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1  Background
The purpose of this note is to study the Fatou–Julia dichotomy, not for the iterates of 
a single holomorphic endomorphism of Ck , k ≥ 2, but for a family F  of such maps. 
The Fatou set of F  will be by definition the largest open set where the family is normal, 
i.e., given any sequence in F  there exists a subsequence which is uniformly convergent 
or divergent on all compact subsets of the Fatou set, while the Julia set of F  will be its 
complement.

We are particularly interested in studying the dynamics of families that are semigroups 
generated by various classes of holomorphic endomorphisms of Ck , k ≥ 2. For a collec-
tion {ψα} of such maps let

denote the semigroup generated by them. The index set to which α belongs is allowed to 
be uncountably infinite in general. The Fatou set and Julia set of this semigroup G will 
be henceforth denoted by F(G) and J(G),   respectively. Also for a holomorphic endo-
morphism φ of Ck , F(φ) and J (φ), will denote the Fatou set and Julia set for the family 
of iterations of φ. The ψα that will be considered in the sequel will belong to one of the 
following classes:

G = �ψα�
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  • Ek : The set of holomorphic endomorphisms of Ck which have maximal generic rank 
k.

  • Ik : The set of injective holomorphic endomorphisms of Ck .

  • Vk : The set of volume preserving biholomorphisms of Ck .

  • Pk : The set of proper holomorphic endomorphisms of Ck .

The main motivation for studying the dynamics of semigroups in higher dimensions 
comes from the results of Hinkkanen–Martin [7] and Fornaess–Sibony [5]. While [7] 
considers the dynamics of semigroups generated by rational functions on the Riemann 
sphere, [5] puts forth several basic results about the dynamics of the iterates of a single 
holomorphic endomorphism of Ck , k ≥ 2. Under such circumstances, it seemed natural 
to us to study the dynamics of semigroups in higher dimensions.

Section 2 deals with basic properties of F(G) and J(G) when G is generated by elements 
that belong to Ek and Pk . The main theorem in Sect. 3 states that if J(G) contains an isolated 
point, then G must contain an element that is conjugate to an upper triangular automor-
phism of Ck and in Sect. 4, we discuss a few interesting examples of Julia set of a semigroup. 
Finally, we define recurrent domains for semigroups in Sect. 5 and provide a classification of 
such domains under some conditions which are generalizations of the corresponding state-
ments of Fornaess–Sibony [5] for the iterates of a single holomorphic endomorphism of 
Ck , k ≥ 2. The classification for recurrent Fatou components for the iterates of holomor-
phic endomorphisms of P2 and Pk is studied in [4] and [3], respectively. In [4], Fornaess–
Sibony also gave a classification of recurrent Fatou components for iterations of Hénon 
maps inside K+, which was initially considered by Bedford–Smillie in [1]. A classification 
for non-recurrent, non-wandering Fatou components of P2 is given in [11], whereas a clas-
sification of invariant Fatou components for nearly dissipative Hénon maps is studied in [9].

2  Properties of the Fatou set and Julia set for a semigroup G
In this section, we will prove some basic properties of the Fatou set and the Julia set for 
semigroups.

Proposition 2.1 Let G be a semigroup generated by elements of  Ek where k ≥ 2 and for 
any φ ∈ G define

Then, for every φ ∈ G

(i)  φ(F(G) �φ) ⊂ F(G).

(ii) J (G) ∩ φ(Ck) ⊂ φ(J (G)), if G is generated by elements of Pk or Ik .

Proof Note that φ ∈ G is an open map at any point z ∈ F(G) �φ . Since for any sequence 
ψn ∈ G, the sequence ψn ◦ φ has a convergent subsequence around a neighbourhood of 
z (say Vz), ψn also has a convergent subsequence on the open set φ(Vz) containing φ(z).

Now if G is generated by elements of Pk or Ik , then φ is an open map at every point in 
Ck . Then, the Fatou set is forward invariant and hence the Julia set is backward invariant 
in the range of φ.  �

�φ = {z ∈ Ck : det φ(z) = 0}.
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A family of endomorphisms F  in Ck is said to be locally uniformly bounded on an 
open set � ⊂ Ck if for every point there exists a small enough neighbourhood of the 
point (say V ⊂ �) such that F  restricted to V is bounded, i.e.,

for some M > 0 and for every f ∈ F .

Proposition 2.2 Let G = �φ1,φ2, . . . ,φn�, where each φj ∈ Ek and let �G be a Fatou 
component of G such that G is locally uniformly bounded on �G . Then for every φ ∈ G the 
image of �G under φ, i.e., φ(�G) is contained in Fatou set of G.

Proof Let K ⊂⊂ �G, i.e., K is a relatively compact subset of �G , then

Claim �G is a Runge domain, i.e., K̂ ⊂ �G where

Let Kδ = {z ∈ Ck : dist (z,K ) ≤ δ}. Choose δ > 0 such that Kδ ⊂⊂ �G . Now note that 
K̂δ ⊂⊂ Ck , K̂δ ⊃ K̂  and G is uniformly bounded on Kδ . Pick φ ∈ G. Then, there exists a 
polynomial endomorphism Pφ of Ck such that

Hence

for every z ∈ K̂δ and some constant M > 0. So G is uniformly bounded on K̂δ and 
K̂ ⊂ �G .

Let

for every 1 ≤ i ≤ n and

Thus φi for every i, where 1 ≤ i ≤ n is an open map in �G �. Hence φi(�G �) is con-
tained inside a Fatou component say �i and G is locally uniformly bounded on each of �i 
for every 1 ≤ i ≤ n, i.e., each �i is a Runge domain.

�f �V = sup
V

|f (z)| < M

K̂ : = {z ∈ Ck : |P(z)| ≤ sup
K

|P| for every polynomial P}.

|φ(z)− Pφ(z)| ≤ ǫ for every z ∈ K̂δ ,

i.e., |Pφ(z)| − ǫ ≤ |φ(z)| ≤ |Pφ(z)| + ǫ.

|φ(z)| ≤ |Pφ(z)| + ǫ ≤ sup
Kδ

|Pφ(z)| + ǫ

≤ sup
Kδ

|φ(z)| + 2ǫ ≤ M + 2ǫ

�i = {z ∈ Ck : det φi(z) = 0}

� =

n⋃

i=1

�i.
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Now pick p ∈ �G ∩�. Since � is a set with empty interior, there exists a sufficiently 
small disc centred at p say �p such that �p {p} ⊂ �G �. Then, φi(�p {p}) ⊂ �i for every 
1 ≤ i ≤ n and since each �i is Runge φi(p) ∈ �i, i.e., φi(�G) is contained in the Fatou set 
for every 1 ≤ i ≤ n. Now for any φ ∈ G there exists a m > 0 such that

where 1 ≤ nj ≤ n for every 1 ≤ j ≤ m. Thus, applying the above argument repeatedly for 
each φnj (�̃j) where G is locally uniformly bounded on �̃j it follows that φ(�G) is con-
tained in the Fatou set of G.  �

Proposition 2.3 If G = �φ1,φ2, . . . ,φn� where each φi ∈ Ek for every 1 ≤ i ≤ n and let 
�G be a Fatou component of G. Then for any φ ∈ G there exists a Fatou component of G, 
say �φ such that φ(�G) ⊂ �̄φ and

Proof Let φ ∈ G and let �φ denote the set of points in Ck where the Jacobian of φ van-
ishes. Since �G �φ is connected it follows that φ(�G �φ) ⊂ �φ where �φ is a Fatou 
component of G and by continuity φ(�G) ⊂ �̄φ .

