicit description of the fibers, one can write down necessary 
condition for them to coincide.

Theorem 2.7  (Condition on the Jacobians) If U+
1  and U+

2  are biholomorphic, then 
(
a1
a2

)
 

is a (d − 1)th root of the unity, where d is the common degree of both maps.

Proof  We fix k = 1 and let n vary: one can first deduce that α
(
ei

2kπ
dn ζ

)
= α(ζ ), for any n, 

any ζ. Therefore, the function α is a constant K (a non-zero constant because θ̃  is an isomor-
phism): ∀ζ ∈ (C− D), α(ζ ) = K . Now fix ζ and let n vary. The leading terms of the two 

expressions are as follows: K . da1
·
(

d
a1

)n−1
·
(
ζ (d+1)·dn−1 − ei

2π
dn

·dn−1·(d+1) · ζ (d+1)·dn−1
)
, 

for the first one, and da2 ·
(

d
a2

)n−1
· α(d+1)·dn−1 · ζ (d+1)·dn−1

(
1− ei

2π
d

)
, for the second one.

Notice that the terms β(ζ ) and β(ei
2π
dn ζ ) are bounded. After comparing these leading 

terms, we get for n large enough limn

((
a1
a2

)n
α(d+1)·dn−1

)
= K .

Similarly, we obtain limn

((
a1
a2

)n+1
α(d+1)·dn

)
= K . Hence, by quotienting 

limn

((
a1
a2

)
α(d+1)·(d−1)·dn−1

)
= 1.

By quotienting again one finally gets limn

(
α(d+1)·(d−1)2·dn−1

)
= 1.

But this implies 
(
a1
a2

)d−1
= 1. �

2.4 � Quadratic case

We recall the normalized form in the quadratic case:

Theorem 2.8  Let U+
1 and U+

2 be the escaping sets of two quadratic complex Hénon map-
pings written in normalized form, Ha, cand Ha′, c′ ,respectively. If U+

1 and U+
2 are biholomor-

phic then a = a′and c = c′.

Proof  Since we know from the preceding theorem that the Jacobians are equal, we can 
pursue the comparison of the fibers by looking at the next leading term.

For ζ fixed, k = 1 and n going to infinity, we have

Ha,c :
(
x
y

)
�→

(
x2 + c − ay

x

)

K

(
2

a

)n(−c

2

)
ζ 2

n−1
(
1− e−i 2π2

)
∼

(
2

a′

)n(−c′

2

)
α2n−1

ζ 2
n−1

(
1− e−i 2π2

)
.
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But we already knew K
(
2
a

)n
ζ 3.2

n−1
(
1− ei

2π
2

)
∼

(
2
a′

)n
α3.2n−1

ζ 3.2
n−1

(
1− e−i 2π2

)
.

Therefore c ∼ c′ · α2n which implies c = c′. �

2.5 � Cubic case

This case is interesting because the degree is low enough to enable us to compute every-
thing precisely, and at the same time it is the first case for which the analytic structure of 
the escaping set does not completely determine the Hénon map that created it.

We recall that if H1

(
x
y

)
=

(
x3 + Ax + B− ay

x

)
, then a lift of H1 is

Theorem 2.9  (Cubic case) The forward escaping sets U+
1  and U+

2  of the two cubic Hénon 
mappings are biholomorphic if and only if one of the following conditions is realized:

1.	 H1           and H2        are conjugate by 
(
x
y

)
�→

(
− x
− y

)
              (equivalently (a′, A′, B′) 

= (a, A, −B));
2.	 (a, A) = (a′, −A′)        and B = B′ = 0,     and in this case the two applications 

are not conjugate on C2,       but their squares are conjugate by 
(
x
y

)
�→

(
ix
− iy

)
.           

Moreover, this map is an explicit isomorphism between the two escaping sets.
Remark 1  A necessary condition for the escaping sets to be biholomorphic is that the 
Jacobians are equal. We will see that this is not true in degrees higher than 4.

Proof  Again we compare the successive leading terms:

First leading term.

Second leading term.

