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Abstract 

Considering that a unit dual quaternion can describe elegantly the rigid transformation including rotation and 
translation, the point-wise weighted 3D coordinate transformation using a unit dual quaternion is formulated. The 
constructed transformation model by a unit dual quaternion does not need differential process to eliminate the three 
translation parameters, while traditional models do. Based on the Lagrangian extremum law, the analytical dual qua-
ternion algorithm (ADQA) of the point-wise weighted 3D coordinate transformation is proved existed and derived in 
detail. Four numerical cases, including geodetic datum transformation, the registration of LIDAR point clouds, and two 
simulated cases, are studied. This study shows that ADQA is valid as well as the modified procrustes algorithm (MPA) 
and the orthonormal matrix algorithm (OMA). ADQA is suitable for the 3D coordinate transformation with point-wise 
weight and no matter rotation angles are small or big. In addition, the results also indicate that if the distribution of 
common points degrades from 3D or 2D space to 1D space, the solvable correct transformation parameters decrease. 
In other words, all common points should not be located on a line. From the perspective of improving the trans-
formation accuracy, high accurate control points (with small errors in the coordinates) should be chosen, and it is 
preferred to decrease the rotation angles as much as possible.
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Introduction
Three-dimensional coordinate transformation is widely 
used in geodesy, engineering surveying, terrestrial 
laser scanning, LIDAR, photogrammetry, robotics and 
machine vision, etc. (cf. Arun et al. 1987; Besl and McKay 
1992; Chang 2016; Chen et al. 2004; Crosilla and Beinat 
2002; Fan et al. 2015; Fang 2015; Felus and Burtch 2009; 
Horn 1987; Horn et  al. 1988; Ioannidou and Pantazis 
2020; Li et  al. 2022; Odziemczyk 2020; Ruffhead 2021; 
Qin et  al. 2020; Závoti and Kalmár 2016). The three-
dimensional coordinate transformation usually adopts 
seven-parameter similarity transformation model. And 
the key process of three dimensional coordinate trans-
formation is to compute the transformation parameters 
utilizing at least three common points with coordinates 
both in the original system and in the target system.

So far, a large number of algorithms of three-dimensional 
coordinate transformation have been presented (cf., e.g., 
Aydin et al. 2018; Grafarend and Awange 2003; Kanatani and 
Niitsuma 2012; Kurt 2018; Ligas and Prochniewicz 2019; 
Mahboub 2016; Marx 2017; Mercan et al. 2018; Mihajlović 
and Cvijetinović 2017; Păun et  al. 2017; Shen et  al. 2006; 
Uygur et al. 2020; Walker et al. 1991; Wang et al. 2014; Zeng 
2015; Zeng and Yi 2010, 2011; Zeng et al. 2016, 2018, 2019). 
They can be classified into iterative algorithm or analytical 
algorithm. As far as the iterative algorithms are concerned, 
there are lots of transformation models. The transformation 
model differs as the representation of rotation matrix differs. 
The rotation matrix may be represented by rotation angles 
(Wang et al. 2018; Yang et al. 2022; Zeng and Yi 2011), direc-
tion cosine matrix (Chen et al. 2004; Wang et al. 2018), unit 

quaternion (Mercan et al. 2018; Uygur et al. 2020; Zeng and 
Yi 2011), dual quaternion (Zeng et al. 2018, 2019), and Rod-
rigues matrix or Gibbs vector (Kurt, 2018; Yang et al. 2022; 
Závoti and Kalmár 2016; Zeng et  al. 2018). Iterative algo-
rithms usually need initial values of transformation param-
eters, linearization based on Taylor formula, and iterative 
computation (e.g., Zeng and Yi 2011; Kanatani and Niitsuma 
2012). If bad initial values of parameters are provided, the 
algorithms probably diverge or spend lots of iterative com-
putations (e.g., Zeng and Yi 2011). In some situations, e.g., 
registration of terrestrial laser scanning point clouds, it is not 
easy to obtain a good initial values due to the arbitrary size 
of rotation angles. Iterative algorithms can provide the accu-
racy estimation of transformation parameters and computed 
coordinates of non-control points, while the analytical algo-
rithms cannot (Zeng et al. 2020, 2022).