Pick p ∈ ∂�G such that p /∈ ∂�φi for every 1 ≤ i ≤ n. Since φi(�G) ⊂ �̄φi, φi(p) ∈ �φi 
for every 1 ≤ i ≤ n. So there exists Vφi an open neighbourhood of φi(p) in �φi for every i. 
Let Vp be a neighbourhood of p such that

Let {ψn} be a sequence in G and without loss of generality it can be assumed that there 
exists a subsequence such that ψn = fn ◦ φ1. Now φ1(V̄p) is a compact subset in �1 and 
fn has a subsequence which either converges uniformly on φ1(V̄p) or diverges to infinity. 
Thus, Vp is contained in the Fatou set of G which is a contradiction!  �

The next observation is an extension of the fact that if φ ∈ Pk, then F(φ) = F(φn) for 
every n > 0 for the case of semigroups.

Definition 2.4 Let G be a semigroup generated by endomorphisms of Ck . A sub-sem-
igroup H of G is said to have finite index if there is a finite collection of elements say 
ψ1,ψ2, . . . ,ψm−1 ∈ G such that

The index of H in G is the smallest possible number m.

φ = φn1 ◦ φn2 ◦ · · · ◦ φnm

∂�G ⊂

n⋃

i=1

φ−1
i (∂�φi).

V̄p ⊂

n⋂

i=1

φ−1
i (Vφi).

G =
(m−1⋃

i=1

ψi ◦H
)
∪H .
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Definition 2.5 A sub-semigroup H of a semigroup G of endomorphisms of Ck is of co-
finite index if there is a finite collection of elements say ψ1,ψ2, . . . ,ψm−1 ∈ G such that 
either

for every ψ ∈ G and for some 1 ≤ j ≤ m− 1. The index of H in G is the smallest possible 
number m.

Proposition 2.6 Let G be a semigroup generated by proper holomorphic endomor-
phisms of Ck and H be a sub-semigroup of G which has a finite (or co-finite) index in G. 
Then, F(G) = F(H) and J (G) = J (H).

Proof From the definition itself it follows that F(G) ⊂ F(H). To prove the other 
inclusion, pick any sequence {φn} ∈ G. Since H has a finite index in G, there exists ψi, 
1 ≤ i ≤ m− 1 such that

So without loss of generality one can assume that there exists a subsequence say φnk with 
the property

where {hnk } is a sequence in H. Now on F(H), the sequence {hnk } has a convergent subse-
quence. Hence, so do {φnk } and {φn} as ψ1 is a proper map in Ck .  �

Let G be a semigroup

where φi ∈ Pk, for every 1 ≤ i ≤ m and each of these φi commute with each other, i.e., 
φi ◦ φj = φj ◦ φi for i �= j. Let H be a sub-semigroup of G defined as

where li > 0 for every 1 ≤ i ≤ m. Then, H has a finite index in G and hence by Proposi-
tion 2.6 F(G) = F(H).

Corollary 2.7 Let φi be elements in Pk for 1 ≤ i ≤ m, l = (l1, l2, . . . , lm) an m-tuple of 
positive integers and Gl = �φ

l1
1 ,φ

l2
2 , . . . ,φ

lm
m �. Then, F(Gl) and J (Gl) are independent of 

the m-tuple l, if φi ◦ φj = φj ◦ φi for every 1 ≤ i, j ≤ m, i.e., given two m -tuples p and q, 
F(Gp) = F(Gq).

Proof Since Gl has a finite index in G for every m-tuple l = (l1, l2, . . . , lm), it follows that 
F(Gl) = F(G) and J (Gl) = J (G).  �

ψ ◦ ψj ∈ H or ψ ∈ H

G =

(
m−1⋃

i=1

ψi ◦H

)
∪H .

φnk = ψ1 ◦ hnk

G = �φ1,φ2, . . . ,φm�

H = �φ
l1
1 ,φ

l2
2 , . . . ,φ

lm
m �
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Example 2.8 Let G = �f , g� where f (z1, z2) = (z21, z
2
2) and g(z1, z2) = (z21/a, z

2
2) for 

a ∈ C such that |a| > 1. Then, it is easy to check that

and

Now consider the bidisc {|z1| < 1, |z2| < 1}. Clearly, this domain is forward invariant 
under both f and g. This shows that {|z1| < 1, |z2| < 1} ⊂ F(G). Similarly observe that

We claim that

Note that {|z1| = |a|, |z2| ≤ 1} is contained inside J(G) and since J(G) is backward invari-
ant it follows that

So inductively we get that

for any t = k2−n where 1 ≤ k ≤ 2n and n ≥ 1. As {k2−n: 1 ≤ k ≤ 2n, n ≥ 1} is dense in 
[0, 1], it follows that {1 ≤ |z1| ≤ |a|} × {|z2| ≤ 1} ⊂ J (G). Thus, the Julia set of the semi-
group G is not forward invariant and clearly from the above observations one can prove 
that

Example 2.9 Let T0(z) = 1, T1(z) = z and Tn+1(z) = 2zTn(z)− Tn−1(z) for n ≥ 1 and 
G = �f0, f1, f2, . . .�, with fi(z1, z2) = (Ti(z1), z

2
2) for i ≥ 0. Consider

Since any sequence in G1 is uniformly unbounded on the complement of [−1, 1], it fol-
lows that

Also, as J (G1) ⊂ C is completely invariant so is J(G).

3  Isolated points in the Julia set of a semigroup G

Proposition 3.1 Let G = �φ1,φ2, . . .� where each φi ∈ Ek. If the Julia set J (G) con-
tains an isolated point (say a), then there exists a neighbourhood �a of a such that 
�a {a} ⊂ F(G) and ψ ∈ G which satisfies �a ⊂⊂ ψ(�a). In particular, if G is a semi-
group generated by proper maps, then ψ−1(a) = a.

J (f ) =
{
|z1| = 1

}
×

{
|z2| ≤ 1

}
∪
{
|z1| ≤ 1

}
×

{
|z2| = 1

}

J (g) =
{
|z1| = |a|

}
×

{
|z2| ≤ 1

}
∪
{
|z1| ≤ |a|

}
×

{
|z2| = 1

}
.

{|z2| > 1} ∪ {|z1| > |a|} ⊂ F(G).

{
1 ≤ |z1| ≤ |a|

}
×

{
|z2| ≤ 1

}
⊂ J (G).

{|z1| = |a|1/2, |z2| ≤ 1} ⊂ f −1({|z1| = |a|, |z2| ≤ 1}) ⊂ J (G).