Third leading term.

From the two first leading terms, we get α2.3n−1
A′ ∼ A, which yields thanks to the sec-

ond relation K .
(
3
a

)n
∼

(
3
a′

)n
 and thus (thanks to the first relation) α4.3n = 1 for n large 

enough, and we also have that a = a′ and K = 1.
Knowing that α2.3n−1

A′ ∼ A and α4.3n−1 = 1 for n large enough, we deduce that 
α2.3n−1 = ± 1 and also that A = ±A′. Let us discuss those cases:

• • A=A′ We already know that B ∼ B′α3n and also that α4.3n ∼ 1 for n large enough. 
Therefore, either B = B′ = 0, or B and B′ are non-zero and satisfy B = ±B′.

H̃1

(
ζ

z

)
=

(
ζ 3

a
3 z + ζ 4 − A

3 ζ
2 − B

3 ζ

)
.

K ·
(
3

a

)n

·
(
1− ei

2π
3

)
· ζ 4·3n−1 ∼

(
3

a′

)n

·
(
1− ei

2π
3

)
· α4·3n−1

ζ 4·3
n−1

.

K ·
(
3

a

)n

·
(
1− e

−i 2π
3

)
·
(
−A

3

)
ζ 2·3

n−1 ∼
(

3

a′

)n

·
(
1− e

−i 2π
3

)
·
(
−A′

3

)
· α2·3n−1

ζ 2·3
n−1

.

K ·
(
3

a

)n

·
(
1− e

−i 4π
3

)
·
(
−B

3

)
ζ 3

n−1 ∼
(

3

a′

)n

·
(
1− e

−i 4π
3

)
·
(
−B′

3

)
· α3n−1

ζ 3
n−1 ·
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• • A = − A′ Similarly, either B = B′ = 0, or B and B′ are both non-zero, but then they 
must satisfy ± i = B

B′ = α3n , which is impossible because ± i3
n is not constant.

It remains to decide which are the cases that give non-trivial isomorphisms between the 
escaping sets. Let us show that in the case (a, A) = (a′, −A′) and B = B′ = 0 the two 
maps are not conjugate (unless A = A′): notice that each map has three fixed points, 
two of them having the same Jacobian matrix. Indeed, the fixed points are solutions of 
X3 + AX − aX = X for H1 and the Jacobian matrix at the two fixed points ±

√
A− a− 1 

is

whereas for the second map two fixed points have a common Jacobian matrix equal to

The traces being distinct, no conjugacy can send these two fixed points on the two other 
ones. �

2.6 � In degree 3, U+ does not determine H

In this section we exhibit explicit examples of pairs of different maps having biholomor-
phic escaping sets.

Theorem  2.10  Let us consider H1 :
(
X
Y

)
�→

(
X3 + CX − aY

X

)
 and 

H2 :
(
X
Y

)
�→

(
X3 − CX − aY

X

)
. Then the map θ :

(
X
Y

)
�→

(
iX
− iY

)
 is an isomor-

phism of C2 into itself that restricts to an isomorphism from U+
2  into U+

1 . Moreover, θ 
conjugates the squares of the two maps.

• • Proof  First notice that − Id commutes with H1 (and also H2): 

 and that θ◦2 = −Id

• • Then one verifies 

 indeed 

 and 

(
4A− 3a− 3 − a

1 0

)
,

(
−4A− 3a− 3 − a

1 0

)
.

(
X
Y

)
�→

(
−X
−Y

)
�→

(
−X3 − CX + aY

−X

)
�→

(
X3 + CX − aY

X

)
.

θ−1 ◦H1 = H2 ◦ θ;

θ−1 ◦H1 :
(
X
Y

)
�→

(
X3 + CX − aY

X

)
�→

(
−iX3 − iCX + aiY

iX

)

H2 ◦ θ :
(
X
Y

)
�→

(
iX
−iY

)
�→

(
−iX3 − iCX + aiY

iX

)
.
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Therefore, one can deduce that θ−1 ◦H1 ◦ θ = H2 ◦ θ◦2 = H2 ◦ (−Id) = −Id ◦H2. By 
iterating the relation, one gets θ−1 ◦H◦n

1 ◦ θ = (− Id)n ◦H◦n
2 .