In contrast to iterative, analytical algorithms are lim-
ited. Analytical algorithms do not need initial values of 
transformation parameters, linearization, or iterative 
computations. They use exact analytical formulae to 
compute transformation parameters, so are straightfor-
ward and fast. At present, analytical algorithms involve 
Procrustes algorithms (Arun et  al. 1987; Crosilla and 
Beinat 2002; Grafarend and Awange 2003; Păun et  al. 
2017), Gibbs vector-based algorithm (Zeng and Yi 2010), 
unit quaternion-based algorithms (Horn 1987; Shen et al. 
2006), dual quaternion-based algorithm (Walker et  al. 
1991; Wang et  al. 2014), and orthonormal matrix-based 
algorithm (Horn et  al. 1988; Zeng 2015). However, only 
the Procrustes algorithms and orthonormal matrix-based 
algorithm can deal with point-wise weight of observation 
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(Grafarend and Awange 2003; Zeng 2015). As mentioned 
above, analytical algorithms cannot implement accuracy 
estimation of transformation parameters or the com-
puted coordinates of non-control points.

Regarding that a unit dual quaternion can represent 
elegantly the rigid transformation including rotation and 
translation, the constructed transformation model uti-
lizing a unit dual quaternion does not need differential 
process to eliminate the three translation parameters, 
while traditional models do. Zeng et  al. (2018) thought 
wrongly that the analytical dual quaternion solution of 
weighted three-dimensional coordinate transformation 
did not exist and then presented an iterative algorithm. 
This paper will prove that the analytical solution exists 
and present an analytical algorithm. Moreover, the pre-
sented algorithm should be suitable for point-wise weight 
and no matter how big rotation angles are. This paper will 
investigate the stability, i.e., the ability of obtaining the 
correct parameters of the algorithm when the distribu-
tion of common points deteriorates from 3D or 2D space 
to 1D space, and the reliability of the algorithm in terms 
of accuracy of transformed parameter under different 
noises and different rotation angles. This paper will pro-
pose some suggestions in improving the transformation 
accuracy.

The rest of the paper is organized as follows. In the next 
section, the point-wise weighted 3D coordinate transfor-
mation is formulated, and then the related works on the 
analytical algorithms of the coordinate transformation 
are reviewed. After introducing the basic concepts of dual 
quaternion, the Analytical Dual Quaternion Algorithm 
is derived and presented in “Analytical dual quaternion 
algorithm” section. Four numerical experiments, includ-
ing two real world cases (geodetic datum transformation 
and LIDAR point cloud registration) and two simulative 

cases, are studied and discussed in “Experiments and dis-
cussions” section. Lastly conclusions are drawn in the last 
section, i.e., “Conclusions”.

Formulation of the question and related works
This section firstly introduces the formulation of the 
point-wise weighted 3D coordinate transformation and 
then reviews related works about the analytical algo-
rithms of the point-wise weighted 3D coordinate trans-
formation, namely, the Procrustes algorithm based on 
Grafarend and Awange (2003) and its modification, and 

the orthonormal matrix-based algorithm based on Zeng 
(2015), respectively.

Formulation of weighted 3D coordinate transformation

Assume there are a set of control points, i.e., known points 
whose coordinates in both the original system and target 
coordinate system are known. The essential work to fulfill 3D 
coordinate transformation is to compute the transformation 
parameters with the set of control points. The similarity 3D 
coordinate transformation model is as follows:

subject to

where pti =
[
xti yti zti

]T and poi =
[
xoi yoi zoi

]T are the 
target 3D coordinate vector and original 3D coordinate 
vector of control point i , respectively (superscripts t and o 
denote target coordinate and original coordinate; subscript 
i = 1, 2, · · · , n denotes the number of control point). I3 is a 
3-by-3 identity matrix, superscript T represents matrix trans-
pose, and det denotes determinant computation of matrix. 
t =