{|z1| = |a|t , |z2| ≤ 1} ⊂ J (G)

J (G) =
{
|z1| ≤ 1

}
×

{
|z2| = 1

}
∪
{
1 ≤ |z1| ≤ |a|

}
×

{
|z2| ≤ 1

}
.

G1 = �T0(z1),T1(z1),T2(z1), ...�, G2 =
〈
z22

〉
.

J (G) = [−1, 1] × {|z2| ≤ 1}.
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Proof Assume a = 0 is an isolated point in the Julia set J(G). Then there exists a suffi-
ciently small ball B(0, ǫ) around 0 such that B(0, ǫ) {0} is contained F(G). Let

Then A ⊂ F(G).

Claim There exists a sequence φn ∈ G such that φn diverges to infinity on A.

Suppose not. Then for every sequence {φn} ∈ G, there exists a subsequence {φnk } 
which converges to a finite limit in A. By the maximum modulus principle

By the Arzelá–Ascoli theorem, it follows that φnk is equicontinuous on B(0, ǫ), which 
contradicts that 0 ∈ J (G).

By the same reasoning as above there exists a sequence {φn} ∈ G such that it diverges 
uniformly to infinity on A but does not diverge uniformly to infinity on B(0, ǫ), since 
it would again imply that B(0, ǫ) is contained in the Fatou set of G. Thus, there exists a 
sequence of points xn in B(0, ǫ) such that φn(xn) is bounded, i.e.,

for some large M > 0. So we can choose a subsequence of this {φn} and relabel it as {φn} 
again such that it satisfies the following condition:

where p ∈ B(0, ǫ).

Claim p = 0.

Suppose not. Then φn(p) is bounded. Let Ã = {z: min(|p|, ǫ/2) ≤ |z| ≤ ǫ}. Then 
Ã ⊇ A. Now φnk (p) converges on Ã, then φnk on Ã converges to a finite limit, and hence 
on A by the maximum modulus principle. This is a contradiction!

Since φn|∂B(0,ǫ) → ∞ for large n

Thus for a sufficiently large R > 0 and n

Now, if B(0, ǫ) � φn(B(0, ǫ)), then B(0, |q| + R) � φn(B(0, ǫ)) since B(0, ǫ) ⊂ B(0, |q| + R) 
for large R > 0. Then there exists yn ∈ ∂B(0, ǫ) such that |φn(yn)| < |q| + R, which is not 
possible. Hence B(0, ǫ) ⊂⊂ φn(B(0, ǫ)) for sufficiently large n. Relabel this φn as ψ and 
consider the neighbourhood �0 as B(0, ǫ).

Since 0 ∈ B(0, ǫ) ⊂ ψ(B(0, ǫ)), there exists α ∈ B(0, ǫ) such that ψ(α) = 0. From Prop-
osition 2.1 it follows that α = 0.  �

Theorem 3.2 Let G = �φ1,φ2, . . .� where each φi ∈ Ik . If the Julia set J(G) contains an 
isolated point, say a then there exists an element ψ ∈ G such that ψ is conjugate to an 
upper triangular automorphism.

A: = {z: ǫ/2 ≤ |z| ≤ ǫ}.

‖φnk‖B(0,ǫ) < M.

|φn(xn)| < M

φn(xn) → q and xn → p

�φn�∂B(0,ǫ) ≫ |q|.

B(0, |q| + R) ∩ φn(B(0, ǫ)) �= ∅.



Page 8 of 22Bera and Pal  Complex Anal Synerg  (2016) 2:2 

Proof Without loss of generality we can assume that a = 0. Now by Proposition 3.1 it 
follows that there exists a sufficiently small ball B(0, ǫ) around 0 and an element ψ ∈ G 
such that B(0, ǫ) ⊂⊂ ψ(B(0, ǫ)). Since ψ is injective map in Ck, ψ(B(0, ǫ)) is biholomor-
phic to B(0, ǫ) and hence we can consider the inverse, i.e.,

Note that ψ(B(0, ǫ)) is bounded and B(0, ǫ) is compactly contained in ψ(B(0, ǫ)). There-
fore, there exists an α > 1 such that the map defined by

is a self-map of the bounded domain ψ(B(0, ǫ)) with a fixed point at 0. Then by the Car-
athéodory–Cartan–Kaup–Wu Theorem (see Theorem  11.3.1 in [8]), it follows that all 
the eigenvalues of ψα are contained in the unit disc. Hence 0 is a repelling fixed point for 
ψ and also is an isolated point in the Julia set of ψ .

Since B(0, ǫ) {0} ∈ J (G), B(0, ǫ) {0} is also contained in the Fatou set of ψ and using the 
same argument as in the Proposition 3.1, there exists a subsequence (say nk) such that

uniformly. Thus for any given R > 0, there exists k0 large enough such that 
B(0,R) ⊂ ψ

nk0 (B(0, ǫ)). Hence ψ is an automorphism of Ck and the basin of attraction of 
ψ−1 at 0 is all of Ck . Now by the result of Rosay–Rudin ([10]) ψ is conjugate to an upper 
triangular map.  �

Remark 3.3 The proof here shows that there exists a sequence φn ∈ G such that each φn 
is conjugate to an upper triangular map.

Recall that a domain ω is holomorphically homotopic to a point in a domain � if there 
exists a continuous map h: [0, 1] × ω̄ → � with h(1, z) = z and h(0, z) = p where p ∈ ω 
and h(t, ·) is holomorphic in ω for every t ∈ [0, 1].

Proposition 3.4 Let φ be a non-constant endomorphism of Ck such that on a bounded 
domain U ⊂ F(φ), the map φ is proper onto its image, U ⊂⊂ φ(U) and U is holomorphi-
cally homotopic to a point in φ(U) then

(i)  φ has a fixed point, say p in U.
(ii) φ is invertible at its fixed points.
(iii) The backward orbit of φ at the fixed point in U is finite, i.e., O−(p) ∩ U is finite 

where 

Proof That the map φ has a fixed point p in U follows from Lemma 4.3 in [5].

Without loss of generality we can assume p = 0. Consider ψ(z) = φ(p+ z)− p and 
� = {z − p: z ∈ U}. Then, ψ is the required map with the properties � ⊂⊂ ψ(�) and 0 
is a fixed point for ψ .

ψ−1: ψ(B(0, ǫ)) → B(0, ǫ).

