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1 � Background
The theory of holomorphic motions, introduced by Mané-Sad-Sullivan [1] and advanced 
by Slodkowski [2], has had a significant impact on the theory of quasiconformal map-
pings. A reasonably thorough account of this is given in our book [3]. In [4, 5] we estab-
lished some classical distortion theorems for quasiconformal mappings and used the 
theory to develop connections between Schottky’s theorem and Teichmüller’s theorem. 
We also gave sharp estimates on the distortion of quasicircles which in turn gave esti-
mates for the distortion of extensions of analytic germs as studied in [6]. Here we con-
sider the geometry of stream lines for ideal fluid flow in a domain and establish bounds 
on their distortion in terms of a reference line. These bounds come from an analysis of 
the geometry of the level lines of the hyperbolic metric and seem to be of independ-
ent interest. When the reference line is known to be a quasiline—the image of R under 
a quasiconformal map of C—which occurs for instance when there is some symme-
try about, it follows that all level lines are quasilines and it is possible to give explicit 
distortion estimates which contains global geometric information—such as bounded 
turning—for the curve, see for instance (8) below. As such these estimates will have 
implications for parabolic linearisations.

We first recall the two basic notions we need here.

1.1 � Quasiconformal mappings

A homeomorphism f : � → C defined on a domain � ⊂ C and in the Sobolev class 
f ∈ W 1,2

loc (�,C) of functions with locally square integrable first derivatives is said to be 
quasiconformal if there is a 1 ≤ K < ∞ so that f satisfies the distortion inequality

(1)|Df (z)|2 ≤ K J (z, f ), almost everywhere in �
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Here Df(z) is the Jacobian matrix and J(z, f) its determinant. If such a K exists, we will say that 
f is K-quasiconformal. The basic theory of quasiconformal mappings is described in [3]. Qua-
siconformal mappings have the basic property of “bounded distortion” as they take infinitesi-
mal circles to infinitesimal ellipses, whereas conformal mappings have no distortion (K = 1)  
as a consequence of the Cauchy-Riemann equations. The distortion inequality (1) actually 
implies the improved regularity f ∈ W

1,p
loc (�), for all p < 2K/(K−1), [3, Astala’s theorem].

1.2 � Holomorphic motions

The theorem quoted below, known as the extended �-lemma and first proved by Slod-
kowski [2], is key in what follows. The distortion estimate of K in terms of the hyperbolic 
metric was observed by Bers & Royden earlier and it is from this that we will be able to 
make our explicit distortion estimates below. See [7] for a discussion. A complete and 
accessible proof can be found in [3, Chapter 12]. First, the definition of a holomorphic 
motion.

Let X ⊂ Ĉ = C ∪ {∞} be a set and D the unit disk. A holomorphic motion of X is a 
map � : D× X → Ĉ such that

• • For any fixed a ∈ X, the map � �→ �(�, a) is holomorphic.
• • For any fixed � ∈ D, the map a �→ �(�, a) is an injection.
• • �(0, a) = a for all a ∈ X.

Note especially that there is no assumption regarding the measurability of X or the con-
tinuity of � as a function of a ∈ X or the two variables (�, a) ∈ D× X.

Theorem 1  Let � : D× X → Ĉ  be a holomorphic motion of X. Then � has an exten-
sion to �̂ : D× Ĉ which is a holomorphic motion of Ĉ and for each � ∈ D

 Moreover, if ρD denotes the hyperbolic metric (curvature = −1) of the unit disk, then for 
�1, �2 ∈ D the map �̂−1

�1
◦ �̂�2

 is K-quasiconformal, with logK = ρD(�1, �2).

Remark  We note that using the Riemann mapping theorem here the parameter space 
D can be replaced by any simply connected domain �, provided we replace 0 by a point 
�0 ∈ � and assume that �(�0, a) = a for all a ∈ X. Then the estimate (2) becomes

We will use this formulation when � is a strip.