[
tx ty tz

]T is a vector of three translation parameters. 
� is a scale factor from original coordinate system to target 
coordinate system, that is very close to 1 for most cases, like 
geodetic datum transformation or LiDAR point cloud reg-
istration. R stands for a 3-by-3 rotation matrix, which is an 
orthonormal matrix with the property in Eq.  (2). Conven-
tionally R is represented by three rotation angles about the 
three coordinate axes. Assume R is produced by rotating 
angels θx , θy , and θz counterclockwise about the X, Y, and Z 
axes, respectively ( θx firstly, θy secondly, and θz lastly). Thus, R 
is expressed by rotation angles as

There are seven transformation parameters in the simi-
larity 3D coordinate transformation model, i.e., Equa-
tion (1) including one scale factor, three translations, and 
three rotation angles. Thus, at least three control points 
( n ≥ 3 ) should be given to compute the transformation 
parameters. In practice, different control points probably 
have different accuracies; therefore, it is more rational to 
take into account point-wise weight αi ( i = 1, 2, · · · , n ) 
than to consider all points an identity weight, cf Gra-
farend and Awange (2003), Závoti and Kalmár (2016), 
Zeng (2015), Zeng et al. 2020, etc.

(1)pti = �Rpoi + t,

(2)RTR = I3, det(R) = +1,

(3)R =



cos θz cos θy sin θz cos θx + cos θz sin θy sin θx sin θz sin θx − cos θz sin θy cos θx
− sin θz cos θy cos θz cos θx − sin θz sin θy sin θx cos θz sin θx + sin θz sin θy cos θx
sin θy − cos θy sin θx cos θy cos θx


.
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Taking into account the transformation error, Eq. (1) can 
be re-expressed as

where ei is the transformation error vector of control 
point i . Then the transformation parameter solution in 
the least squares sense is essentially to find the argument 
of Lagrangian minimum problem

subject to Eq. (2).

Procrustes algorithm and its modification

Introducing coordinate matrices Po =
[
po1 po2 · · · pon

]T , 
Pt =

[
pt1 pt2 · · · ptn

]T , and coordinate transformation 
error matrix E =

[
e1 e2 · · · en

]T , the transformation 
model in Eq. (4) is rewritten as

where 1n =
T[

1 1 · · · 1
]

︸ ︷︷ ︸
n

 . The Lagrangian minimum 

problem in Eq. (5) can be rewritten as matrix form as

where Ŵ = Diag(α1,α2, · · · ,αn) is a diagonal weight 
matrix and tr denotes trace computation of matrix. The 
Lagrangian minimum exists if and only if the partial dif-
ferentials with respect to � , t , R as follows are equal to 
zero:

Grafarend and Awange (2003) derived the solution of 
transformation step by step. Firstly by Eq.  (8), the solu-
tion of t is obtained as

(4)pti = �Rpoi + t + ei,

(5)min
R,t,�

{
l =

n∑

i=1

αie
T
i ei

}
,

(6)Pt = �PoRT + 1nt
T + E,

(7)min
R,t,�

{
l = tr(ETŴE)

}
,

(8)
∂l

∂t
= 0,

(9)
∂l

∂�
= 0,

(10)
∂l

∂R
= 0.

(11)t =
(
1Tn Ŵ1n

)−1(
PtT − �RPoT

)
Ŵ1n.

Secondly substituting the solution of t to Eq.  (9), � is 
obtained as

where C̃ = In −
(
1Tn Ŵ1n

)−1
1n1

T
n Ŵ , In is a n-by-n iden-

tity matrix. Finally substituting the solutions of t and � to 
Eq. (10), R is obtained using the singular value decompo-
sition as

where PtT C̃TŴC̃P
o = U�VT is a singular value decom-

position of PtT C̃TŴC̃P
o
 . U , V  , and � are left orthonor-

mal matrix, right orthonormal matrix, and diagonal 
matrix of singular values, respectively. Eq.  (13) ensures 
that RTR = I3 is satisfied. However, it is worthy of 
notice that det(R) = −1 rather than det(R) = +1 usually 
occurs when the common points are located in a rigid 
or approximate plane. In other words, for the case that 
det(R) = −1 the computed R is a reflection instead of 
rotation. In order to obtain the correct rotation matrix, 
Eq.  (13), i.e., Equation  (22) in Grafarend and Awange 
(2003), should be modified as

After R , � , and t are computed, E is compute by Eq. (6), 
and the variance factor of unit weight σ is computed as 
follows:

If the rotation angles are needed, they are computed by 
the formulae as follows:

where R ij is the element of R in the ith row and jth 
column.