ψα = αψ−1(z)

�ψnk�∂B(0,ǫ) → ∞

O−
φ (p) = {z ∈ Ck : φn(z) = p, n ≥ 1}.
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Suppose ψ is not invertible at 0,  i.e., A = Dψ(0) has a zero eigenvalue. Let �i, 1 ≤ i ≤ k 
be the eigenvalues of A. Therefore, there exist an α such that 0 < α < 1 and 1 < m ≤ k 
such that 0 = |�i| < α for 1 ≤ i ≤ m and |�i| > α for m < i ≤ k . Choose δ > 0 such that

for z ∈ B(0, δ) and m < i ≤ k . Let � be a Lipschitz map in Ck such that

and

Now

can be realized as a graph of a continuous function (see [12]) G� : Cm → Ck−m such that 
G�(0) = 0. Since

W
ψ
s ∩� is an infinite non-empty set containing 0. Also ψnk

|�̄ → ψ0 for some sequence 
nk and ψ0 is holomorphic on the component (say F0) of F(ψ) containing �. Let

Then Wψ
s ∩ F0 ⊂ W

ψ
1  and

where ψ0,i is the ith coordinate function of ψ0. If W
ψ
1 ∩ ∂� = ∅ then Wψ

1 ∩� and hence 
W

ψ
s ∩� will have to be finite which is not true. Thus, there exists a positive integer n0 

such that ψn0(∂�) ∩� �= ∅ but by assumption it follows that � ⊂⊂ ψn(�) for all n ≥ 1, 
i.e., ψn(∂�) ∩� = ∅ for all n > 0. This proves that A has no zero eigenvalues.

Note that this observation also reveals that Wψ
1 ∩� has to be a finite set, and since

the backward orbit of 0 under ψ is finite.  �

Now we can state and prove Theorem 3.2 for semigroups generated by the elements of 
Ek .

Theorem 3.5 Let G = �φ1,φ2, . . .� where each φi ∈ Ek . If the Julia set J(G) contains an 
isolated point (say a) then there exists a ψ ∈ G such that ψ is conjugate to an upper trian-
gular automorphism.

Proof Assume a = 0. Then, as before by Proposition 3.1 there exists a map ψ ∈ G and a 
domain � such that � ⊂⊂ ψ(�).

0 < �DCψ(z)− A� < ǫ0 = min
{
α,

∣∣|�i| − α
∣∣
}

Lip(�) = �A� + ǫ0

� ≡ ψ on B(0, δ).

W�
s : = {z ∈ Ck : |αn�n(z)| is bounded }

W�
s = Wψ

s on B(0, δ/2)

W
ψ
1 = {z ∈ F0: ψ

nk (z) → 0 as k → ∞}.

W
ψ
1 =

k⋂

i=1

ψ0,i
−1(0)

O−
ψ(0) ⊂ W

ψ
1
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If 0 is in the Julia set of ψ , then 0 is an isolated point in J (ψ) and by applying Theo-
rem 4.2 in [5], it follows that ψ is conjugate to an upper triangular automorphism.

Suppose � ⊂ F(ψ). By Proposition 3.4, ψ has a fixed point in �, i.e., {ψn} has a conver-
gent subsequence in �̄.

Case 1 Suppose that G = �φ1,φ2, . . .� where each φi ∈ Pk .

Applying Proposition 3.1, we have that ψ−1(0) = 0 and there exists ψ ∈ G such that

where � is a sufficiently small ball at 0 and R > 0 is a sufficiently large number. Now, let 
ω is the component of ψ−1(B(0,R)) in � containing the origin. Also from Proposition 3.4 
it follows that 0 is a regular point of ψ, which implies that ψ is a biholomorphism on ω. 
Define �β on ψ(ω) as

and note that �β is a self-map of B(0, R) for some β > 1 with a fixed point at 0. Then, the 
eigenvalues of DC�β(0) are in the closed unit disc, i.e.,

where �i are eigenvalues of A. Hence 0 is a repelling fixed point for the map ψ and 
0 /∈ F(ψ). Since 0 is an isolated point in the Julia set of ψ, by Theorem 4.2 in [5] ψ is con-
jugate to an upper triangular automorphism of Ck .

Case 2 Suppose that G = �φ1,φ2, . . .� where each φi ∈ Ek .

As before by Proposition 3.1 there exists ψ ∈ G such that

and let ω be a component of ψ−1(B(0,R)) ⊂ �. Then, ω satisfies all the condition of 
Proposition 3.4 and hence there exists a fixed point p of ψ in ω and O−

ψ(p) ∩ ω is finite.

Claim ψ−1(p) ∩ ω = p

Suppose not, i.e.,

and m ≥ 2. Let a1 ∈ ψ−1(p) {p} in ω and define

Then S1 ⊂ O−
ψ(p) ∩ ω. Now choose inductively an ∈ ψ−1(an−1) {an−1} for n ≥ 2 and 

define

Then

(3.1)� ⊂⊂ B(0,R) ⊂⊂ ψ(�)

�β(z) = βψ−1(z)

β|�−1
i | ≤ 1

� ⊂ B(0,R) ⊂ ψ(�)

#{ψ−1(p)} = the cardinality of ψ−1(p) = m

S1 = O−
ψ(a1) ∩ ω.

Sn = O−
ψ(an) ∩ ω.

Sn ⊂ Sn−1 and

n⋃

i=1

Si ⊂ O−
ψ(p) ∩ ω
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for every n ≥ 2. Note that an /∈ Sn, otherwise there is a positive integer kn > 0 such that 
ψkn(an) = an, i.e., an is a periodic point of ψ, and

for any m > n. Since O−
ψ(p) ∩ ω is finite it follows that Sn has to be empty for large n. This 

implies that there exists a n0 ≥ 1 such that ψ−1(an0) = an0 and an0 ∈ ω. But by Proposi-
tion 3.4 ψ is invertible at its fixed points which means that an0 is a regular value of ψ and

which is a contradiction! Hence the claim.
Now by similar arguments as in the case of proper maps it follows that ψ is a biho-

lomorphism from ω to B(0,  R) and p is a repelling fixed point of ψ and hence lies in 
J (ψ) ⊂ J (G). Since ω ∩ J (G) = {0}, we have p = 0 which is an isolated point in the Julia 
set of ψ and hence ψ is conjugate to an upper triangular automorphism.  �

4  Examples of semigroups and their Julia sets

Example 4.1 Consider the following lower triangular maps in C2:

where p and q are polynomials of degree d fixing the origin and |�|, |µ|, |s|, |t| > θ > 1. 
Let G = �F1, F2�.

Note that for any sequence {fn} ⊆ G and (z,w) �= 0, |fn(z,w)| → ∞ as n → ∞. It also 
can be checked that

Claim J (G) = {0}.

If not, then there exists a point in J(G) apart from the origin and it must be of the form 
(0,w0) with w0 �= 0. Therefore, there exists a sequence {(zn,wn)} converging to (0,w0), 
{fn} ⊆ G and M ≥ 1 such that

for all n ≥ 1.
Let G̃ = �F−1

1 , F−1
2 � be the semigroup generated by F−1

1  and F−1
2 . Then G̃ can be real-

ized as:

where Gk ⊆ G̃ is of the following form:

Without loss generality we assume that f −1
n ∈ Gn for all n ≥ 1.

Now note that F−1
1  and F−1

2  are lower triangular polynomial maps of the form

ψkn+m(an) = p

#{ψ−1(an0)} = m ≥ 2

F1(z,w) = (�z, tw + p(z)), F2(z,w) = (µz, sw + q(z))

{(z,w) ∈ C2: z �= 0} ⊆ F(G) and 0 ∈ J (G).