2 � Geometry of hyperbolic level lines
In what follows � ⊂ C will denote a Jordan domain, so that ∂� is a topological circle. 
The reader will see that this is not necessary in much of what follows; however, it allows 
simplification in that we do not need to speak carefully of prime ends, impressions and 
boundary values as every quasiconformal mapping between Jordan domains extends 

(2)�̂� = �̂(�, ·) : Ĉ → Ĉ is
1+ |�|

1− |�|
− quasiconformal.

(3)�̂� = �̂(�, ·) : Ĉ → Ĉ is eρ�(�0,�) − quasiconformal.
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homeomorphically to the boundary. In particular, every Riemann map ϕ : D → � 
extends homeomorphically to the boundary. A hyperbolic line γ ∈ � is a complete 
hyperbolic geodesic. In a Jordan domain γ has two endpoints γ± ∈ ∂�. For each such line 
there is a Riemann map ϕ : D → � with ϕ([−1, 1]) = γ  and ϕ(−1) = γ−, ϕ(+1) = γ+. 
For c ≥ 0, an arc α ⊂ � is a c-level line of γ of the hyperbolic distance if for all z ∈ α,

Here ρ� is the hyperbolic distance of �. Since, by assumption, � has a nice boundary 
the curve α extends to the boundary with endpoints α± = γ±. Our first theorem states 
that the level lines are the images of the line γ under a self mapping of the domain with 
bounded distortion.

Theorem 2  Let α be a c-level line of the hyperbolic line γ ∈ �. Then there is a K-quasi-
conformal mapping f : � → � such that

• • f (γ ) = α,
• • f |∂� = identity,
• • K ≤ ec.

Proof  Let ϕ : D → � with ϕ((−1, 1)) = γ. There is a conformal mapping from the strip 
S = {z ∈ C : |Im(z)| < π/2} to D so that the image of the real line is the interval (−1, 1). 
Thus there is a conformal mapping ψ : S → � with ψ(R) = γ. We define a holomorphic 
motion �(�, a) of γ and parameterised by � ∈ S using the rule

Then �(0, a) = identity, and this motion clearly depends holomorphically on � and is 
an injection for every �. The hyperbolic metric in S is |dz|/ cos(y), [8, Example 7.9]; thus 
the level lines (of R) of the hyperbolic distance are of the form {(x, t) : x ∈ R} and if we 
choose t so that

then �(t, γ ) = α. Notice that for all � ∈ S, �(�, γ ) ⊂ � and that �(�, γ±) = γ±. Thus we 
can extend this function in the first instance by

and it is now clear that � defines a holomorphic motion of γ ∪ ∂�. Theorem 1 now tells us 
that � is the restriction of a holomorphic motion of the Riemann sphere (note we have para-
metrised over S as per the remark following Theorem 1). At time � = t we obtain the quasi-
conformal mapping we seek and the distortion estimate follows from (3) since K ≤ eρS (0,t) 
and ρS(0, t) = ρS(R,R± t) = c, where ρS denotes the hyperbolic distance of S.� �

The next theorem concerns the level lines of the function associated with harmonic 
measure as illustrated in Fig. 1.

(4)ρ�(z, γ ) = c.

(5)�(�, a) = ψ(ψ−1(a)+ �)

∫ t

0

dy

cos(y)
= c,

(6)�(�, a) =

{

ψ(ψ−1(a)+ �) a ∈ γ

a a ∈ ∂�
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Theorem  3  Let � be a Jordan domain and α an open sub arc of ∂�. Let h : � → R 
be the harmonic function with boundary values h(z) = 1 for z ∈ α and h(z) = 0 for 
z ∈ ∂�\ᾱ. Then for each 0 < a ≤ b < 1, there is a K-quasiconformal mapping f : � → �, 
f |∂� = identity and f ({h = a}) = {h = b} with the distortion estimate

Remark  We note that for b near a = 1
2 we have

One might reasonably expect a quadratic term here though.