To conclude, let p ∈ U+
2 ; then || (− Id)n ◦H◦n

2 (p) || is unbounded but then 
θ−1 ◦H◦n

1 (θ(p)) is unbounded and then θ(p) ∈ U+
1 . It remains to show that 

θ conjugates the squares of the maps: start from H1 = θ ◦H2 ◦ θ and deduce 
H2
1 = θ ◦H2 ◦ (− Id) ◦H2 ◦ θ , or if one prefers, by remembering that − Id commutes 

with Hi and that −Id ◦ θ = θ−1, one obtains H2
1 = θ−1 ◦H2

2 ◦ θ . �

3 � Jacobian not prescribed
Let us show with an explicit example that in degree 4 the Jacobian is not necessarily pre-
scribed by the analytic structure of the escaping set.

Theorem 3.1  (Jacobian non-preserved) The following maps:

• • H1 :
(
x
y

)
�→

(
x4 − y

x

)
,

• • H2 :
(
x
y

)
�→

(
x4 − jy

x

)
, where j = ei

2π
3 ,

 have biholomorphic escaping sets, and an explicit isomorphism from U+
2  to U+

1  is given 

by θ1 :
(
x
y

)
�→

(
αx

α7y

)
,  where α = ei

2π
9 .

Proof  Let us introduce the linear map L :
(
x
y

)
�→

(
j2x

j2y

)
. It commutes with H1 

and H2 since L ◦H1 :
(
x
y

)
�→

(
j2x4 − j2y

j2x

)
=

(
j8x4 − j2y

j2x

)
= H1 ◦ L

(
x
y

)
, and 

also L ◦H2 :
(
x
y

)
�→

(
j2x4 − j2 · j · y

j2x

)
=

(
j8x4 − j.j2y

j2x

)
= H2 ◦ L

(
x
y

)
. In clearer 

terms, one has 

X
Y

L j2X
j2Y

H1

j6X4−Y
X

j8X4−j2Y
j2XL−1

Now the key property is that H1 and H2 are almost conjugate: more precisely, let us write 

θ2 :
(
X
Y

)
�→

(
α5X

α8Y

)
; then the following diagram commutes: 

C
2

H2

θ1
C

2

H1

C
2

C
2

θ2

 Indeed, we have 
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X
Y

θ1 αX
α7Y

H1

α9X4−α12Y
α9X

α4X4−α7Y
αXθ2

X4−jY
X

 Therefore we proved H2 = θ2 ◦H1 ◦ θ1

By iterating further, one gets

but one also has θ1 ◦ θ2
(
X
Y

)
=

(
α6X

α15Y

)
=

(
j2X

j2Y

)
= L

(
X
Y

)
.

If one recalls that L commutes with both H1, H2, one deduces that 

H◦n
2 ◦ θ−1

1 = θ2 ◦ Ln ◦H◦n
1 .

Precomposing by L or θi does not change the norm of a vector (each component being 
multiplied by a complex number on the unit circle). Therefore, if p ∈ U+

1  then �H◦n
1 (p)� 

is unbounded and also �H◦n
2 (θ−1

1 (p)�, but this shows that θ−1
1 (p) belongs to U+

2 . �
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Appendix
This section gathers the more technical parts, which are essentially convenient change 
of coordinates within the escaping sets. We provide a bit more material than is strictly 
necessary, in the hope that such calculations might be useful for further investigations.

Uniformizations

Theorem 4.1  In the coordinates (ζ , z), the Hénon map is given by

H◦n
2 = θ2 ◦H1 ◦ (θ1 ◦ θ2) ◦H1 ◦ (θ1 ◦ θ2) . . . (θ1 ◦ θ2) ◦H1 ◦ θ1

H(ζ , z) =
(

ζ d
a
d
z + Q(ζ )

)
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     where the degree (d + 1) polynomial (without constant term) Q is as follows:

(1)	 Degree 2: Given that P(x) = x2 + c one has Q(ζ ) = ζ 3 − c
2ζ.