(4.1)|fn(zn,wn)| ≤ M, i.e., (zn,wn) ∈ f −1
n (B(0;M))

G̃ =

∞⋃

k=1

Gk

Gk = {hk ◦ hk−1 ◦ · · · ◦ h1: hi = F−1
1 or F−1

2 for every 1 ≤ i ≤ k}.

F−1
1 (z,w) = (�−1z, t−1w + p̃(z)), F−1

2 (z,w) = (µ−1z, s−1w + q̃(z))
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where p̃ and q̃ are polynomials of degree d preserving the origin. Let

Then choose C such that

Induction statement: For every (z,w) ∈ B((0, 0);M) and for each h ∈ Gk, k ≥ 1

Clearly when k = 1 and (z,w) ∈ B((0, 0);M),

Similarly |q̃(z)| < CMdd. Thus for h ∈ G1 as |�|−1, |µ|−1, |s|−1, |t|−1 < θ−1 < 1

Hence the induction statement is true for k = 1. Now assuming it to be true for some k 
we will show that it is true for k + 1.

Let h ∈ Gk+1 then h = F−1
1 ◦ h̃ or h = F−1

2 ◦ h̃ where h̃ ∈ Gk . So we have

Assume that h = F−1
1 ◦ h̃ then

Then clearly from the above observation if (z,w) ∈ B((0, 0);M) then

Since θ−1 < 1 and M > 1

Now substituting this estimate on equation (4.3) we have

Similarly if h = F−1
2 ◦ h̃. Hence, the induction statement is true.

Now since f −1
k ∈ Gk, it follows from the induction statement (4.2) that for every 

(z,w) ∈ B(0;M)

p̃(z) =

d∑

i=1

Ciz
i and q̃(z) =

d∑

i=1

Diz
i.

C > max
1≤i≤d

{|Ci|, |Di|}.

(4.2)|π1 ◦ h(z,w)| ≤ θ−kM and |π2 ◦ h(z,w)| ≤ θ−kM + kCθ−(k−1)Mdd.

|p̃(z)| ≤

d∑

i=1

|Ci|M
i < CMdd.

|π1 ◦ h(z,w)| ≤ θ−1M and |π2 ◦ h(z,w)| ≤ θ−1M + CMdd.

|π1 ◦ h̃(z,w)| ≤ θ−kM and |π2 ◦ h̃(z,w)| ≤ θ−kM + kCθ−(k−1)Mdd.

(4.3)
π1 ◦ h(z,w) = �

−1
(
π1 ◦ h̃(z,w)

)

π2 ◦ h(z,w) = t−1
(
π2 ◦ h̃(z,w)

)
+ p̃ ◦ π1 ◦ h̃(z,w).

|π1 ◦ h(z,w)| ≤ θ−k−1M.

|p̃ ◦ π1 ◦ h̃(z,w)| ≤

d∑

i=1

|Ci|(θ
−kM)i ≤ Cθ−kMdd.

|π2 ◦ h(z,w)| ≤ |θ−1
(
π2 ◦ h̃(z,w)

)
| + |p̃ ◦ π1 ◦ h̃(z,w)|

≤ θ−k−1M + kCθ−kMdd + Cθ−kMdd

≤ θ−k−1M + (k + 1)Cθ−kMdd.
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This implies that (zk ,wk) → 0 as k → ∞. Contradiction! Hence the claim follows.

Remark 4.2 Let G = �F1, F2, · · · Fn� for some n ≥ 1 where each Fi is a lower triangular 
polynomial map in Ck, k ≥ 2 having a repelling fixed point at the origin. Then using a 
similar set of arguments as above, it can be proved that J (G) = {0}.

Remark 4.3 A large class of elementary polynomial automorphisms in the Friedland–
Milnor classification ([6]) comprises of lower triangular polynomial automorphisms fix-
ing the origin. Thus for a semigroup G which is finitely generated by such elementary 
maps, we get J (G) = {0}.

Example 4.4 Let fc denote the automorphism of C2 of the form

where c ∈ C and h be a non-constant entire function on C. The Jacobian of fc for every 
c ∈ C is constant, i.e., Jfc ≡ 1 on C2. Consider the semigroup G:

Observe that

Hence, corresponding to any element f ∈ G, there exists cf > 1 such that

Since Jf ≡ 1 for every f ∈ G, no point is a repelling fixed point for any element of G. The 
proof of Theorem 3.2 shows that if the Julia set J(G) has an isolated point it should be a 
repelling fixed point for some element of G which is clearly not the case here. Thus, the 
Julia set J(G) should be perfect.

Claim If Re h(0) < 0, then the Julia set J(G) is exactly the following perfect set:

Consider {fn} ⊂ G. Then each fn can be thought of as

If there exists a subsequence cnk → c ∈ R+ then fnk → fc on compact subsets, otherwise 
cn → ∞ as n → ∞.

Case 1 If Re h(zw) = 0 then {fn} does not diverge to infinity as,

|π1 ◦ f
−1
k (z,w)| ≤ θ−kM and |π2 ◦ f

−1
k (z,w)| ≤ θ−kM + kCθ−(k−1)Mdd.

fc(z,w) =
(
zech(zw),we−ch(zw)

)

G = �fc: 1 < c < ∞�.

fc2 ◦ fc1(z,w) =
(
ze(c1+c2)h(zw),we−(c1+c2)h(zw)

)
= fc1+c2(z,w).

f (z,w) =
(
zecf h(zw),we−cf h(zw)

)
.

{(z,w) ∈ C2: Re h(zw) = 0} ∪ {(z,w) ∈ C2: w = 0}.

fn(z,w) =
(
zecnh(zw),we−cnh(zw)

)
.

�fn(z,w)� = �(z,w)�.
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But π1(fn(z,w)) or π2(fn(z,w)) diverges to infinity uniformly on a small enough neigh-
bourhood of such a point, depending on whether Re h(zw) > 0 or Re h(zw) < 0, 
respectively.

Case 2 If w = 0, then

i.e., �fn(z, 0)� → 0 as n → ∞ since α = Re h(0) < 0. Now for every sufficiently small 
neighbourhood Bz around any (z,  0) there exists (z,w′) ∈ Bz such that w′ �= 0 and 
Re h(zw′) < 0. Therefore, π2(fn(z,w

′)) diverges to infinity as n → ∞.

Hence the claim follows.
Recall Examples 2.8 and 2.9. In each case G is a semigroup generated by maps of maxi-
mal generic rank in C2. So by Theorem 3.5 they should be perfect since none of the ele-
ments in the semigroup is conjugated to an upper triangular automorphism of C2, which 
is exactly the case.

Example 4.5 Let f1 and f2 be the following maps in C2 of maximal generic rank:

Let G be the semigroup generated by them, i.e.,

Then by Theorem 3.5, the Julia set for the semigroup G, i.e., J(G) should be perfect.

Claim  The Julia set J(G) for the semigroup G is: (this is illustrated in Fig. 1)

Suppose {fn} is a sequence from G. Then, there exist sequences of positive integers {an} 
and {bn} such that

�fn(z, 0)� = |z|ecnα ,

F1(z,w) = (z,w2), F2(z,w) = (z,wz).

G = �F1, F2�.