Proof  Let ψ : S → � be a conformal mapping with ψ({y = π/2}) = α and 
φ({y = −π/2}) = ∂�\ᾱ. A harmonic function which is 0 on {y = −π

2 } and 1 on {y = π
2 } 

is simply h̃(z) = y
π
+ 1

2, z = x + iy. Its level lines are {h̃(z) = c} = {y = π
2 (2c − 1)} for 

0 < c < 1. Then h(z) = h̃ ◦ ψ−1. The process is now as above, we can holomorphically 
move these level lines keeping the boundary lines {y = ±π

2 } and transfer this to � by ψ . 
The distortion is estimated by the exponential of the hyperbolic distance between the 
lines {h = a} and {h = b}, that is between the lines {y = π

2 (2a− 1)} and {y = π
2 (2b− 1)}. 

This is

and, after a little manipulation, we obtain the formula that we have given in (7).� �

A quasi-arc, respectively quasiline, quasicircle, is the image of the line segment (−1, 1), 
respectively R, S = ∂D, under a quasiconformal mapping f : C → C. Quasilines are 
simply quasicircles on the Riemann sphere which pass through ∞. When we know 
that the mapping f is K-quasiconformal, then we refer to K-quasiarcs, K-quasilines and 
K-quasicircles. There are many interesting geometric characterisations of these sets via 
criteria involving cross ratios and bounded turning initially discovered by Ahlfors, see 

(7)K ≤
tan bπ

2

tan aπ
2
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Fig. 1  The integral level lines of the hyperbolic distance. Theorem 2 gives a quasiconformal f : C → C, 
f |C\S = identity, f is en-quasiconformal and takes the geodesic line [− iπ

2
, iπ
2
] to the n-level line 

ρS (f ([−
iπ
2
, iπ
2
]), [− iπ

2
, iπ
2
]) ≡ n
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[9] for a comprehensive survey. For instance if α is a quasiline, then there is a universal 
constant Cα such that if z,w ∈ α and αzw denote the finite subarc between them, we have

This estimate is typically referred to as “bounded turning”.

Remark  Consideration of the level line 1− δ as per Fig.  2 which is a tan
(

(1−δ)π
2

)

—
quasiline with an asymptotic angle δπ/2 with the imaginary axis at ∞ shows the bounded 
turning condition (8) cannot hold in general with a constant Cα < K , for a K-quasiline α.

We now have the next two corollaries.

Corollary 1  Let � and h be as in Theorem 3. If for some value of a ∈ (0, 1) the level line 
{h = a} is a quasi-arc, then all level lines are quasi-arcs.

Corollary 2  Let � be a Jordan domain symmetric across the real line, 
α = ∂� ∩ {Im(z) > 0}, β = ∂� ∩ {Im(z) < 0} and h the harmonic function with h = 1 
on α, h = 0 on β. Then for b ≥ 1

2 the level line

is a quasi-line with distortion

Proof  The hypotheses imply that {h = 1
2 } is a segment of the real axis and thus a quasi-

arc with distortion K = 1. The results follow once we extend the mapping f given by 
Theorem 3 by the identity outside � and note the resulting map is quasiconformal.� �

3 � Ideal fluid flow
Knowing geometric information about the level lines of harmonic functions has many 
applications. Here we give a couple which are simple and direct and concern ideal fluid 

(8)diameter(αzw) ≤ Cα|z − w|

γ =
{

{h = b} ∪ R\�
}

K ≤ tan
bπ

2

Fig. 2  Level lines of the harmonic function h which is 1 on [ i2 , i∞) and 0 on [− i

2
,−∞) at spacings of 120. The 

real line R = {h = 1
2
}. Theorem 3 shows these level lines {h = k

20
} to be coth kπ

40-quasilines for k ≤ 10, and 
tan kπ

40-quasilines for 10 ≤ k ≤ 20
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flow in a channel and in particular two examples where computational results are known 
[10, 11]. In some ways the regularity results we derive (showing level lines are quasi 
lines) justify the computational results.

A channel is the conformal image of the strip S, ϕ : S → C, with the property that 
ϕ(x + iy) → ±∞ as x → ±∞. A channel is not a Jordan domain, but the reader can eas-
ily see that the above results apply without modification to this situation.