(2)	 Degree 3: For P(x) = x3 + Ax + B one has Q(ζ ) = ζ 4 − A
3 ζ

2 − B
3 ζ .

(3)	 Degree 4: For P(x) = x4 + Ax2 + Bx + C , one has 

(4)	 Degree 5: For P(x) = x5 + Ax3 + Bx2 + Cx + D, one has 

(5)	 Degree 6: For P(x) = x6 + Ax4 + Bx3 + Cx2 + Dx + E, one has 

 where the coefficient α is given by 

Second coordinate z(x, y)

Lemma 4.2  One can find two constants M > 0, R > 0   for which there exists on the 
domain

   an analytic function ψ satisfying

  where Q  is a polynomial function of degree d + 1.

Proof  Following [9], one introduces ψ(x, y) = ζ
∫ x(ζ , y)
0

∂x
∂ζ
(ζ , u) du and then expresses 

the Hénon map in the coordinates (ζ , ψ). �

Lemma 4.3  The function Q(ζ ) is the polynomial part of the power series

  Moreover, if the Jacobian a is not equal to the degree d, one can assume that Q has no 
constant term by performing a further change of variables ψ(z) �→ ψ(z)+ α (where α is a 
constant).

Q(ζ ) = ζ 5 −
A

4
ζ 3 −

B

4
ζ 2 +

A2 − 8C

32
ζ .

Q(ζ ) = ζ 6 −
A

5
ζ 4 −

B

5
ζ 3 +

A2 − 5C

25
ζ 2 −

3AB+ 5D

25
ζ .

Q(ζ ) = ζ 7 −
A

6
ζ 5 −

B

6
ζ 4 +

A2 − 4C

24
ζ 3 +

AB− 3D

18
ζ 2 + α · ζ ,

−
2A3

63
−

B2

18
−

12AC − 5A3

108
−

E

6
+

5B2

72

10AC

72
−

55A3

1296
.

M+ :=
{(

x
y

)
∈ V+;

∣∣∣∣φ
+
(
x
y

)∣∣∣∣ > Mmax{R, |y|}
}

ψ(H(x, y)) =
a

d
ψ(x, y)+ Q(ζ(x, y)),

S(ζ ) = ζ d
∫ x(ζ , 0)

0

∂x

∂ζ
(ζ d , u)du.
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Proof  This is proved in [9], page 248. �

Study of ζ = φ+(x, y). Near the point p = [1 : 0 : 0] ∈ CP2, we use the local coordinates 
(t, w) = (1/x, y/x).

Lemma 4.4  Near the point p, the change of variables 
(

t
w

)
�→

(
1/ζ
y/ζ

)
 is a biholomor-

phism that is tangent to the identity.

Proof  Favre    [4] proved that 1/ζ can be expressed as a power series in (t, w) of the form 
t + R2(t, w) where R2 has monomials with total degree in t, w that is larger than or equal 
to 2. For the second coordinate, just observe that y/ζ = (y/x) · (x/ζ ) = w · (1+ R(t, w)), 
where all monomials in R have total degree at least 1. �

Immediately, this provides useful expressions for x(ζ , y) and ζ(x, y).
For the next few lemmas we will work in the coordinates t, w to simplify, as it is easier 

to deal with power series rather than two-dimensional Laurent series.

Lemma 4.5  Using the variables t = 1/x and w = y/x, the function 1/ζ has the following 
expansion in a neighborhood of the point p = [1 : 0 : 0]:

   where α(t,w) is a power series in t, w converging near p.

Proof  We recall the expression of the Hénon map in the variables t, w:

Now, if we write tn(t, w) the first coordinate of Hn(t, w) we have 1/ζ = lim(tn)
1/dn . 