J̃ = {(z,w) ∈ C2: 0 ≤ |z| ≤ 1, |w| ≥ 1} ∪ {(z,w) ∈ C2: 0 ≤ |w| ≤ 1, |z| ≥ 1}.

fn(z,w) = (z, zanwbn)

J(G)

|z|

|w|

Fig. 1 The Julia set J(G)
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and at least one of them is unbounded. Let �2(0; 1) denote the unit polydisc. Then we 
prove that the Fatou set

Case 1 In �2(0; 1)

Thus G is locally uniformly bounded on �2(0; 1), and hence there exists a subsequence 
which converges uniformly on its compact subsets. So �2(0; 1) ⊂ F(G).

Case 2 Suppose |z| > 1 and |w| > 1.

Then without loss of generality one can assume that there exists a subsequence {ank } of 
{an} which diverges to ∞ as k → ∞. Thus

i.e., {fnk } diverges to ∞ uniformly in a small enough neighbourhood of such a (z,  w). 
hence (z,w) ∈ F(G).

Consider the set A defined as:

Since the set

is dense in the positive real axis, the set A is dense in J̃  and Ā = J̃ . Also the Julia set of 
a semigroup is closed, so to prove the claim it is enough to prove that A is contained in 
J(G).

Now pick (z0,w0) ∈ A. Then |zp0w
2q

0 | = 1 for some p ≥ 1 and q ≥ 0. The sequence

for n ≥ 1. On every neighbourhood of (z0,w0), there exists (z, w) such that |zpw2q | > 1 
as well as (z, w) such that |zpw2q | < 1. Thus, (z0,w0) is contained in the Julia set and this 
completes the proof.

5  Recurrent and Wandering Fatou components of a semigroup G
As discussed in Section 1, we will be studying the properties of recurrent and wandering 
Fatou components of semigroup generated by entire maps of maximal generic rank on 
Ck. The wandering and the recurrent Fatou components for a semigroup G are defined 
as:

Definition 5.1 Let G = �φ1,φ2, . . .� where each φi ∈ Ek. Given a Fatou component 
� of G and φ ∈ G, let �φ be the Fatou component of G containing φ(� �φ) where �φ 

F(G) ⊇ �2(0; 1) ∪ {(z,w) ∈ C2: |z| > 1 and |w| > 1}.

�fn|�2(0;1)�∞ < 1.

�fnk (z,w)�∞ > |z|ank → ∞,

A =
{
(z,w) ∈ C2: |z

p
2q w| = 1 for some integers p ≥ 1 and q ≥ 0

}
.

{ p

2q
: p, q integers with p ≥ 1 and q ≥ 0

}

fn(z,w) = F
p(2qn−q)

2 ◦ F
qn
1 (z,w)

=
(
z,wzp(2

qn−q)
)
◦
(
z,w2qn

)
=

(
z, {zpw2q }2

q(n−1)
)
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is the set where the Jacobian of φ vanishes. A Fatou component is wandering if the set {
�φ : φ ∈ G

}
 contains infinitely many distinct elements.

Definition 5.2 Let G = �φ1,φ2, . . .� where each φi ∈ Ek. A Fatou component � of G is 
recurrent if for any sequence {gj}j≥1 ⊂ G, there exists a subsequence {gjm} and a point 
p ∈ � (the point p depends on the chosen sequence) such that gjm(p) → p0 ∈ �.

Note that we assume here a stronger definition of recurrence than the existing defini-
tion for the case of iterations of a single holomorphic endomorphism of Ck . The natural 
extension of this definition to the semigroup set up would have been the following, a 
Fatou component � is recurrent if there is a point p ∈ � and a sequence φn ∈ � such 
that φn(p) → p0, where p0 ∈ �. If this definition of recurrence is adopted then it is pos-
sible that a Recurrent domain is Wandering. In particular, Theorem 5.3 in [7] gives an 
example of a polynomial semigroup G = �φ1,φ2, . . .� in C, such that there exists a Fatou 
component, (say B, which is conformally equivalent to a disc), that is wandering, but 
returns to the same component infinitely often. This means that there exists sequences 
say φ+

n ∈ G and φ−
n ∈ G such that φ−

n (B) ⊂ B or φ+
n (B) are contained in distinct Fatou 

components of G. This example can be easily adapted in higher dimensions.

Example 5.3 Consider the semigroup G = ��1,�2, . . . , � generated by the maps

where φi are the polynomial maps as in Theorem  5.3 of [7]. Let {�−
n }n≥1 ⊂ G be the 

sequence that maps B × D into itself and {�+
n }n≥1 ⊂ G be the sequence such that

for every i �= j. Also B × D is a Fatou component of G as any point on the boundary of 
B × D, is either in the Julia set of G or in the Julia set of the map z → z2. Hence B × D 
is a Fatou component which is wandering, but may be recurring as well if we adapt the 
classical definition of recurrence.

Hence, we work with a stronger definition of recurrence than the classical one. Next, 
we provide an alternative description for recurrent Fatou components of G.

Lemma 5.4 A Fatou component � is recurrent if and only if for any sequence {φj} ⊂ G , 
there exists a compact set K ⊂ � and a subsequence {φjm} such that φjm(pjm) → p0 ∈ � 
for a sequence {pjm} ⊂ K .

Proof Take any sequence {φj} ⊂ G. Then, there exists a subsequence {φjm} and points 
{pjm} ⊂ K  with K compact in � such that

Without loss of generality we assume pjm → q0 ∈ K . It follows that φjm(q0) → p0 ∈ � 
using the fact that any sequence of G is normal on the Fatou set of G.  �

�i(z,w) =
(
φi(z),w

2
)

�+
i (B × D) ∩�+

j (B × D) = ∅

φjm(pjm) → p0 ∈ �.
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Proposition 5.5 Let G = �φ1,φ2, . . . ,φm� where each φi ∈ Ek for every 1 ≤ i ≤ m. If � is 
a recurrent Fatou component of G, then G is locally bounded on �. Moreover, � is pseudo-
convex and Runge.

Proof Assume G is not locally bounded on �. Then, there exists a compact set K ⊂ � 
and {gr} ⊆ G such that |gr(zr)| > r with zr ∈ K  for every r ≥ 1. Clearly, this cannot be 
the case since � is a recurrent Fatou component, so we can always get a subsequence 
{grk } from the sequence {gr} ∈ G such that it converges to a holomorphic function uni-
formly on compact set in � and in particular on K. From the proof of Proposition 2.2, it 
follows that local boundedness of G on � implies that � is polynomially convex. Hence � 
is pseudoconvex.

Theorem  5.6 Let G = �φ1,φ2, . . .� where each φi ∈ Ek . Assume that � is a recurrent 
Fatou component of G. If there exists a φ ∈ G such that φ(�) is contained in the Fatou set 
of G,  i.e., φ(�) ⊂ F(G) then one of the following is true

(i)  There exists an attracting fixed point (say p0) in � for the map φ.
(ii) There exists a closed connected submanifold Mφ ⊂ � of dimension rφ with 

1 ≤ rφ ≤ k − 1 and an integer lφ > 0 such that

(a) φlφ is an automorphism of Mφ and {φnlφ }n≥1 is a compact subgroup of 
Aut(Mφ).