Conformal invariance shows us that the stream lines of the fluid flow starting with a 
source at −∞ and flowing to a sink at +∞ are the level curves of a real-valued noncon-
stant harmonic function h which is constant on the boundary. We can normalise so that 
these numbers are h = +1 on ϕ(x + iπ/2) and h = −1 on ϕ(x − iπ/2). With this normal-
isation there is a central stream line α0 = {h = 0}. We have the following two corollaries.

Corollary 3  Let C be a channel and α  a stream line for the flow of an incompressible 
fluid. Then there is a quasiconformal map f : C → C with f (α0) = α, f |C\C = identity 
and 

 where dhyp is the hyperbolic metric of C.
Of course α0 need not be a quasiline itself—the channel could be a regular neighbour-

hood of a smoothly embedded real line which is not quasiconformally equivalent to R by 
a mapping of C. The results say that every stream line is the bounded geometric image of 
the central line. Next, if C is symmetric about the real line then α0 = R and we have the 
following:

Corollary 4  Let C be a channel which is symmetric across the real line and α a stream 
line for the flow of an incompressible fluid. Then α  is a K-quasiline and

We can also consider flow around an obstacle, such as illustrated in Fig. 3. The follow-
ing theorem has many obvious generalisations and we only present the simplest case. 

Theorem  4  Let � be a domain with � ⊂ S. Let α be a streamline homotopic to the 
either line {Im(z) = ±π/2} for ideal fluid flow in the obstructed channel S\�. Then α  is 
a K-quasiline and

 where the metric is that of the domain

 where  ∗ denotes reflection in the line  {Im(z) = π/2}.

Kf ≤ edhyp(α0,α),

K ≤ edhyp(α,R)

K ≤ edhyp(α,R+iπ/2),

D = {Im(z) = π/2} ∪ ϕ({0 < y < π/2}) ∪ (ϕ({0 < y < π/2})∗},
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Proof  The modulus of the ring S\[−r, r] tends to infinity as r ց 0 and 0 for r = ∞. 
This modulus is continuous and so the intermediate value theorem gives us an 
r so that Mod(S\[−r, r]) = Mod(S\�). For this r there is a conformal mapping 
ϕ : S\[−r, r] → S\�. The stream lines for ideal fluid flow in S\[−r, r] are simply the 
lines {R+ iy : 0 < |y| ≤ π/2}. The images of these lines under ϕ are the stream lines for 
flow in S\�. We can also use the Carathéodory/Schwarz extension/reflection principle 
to extend ϕ to a map ϕ̃ : {z : 0 < y < π} → C, ϕ̃(R+ iπ/2) = R+ iπ/2. It follows from 
Corollary 4 that for 0 < y < π/2, the stream line ϕ̃(R+ iy) is a quasiline with distortion 
edhyp(ϕ̃(R+iy),R+iπ/2)—with the metric here being that of ϕ̃({0 < y < π}).� �

It is not difficult to further refine this estimate upon consideration of the harmonic 
function involved following the arguments given for Corollary 2. What is remark-
able here is that the global geometric estimates one achieves on the stream lines do 
not depend on the complexity of the object. Indeed the fact that the hyperbolic metric 
increases under inclusion implies that we can use a slightly larger smooth approxima-
tion to the object to get the estimates we require. So the boundary being highly irregu-
lar (say Hausdorff dimension > 1) does not matter for estimating the distortion unless 
the stream line comes very close to the boundary. Further, the same argument (with the 
same estimates) works for flow around multiple objects, though there are issues when 
there is more than one obstacle as further conformal invariants may appear. In the 
simplest case, the bounds on the distortion of the stream lines apply for flow around 
ϕ(S\ ∪ Ii) ⊂ S, where {Ii} is any disjoint collection of closed intervals of R, and ϕ is con-
formal with ϕ({Im(z) = ±π

2 }) = {Im(z) = ±π
2 }
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