More precisely, 1/ζ is obtained as the limit of the infinite product:

Thus,

where the dnth roots symbols mean the standard branch of the root. To simplify, 
we will use the notation 1/ζ + t · P1(t, w).P2(t, w) . . . Alternatively, one can write 

1

ζ
= t(1+ tα(t,w)),

H(t,w) =




td

tdP(1/t)−awtd−1

td−1
tdP(1/t)−awtd−1


.

1/ζ = t ·




td

tdP(1/t)− awtd−1

td




1/d

·




td1
td1 P(1/t1)− aw1t

d−1
1

td1




1/d2

. . .

1

ζ
= t ·

(
1

tdP(1/t)− awtd−1

)1/d

·
(

1

td1 P(1/t1)− aw1t
d−1
1

)1/d2

. . .
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1/ζ = t. exp




ln

�
1

tdP(1/t)−awtd−1

�

d
+

ln

�
1

td
1 P(1/t1)−aw1t

d−1
1

�

d2
+ . . .


, and observe that the 

convergence comes from the fact that all the terms ln
(

1

tdn P(1/tn)−awnt
d−1
n

)
 are bounded. 

We can then expand each term and rewrite the whole product P1 · P2 . . . as a single 
power series P(t,  w). We claim now that P(0,  w) is identically equal to 1. Indeed, it is 
easy to check by induction that tn = 0 ⇒ tn+1 = 0 and thus t = 0 implies that each term 
Pn(t,w) = 1 for n ≥ 1. Thus, one can rewrite P(t,  w) in the form 1+ tα(t,w) which is 
what we wanted. �

Lemma 4.6  The function x(ζ , y) is given by

   where U2(r, s) is a power series in r, s which is a sum of monomials of degree at least 2.

Proof  We already know that (t, w) �→ (r, s) is a local biholomorphism tangent to the 
identity; therefore, one can write t = r + T2(r, s) where T2 is a power series with mono-
mials of total degree D ≥ 2 and similarly w = s + S2(r, s). Thus, 1

ζ
= t(1+ tα(t, w)) can 

be rewritten as x
ζ
= 1+ tα(t,w) = 1+ (r + T2(r, s))β(r, s), where β(r, s) is the power 

series obtained by substituting t = r + T2(r, s) and w = s + S2(r, s) into α(t, w). The 
constant C is simply the constant term (if any) of β . �

Lemma 4.7  (Laurent series for x(ζ , y)) One has

  where m1 = 1 and mn = n− 1 for n ≥ 2.

Proof  This is an immediate consequence of the previous lemma. �

We recall that the Hénon map can be written in the coordinates (ζ , z) as 
H : (ζ , z) �→

(
ζ d , a

d
z + Q(ζ )

)
.

Lemma 4.8  In the Laurent series expansion x(ζ , y) = h0(ζ )+ yh1(ζ )+ y2h2(ζ )+ · · · ,  
one needs only h0 to determine Q(ζ ).

Proof  We recall that Q(ζ ) is given by the (degree d + 1) polynomial part of

x(ζ , y) = ζ

(
1+

C

ζ
+U2(

1

ζ
,
y

ζ

)
,

x(ζ , y) =
(
ζ +

C

ζ
+ · · ·

)
+ y

(
A1

ζm1
+ · · ·

)
+ · · · + yn

(
An

ζmn
+ · · ·

)
+ · · · ,

S(ζ ) = ζ d
∫ x(ζ , 0)

0

∂x

∂ζ
(ζ d , u) du.
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Now

and

Finally, one substitutes x(ζ , 0) = ζ + C
ζ
+ · · · in y and multiply by ζ d . Thus, we can get 

rid in 
∫ x(ζ ,0)
0

∂x
∂ζ
(ζ d ,u) du of all the terms 1

ζ k
, k ≥ d. Now for n = 1, we have a leading term 

ζ 2 · C1

ζ 2d
, but since for any d ≥ 2 we have that 2d − 2 ≥ d we can get rid of this term (and all 

the following terms in h1(ζ )). Also for any n ≥ 2 we have a leading term ζ n+1. Cn

ζ d.(mn+1) . Now 
d · (mn + 1) − (n + 1) = d · n − (n + 1) = d + d · (n − 1) − (n + 1) ≥

d + 2 · (n− 1)− (n+ 1) ≥ d + n− 3 ≥ d.  
Thus we can neglect all the terms coming from hn(ζ ). �

Determining how many terms are needed in the expansion.
Low-order examples.