(b) If f ∈ {φn}, then f has maximal generic rank rφ in �.

(iii) φ is an automorphism of � and {φn} is a compact subgroup of Aut(�).

Proof Since � ⊂ F(G), there exists a recurrent Fatou component of the map φ (say �φ) 
such that � ⊂ �φ , i.e., there exists an integer l ≥ 1 such that

for 0 ≤ m < l. So, if l > 1 then there do not exist any p ∈ � such that any subsequence 
of {φlk+1(p)}k≥1 converges to a point in �. Hence l = 1 and by assumption it follows that 
φ(�) ⊂ �.

Let h be a limit function of {φn} of maximal rank (say rφ), i.e.,

where {nj} is an increasing subsequence of natural numbers.

Case 1 If rφ = 0. Then h(�) = p0 for some p0 ∈ � since by recurrence there exists a 
point p ∈ �, such that φnj (p) → p0 and p0 ∈ �. Also h(p0) = p0. Then

i.e., p0 is a fixed point of φ. As some sequence of iterates of φ converge to a constant 
function, p0 is an attracting fixed point for φ.

Case 2 If rφ ≥ 1. Then there exists an increasing subsequence {mj} such that

φl(�φ) ∩�φ �= ∅ and φm(�φ) ∩�φ = ∅

h(p) = lim
j→∞

φnj (p) for every p ∈ �,

φ(p0) = φ(h(p0)) = h(φ(p0)) = p0,
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are increasing positive integers and the sequences {φmj } and {φpj } converge uniformly to 
the limit functions h and h̃ respectively on the Fatou component �. Since by recurrence 
h(�) ∩� �= ∅, if p ∈ � be such that p = h(q) for some q ∈ � then

Define

Claim M is a closed complex submanifold of �.

Since h(�) ∩� ⊂ M, M is a variety of dimension ≥ rφ. But by the choice of h, the  
generic rank of h̃ ≤ rφ and M ⊂ h̃(�) ∩�. So the dimension of M is rφ . Now for any 
point in M,  the rank of the derivative matrix of Id − h̃ is greater than or equal to k − rφ . 
Suppose for some x ∈ M the rank of D(Id − h̃)(x) > k − rφ , then there exists a small 
neighbourhood of x, say Vx such that Vx ⊂ � and

Then {Id − h̃}−1(0) ∩ Vx is a variety of dimension at most rφ − 1, i.e., the dimension of 
M is strictly less than rφ , which is a contradiction. Thus, the rank of Id − h̃ is k − rφ for 
every point in M and hence M is a closed submanifold of �.

Step 1: Suppose that rφ = k .

Then clearly M = � and h̃ on � is the identity map. Let h2 = lim φpj−1. Then

i.e., φ is injective on � and φ(�) is an open subset of �. Suppose there exists an 
x ∈ � φ(�) then for a sufficiently small ball of radius r > 0 with Br(x) ⊂ �

This contradicts that φpj (x) → x. Hence φ is surjective on � and hence an automorphism 
of �.

Step 2: Suppose that 1 ≤ rφ ≤ k − 1. Let Mφ denote an irreducible component of M. For 
every q ∈ Mφ, it follows that φpj (q) → q as j → ∞. Since φ(�) ⊂ �, we get φn(q) ∈ � 
for every n ≥ 1 and

i.e., φn(Mφ) ⊂ M for every n ≥ 1.

Claim There exists a positive integer lφ such that φlφ (Mφ) ⊂ Mφ .

Let p0 ∈ Mφ and � ⊂ � be a polydisk at p0 such that � does not intersect the other com-
ponents of Mφ . Now choose �′ ⊂ �, a sufficiently small polydisk such that h̃(�′) ⊂ �. 
Then ω = h̃(�′) ⊂ Mφ is a rφ-dimensional manifold. Let �′′ be a rφ-dimensional polydisk 

pj = mj+1 −mj

h̃(p) = lim
j→∞

φmj+1−mj (p) = lim
j→∞

φmj+1−mj
(
φmj (q)

)
= p

M = {x ∈ �: h̃(x) = x}.

rank of Id − h̃ > k − rφ for every x ∈ Vx.

h̃(x) = h2 ◦ φ(x) = x, for every x ∈ �,

φl(�) ∩ Br(x) = ∅ for every l ≥ 1.

h̃ ◦ φn(q) = φn ◦ h̃(q) = φn(q) for every q ∈ Mφ ,
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inside ω and {wl}l≥1 be a sequence in �′′ such that it converges to some w0 ∈ �′′. But 
φpj (wpj ) → w0 as j → ∞ hence

for j sufficiently large. Let lφ be the minimum value such that Mφ is invariant under φlφ .

Claim φlφ is an automorphism of Mφ .

Without loss of generality there exists a sequence {kj} such that pj = i0 + kjlφ for some 
0 ≤ i0 ≤ lφ − 1, i.e.,

As Mφ is invariant under φlφ, the sequence xj = φkj lφ (x) lies in Mφ . Again as before let 
�x be a sufficiently small neighbourhood such that �x ⊂ � and �x does not intersect 
the other components of M. Since φi0(xj) ∈ �x ∩Mφ for large j, φi0(Mφ) ⊂ Mφ . But 
0 ≤ i0 ≤ lφ − 1, i.e., i0 = 0 and {φkj lφ } converges uniformly to the identity on Mφ . Let 
ψ = lim φ(kj−1)lφ then

Hence φlφ is injective on Mφ and φlφ (Mφ) is an open subset in the manifold Mφ. Now as 
in Step 1 observe that φkj lφ converges to the identity on Mφ for an unbounded sequence 
{kj}, so φlφ is also surjective on Mφ. Thus the claim.

Let Y = {φnlφ }n≥1 ⊂ Aut(Mφ).

Claim Ȳ  is a locally compact subgroup of Aut(Mφ).

For some � ∈ Y  and for a compact set K ⊂ Mφ consider the neighbourhood of � 
given by

One can choose ǫ and K sufficiently small such that for every sequence ψj ∈ V�(K , ǫ) 
there exists an open set U ⊂ � such that ψj(U ∩Mφ) ⊂ V̄ ∩Mφ ⊂ �, where V is some 
open subset of �.

Since ψj = φnjlφ for a sequence {nk} and � is a Fatou component, ψj has a convergent 
subsequence in �. We choose appropriate subsequences such that the limit maps

are defined on �. Also as Mφ is closed in �, �i(Mφ) ⊂ Mφ  for every i = 1, 2 where Mφ  
denote the closure of Mφ in Ck . Then �1(U) ⊂ � and

Since �1 on Mφ is a limit of automorphisms of Mφ, the Jacobian of �1 on the mani-
fold Mφ is either non-zero at every point of Mφ or vanishes identically. But by (5.1), �1 
restricted to U ∩Mφ is injective, which is open in the manifold Mφ , i.e., �1 is an open 
map of Mφ and �1(Mφ) ⊂ Mφ . So (5.1) is true for every x ∈ Mφ . Now by the same argu-
ments it follows that �2 is an injective map from Mφ such that �2(Mφ) ⊂ Mφ . Hence

φpj (Mφ) ∩� �= ∅, i.e., φpj (Mφ) ⊂ (Mφ)

φi0 ◦ φkj lφ (x) → x for every x ∈ Mφ .

φlφ ◦ ψ(x) = ψ ◦ φlφ (x) = x for every x ∈ Mφ .

V�(K , ǫ) = {ψ ∈ Aut(Mφ): �ψ(z)−�(z)�K < ǫ}.

�1 = lim
j→∞

φnjlφ and �2 = lim
j→∞

φ(kj−nj)lφ

(5.1)�2 ◦�1(x) = x for every x ∈ U ∩Mφ .
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i.e., �1 is an automorphism of Mφ . This proves that Ȳ  is a locally compact subgroup of 
Aut(Mφ).

Now since Mφ is a complex manifold and Ȳ  is a locally abelian subgroup of automor-
phisms of Mφ, by Theorem A in [2], it follows that Ȳ  is a Lie group. Hence the component 
of Ȳ  containing the identity is isomorphic to Tl × Rm. Suppose � is the isomorphism, 
then for some n > 0, �(a, b) = φnlφ. Now if b �= 0, then there does not exist an increas-
ing sequence of kj such that φkj lφ converges to identity. This proves that the component 
of Ȳ  containing the identity is compact and hence any component of Ȳ  is compact by the 
same arguments. Also as Mφ is contained in the Fatou set, the number of components of 
Ȳ  is finite, thus Ȳ  is a compact subgroup of Aut(Mφ).

If rφ = k, then Mφ is �, then one can apply the same technique as discussed above to 
conclude that {φn} is a closed compact subgroup of Aut(�).

Finally, let f be a limit of {φn}n≥1, i.e.,

Claim The generic rank of f is rφ .

By the definition of recurrence it follows that � ⊂ �φ, where �φ is a periodic Fatou com-
ponent for φ with period 1. Hence by Theorem 3.3 in [5] it follows that the limit maps of 
the set {φn} in �φ have the same generic rank (say r). But � is an open subset of the Fatou 
component �φ, so the rank of limit maps restricted to � should be same, i.e., r = rφ and 
each limit map of {φn} has rank rφ .  �

By Proposition 5.5 a semigroup G is always locally uniformly bounded on a recurrent 
Fatou component semigroup G. If G is finitely generated by holomorphic endomor-
phisms of maximal rank k in Ck, then by Proposition 2.2 it follows that a recurrent Fatou 
component is mapped in the Fatou set by any element of G. Hence we have the following 
corollary.

Corollary 5.7 Let G = �φ1,φ2, . . . ,φm� where each φi ∈ Ek for every 1 ≤ i ≤ m. Assume 
that � is a recurrent Fatou component of G then for every φ ∈ G one of the following is 
true

(i)  There exists an attracting fixed point (say p0) in � for the map φ.
(ii) There exists a closed connected submanifold Mφ ⊂ � of dimension rφ with 

1 ≤ rφ ≤ k − 1 and an integer lφ > 0 such that

(a) φlφ is an automorphism of Mφ and {φnlφ }n≥1 is a compact subgroup of 
Aut(Mφ).

(b) If f ∈ {φn}, then f has maximal generic rank rφ in �.

(iii) φ is an automorphism of � and {φn} is a compact subgroup of Aut(�).

Example 5.8 Let G = �φ1,φ2� be a semigroup of entire maps in C2 generated by

�2 ◦�1(x) = �1 ◦�2(x) = x for every x ∈ Mφ ,

f (p) = lim
j→∞

φnj (p) for every p ∈ �.
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where 0 < α < 1. Then G is locally uniformly bounded on a sufficiently small neighbour-
hood around the origin, and φ(0) = 0 for every φ ∈ G. So the Fatou component of G 
containing 0 (say �0) is recurrent. Now note that for φ2

whereas for φ1 the origin is an attracting fixed point. This illustrates the different behav-
iour of the sequences {φn

1 } and {φn
2 } (both of which are in G) on �0.

Note that for any other φ ∈ G which is not of the form φk
1 , k ≥ 2, contains a factor of 

φ2 at least once. Since for a small enough ball (say B) around origin, φ2 is contracting, 
and φ1(B) ⊂ B so there exists a constant 0 < aφ < 1 such that

i.e., the origin is an attracting fixed point.

Proposition 5.9 Let G = �φ1,φ2, . . . ,φm� where each φi ∈ Vk for every 1 ≤ i ≤ m and 
let � be an invariant Fatou component of G. Then either � is recurrent or there exists a 
sequence {φn} ⊂ G converging to infinity.

Proof If � is not recurrent, then there exists a sequence {φn} ⊂ G such that 
{φn} → ∂� ∪ {∞} uniformly on compact sets of �. Assume {φnk } converges to a holo-
morphic function f on �. This implies that f (�) ⊂ ∂� contradicting the assumption that 
each φnk is volume preserving. Hence, {φnk } diverges to infinity uniformly on compact 
subsets of �.  �

Proposition 5.10 Let G = �φ1,φ2, . . . ,φm� where each φi ∈ Vk for every 1 ≤ i ≤ m and 
let � be a wandering Fatou component of G. Then, there exists a sequence {φn} ⊂ G con-
verging to infinity.

Proof Since � is wandering, one can choose a sequence {φn} ⊂ G so that

for n �= m. If this sequence {φn} does not diverge to infinity uniformly on compact sub-
sets, some subsequence {φnk } will converge to a holomorphic function h on �. By abuse 
of notation, we denote {φnk } still by {φn}. Fix z0 ∈ �. Then for any given ǫ, there exists δ 
such that

for all n ≥ n0 and for all z ∈ B(z0, δ). From (5.3) it follows that vol(∪n≥noφn(B(z0, δ))) is 
finite. On the other hand, since each φn is volume preserving and (5.2) holds, we get

Hence, we have proved the existence of a sequence in G converging to infinity.  �

φ1(z,w) = (w,αz − w2) and φ2(z,w) = (zw,w)

rφ2 = 1 and Mφ2 = {(0,w): w ∈ C} ∩�0,

|φ(z)| ≤ aφ |z| for every z ∈ B,

(5.2)�φn ∩�φm = ∅

(5.3)
∣∣φn0(z)− φn(z)

∣∣ < ǫ

Vol
( ⋃

n≥no

φn
(
B(z0, δ)

))
= +∞.
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6  Concluding remarks
As mentioned in the introduction, the classification of recurrent Fatou components for 
iterations of holomorphic endomorphisms of complex projective spaces has been stud-
ied in [4] and [3]. It would be interesting to explore the same question for semigroups 
of holomorphic endomorphisms of complex projective spaces. The main theorem in [4] 
and [3] is proved under the assumption that the given recurrent Fatou component is 
also forward invariant. The analogue of such a condition in the case of semigroups is not 
clear to us since we are then dealing with a family of maps none of which is distinguish-
able from the other.
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