Lemma 4.9  The function Q(ζ ) is given by the polynomial part of the product ζ d · x(ζ , 0).

Proof  We already saw that 
∫ y
0

∂x
∂ζ
(ζ d ,u) du can be written as

and that the terms corresponding to yk , k ≥ 2 can be dropped. Thus, Q(ζ ) is given by the 
polynomial part of ζ d · x(ζ , 0) ·

(
1− C

ζ 2d
+ · · ·

)
, which is the same as the polynomial 

part of ζ d · x(ζ , 0) because x(ζ , 0) is of order ζ and therefore we can drop the term C
ζ 2d

 

and the higher order ones in 1
ζ
. �

We now relate x(ζ , 0) to ζ(x, 0):

Lemma 4.10  Assume that

    Then

  where the coefficients Fi are given by

∂x

∂ζ
=

(
1−

C

ζ 2
+ · · ·

)
+ y

(
B1

ζm1+1
+ · · ·

)
+ · · · + yn

(
Bn

ζmn+1
+ · · ·

)
+ · · ·

∫ y

0

∂x

∂ζ
(ζ d ,u) du = y

(
1−

C

ζ 2d
+ · · ·

)
+ y2

(
C1

ζ d(m1+1)
+ · · ·

)

+ · · · + yn+1

(
Cn

ζ d(mn+1)
+ · · ·

)
+ · · · .

y

(
1−

C

ζ 2d
+ · · ·

)
+ y2

(
C1

ζ d(m1+1)
+ · · ·

)
+ · · · + yn+1

(
Cn

ζ d(mn+1)
+ · · ·

)
+ · · · ,

ζ(x, 0) = x +
D1

x
+

D2

x2
+

D3

x3
+

D4

x4
+

D5

x5
+ · · ·

x(ζ , 0) = ζ +
F1

ζ
+

F2

ζ 2
+

F3

ζ 3
+

F4

ζ 4
+

F5

ζ 5
+ · · · ,
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1.	 F1 = −D1,

2.	 F2 = −D2,

3.	 F3 = −D3 − D2
1,

4.	 F4 = −3D1D2 − D4,

5.	 F5 = −2D3
1 − 2D2

2 − 4D1D3 − D5.

Proof  First we have

Similarly,

Thus, after substituting these expressions in the expression of x(ζ , 0) and identifying 
with x we obtain the following relations between the coefficients:

1.	 D1 + F1 = 0,

2.	 D2 + F2 = 0,

3.	 D3 − F1D1 + F3 = 0,

4.	 D4 − F1D2 − F2(2D1)+ F4 = 0,

5.	 D5 + F1(−D3 + D2
1)− 2D2F2 − 3D1F3 + F5 = 0.

From those, we deduce

1.	 F1 = −D1,

2.	 F2 = −D2,

3.	 F3 = −D3 − D2
1,

4.	 F4 = −3D1D2 − D4,

5.	 F5 = − 2D3
1 − 2D2

2 − 4D1D3 − D5.

It remains to find the expansion for x(ζ , 0).

Lemma 4.11  We assume that the Hénon map is given by H(x, y) = (P(x)− ay, x) with 
P being a degree d polynomial that is centered (i.e., without degree d − 1 term). Consider 
Hn(x, y) = (xn(x, y), xn−1(x, y)). Then the function xn satisfies the following:

1

ζ
=

1

x
·
(
1−

D1

x2
−

D2

x3
+

−D3 + D2
1

x4

)
+ O

(
1

x6

)
.

1

ζ 2
=

1

x2
·
(
1−

2D1

x2
−

2D2

x3

)
+ O

(
1

x6

)
,

1

ζ 3
=

1

x3
·
(
1−

3D1

x2

)
+ O

(
1

x6

)
,

1

ζ 4
=

1

x4
+ O

(
1

x6

)
,

1

ζ 5
=

1

x5
+O

(
1

x6

)
.
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1.	 xn = xn(x, 0) is a degree dn polynomial of the form xn(x, 0) = xd
n + αnx

dn−2 + . . .

2.	
(
P(xn)−a.xn−1

xdn

) 1

dn+1 = 1+ O
(

1
xd

n−2

)
.

Proof  The first claim is proved by induction. For the second, we need several obser-
vations. First we have P(xn)/x

d
n = 1+ αn−2

x2n
+ · · · + α0

xdn
. Then one observes that 

1
xkn

= O
(

1
xk .d

n

)
, and thus P(xn)/xdn can be written as 1+ O

(
1

x2.d
n

)
. For the term axn−1

xdn
, 

we simply observe that it can be written as 1+ O(1/xd
n+1−dn−1

). Finally, one can see that 

dn+1 − dn−1 = dn−1(d + 1)(d − 1) ≥ dn−1(d)(d − 1) = dn(d − 1) ≥ dn when d ≥ 2. 

Thus, 
(
P(xn)−a.xn−1

xdn

)
= 1+ O( 1

xd
n−2 ) and 

(
P(xn)−a.xn−1

xdn

) 1

dn+1 = 1+ O( 1
xd

n−2 ). �

Lemma 4.12  In order to determine Q(ζ ),  one only needs the first two terms x
(
P(x)

xd

)1/d
 

in the infinite product expansion of ζ(x, 0).

Proof  Due to the particular form of Q(ζ ), we need to use in x(ζ , 0) only the terms up 
to order 1/ζ d−1. Thus, in ζ(x, 0) we only need to keep the terms up to the order 1/ζ d−1. 
Now for any n ≥ 2 we have dn − 2 ≥ d2 − 2 > d − 1 (as soon as d ≥ 2). �

Lemma 4.13  (Low-order examples)

(1)	 Degree 2: Given that P(x) = x2 + c one has ζ(x, 0) = x + c
2x + O(1/x2).

(2)	 Degree 3: For P(x) = x3 + Ax + B one has ζ(x, 0) = x + A
3x + B

3x2
+ O(1/x3).

(3)	 Degree 4:  For P(x) = x4 + Ax2 + Bx + C , one has 

(4)	 Degree 5: For P(x) = x5 + Ax3 + Bx2 + Cx + D, one has 

(5)	 Degree 6: For P(x) = x6 + Ax4 + Bx3 + Cx2 + Dx + E, one has 

Putting things together Now we have everything we need to express the Hénon map in 
the new coordinates. The final theorem is a direct consequence of the previous lemmas.

Theorem 4.14  In the coordinates (ζ , z), the Hénon map is given by

   where the degree (d + 1) polynomial (without constant term) Q is as follows:

ζ(x, 0) = x +
A

4x
+

B

4x2
+

8C − 3A2

32x3
+ O(1/x4).

ζ(x, 0) = x +
A

5x
+

B

5x2
+

5C − 2A2

25x3
+

D

5x4
+ O(1/x5).

ζ(x, 0) = x +
A

6x
+

B

6x2
+

12C − 5A2

72x3
+

12D − 10AB

72x4

+
1

x5
·
(
E

6
−

5B2

72
−

10AC

72
+

55A3

1296

)
+ O(1/x6)

H(ζ , z) =
(

ζ d
a
d
z + Q(ζ )

)
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(1)	 Degree 2: Given that P(x) = x2 + c one has Q(ζ ) = ζ 3 − c
2ζ .

(2)	 Degree 3: For P(x) = x3 + Ax + B one has Q(ζ ) = ζ 4 − A
3 ζ

2 − B
3 ζ .

(3)	 Degree 4: For P(x) = x4 + Ax2 + Bx + C , one has 

(4)	 Degree 5: For P(x) = x5 + Ax3 + Bx2 + Cx + D, one has 

(5)	 Degree 6: For P(x) = x6 + Ax4 + Bx3 + Cx2 + Dx + E, one has 

 where the coefficient α is given by 
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