Orthonormal matrix algorithm
The orthonormal matrix algorithm constructs the 
Lagrangian minimum problem with the constraint 
RTR = I3 as follows (Zeng 2015):

(12)� =
tr(PtT C̃TŴC̃P

o
RT )

tr(PoT C̃TŴC̃P
o
)

,

(13)R = UVT ,

(14)R = U



1 0 0
0 1 0

0 0 det(UVT )


VT .

(15)σ = ±

√
tr(ETŴE)

3n− 7
.

(16)

θx = − tan−1 R32

R33
, θy = sin−1(R31), θz = − tan−1 R21

R11
,

(17)min
R,t,�,�

{
l = tr(ETŴE)+ tr(�(RTR − I3))

}
,
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where � is a symmetric Lagrangian multiplier matrix. 
The Lagrangian minimum exists if and only if the partial 
differentials with respect to � , t , R , and � as follows are 
equal to zero.

Zeng (2015) derived the solution of transformation step 
by step. By Eq. (18), the solution of t is obtained as

which is identical to Eq. (11). Substituting the solution of 
t to Eq. (19), � is obtained as

which is identical to Eq.  (12). By Eqs.  (20) and (21), the 
solution of R is obtained as

where D = PtT C̃TŴC̃P
o
 . Since DTD is symmetric, non-

negative definitive, it has non-negative real eigenvalues. 
Therefore, the inverse of the square root of DTD can be 
calculated by eigenvalue–eigenvector decomposition.

where vi and di, i = 1, 2, 3 , are the eigenvectors and cor-
responding eigenvalues of the matrix DTD . Thus, Eq. (24) 
can be re-expressed as

One should notice that if one or two of di for i = 1, 2, 3 
equals to 0, the construction of Eq. (25) makes no sense. 
Suppose that the eigenvalues of the matrix DTD meet 
the condition as follows:

(18)
∂l

∂t
= 0,

(19)
∂l

∂�
= 0,

(20)
∂l

∂R
= 0,

(21)
∂l

∂�
= 0.

(22)t =
(
1Tn Ŵ1n

)−1(
PtT − �RPoT

)
Ŵ1n,

(23)� =
tr(PtT C̃TŴC̃P

o
RT )

tr(PoT C̃TŴC̃P
o
)

,

(24)R = D(DTD)−
1
2 ,

(25)(DTD)−
1
2 =

v1v
T
1√
d1

+
v2v

T
2√
d2

+
v3v

T
3√
d3

,

(26)R = D

(
v1v

T
1√
d1

+
v2v

T
2√
d2

+
v3v

T
3√
d3

)
.

Zeng (2015) presented the formulae to compute rotation 
matrix as follows for the cases that the common points 
are distributed in a rigid or approximate plane, i.e., d1 
equals 0 or approaches very close to 0.

where the sign ± is chosen so that det(R) = +1 is 
satisfied.

Zeng (2015) presented the formulae to compute rota-
tion matrix as follows for the cases that the common 
points are distributed in a rigid or approximate line, i.e., 
d2 = d1 = 0, d3 > 0 or d3 > d2 > d1 = 0.

After R , � , and t are computed, the variance factor of unit 
weight σ is computed as same as in Eq. (15). The rotation 
angles can be computed from R by Eq. (16). However, for 
this cases that the common points are distributed in a rigid 
or approximate line, the solvable rotation angles are 0–2 
(Zeng 2015).

Analytical dual quaternion algorithm
Basic concept of dual quaternion

Quaternions r and s are written as follows (Walker et al. 
1991):

where r1 , r2 , r3 , r4 , s1 , s2 , s3 , and s4 are real numbers; i , j , 
and k are basic quaternion units. And then a dual quater-
nion is expressed as follows:

(27)d1 ≤ d2 ≤ d3,

(28)D1=
(
v2v

T
2√
d2

+
v3v

T
3√
d3

)
,

(29)D2=
(
DD1(DD1)

T − I3

)
v1v

T
1 ,

(30)R = DD1 ±
D2√

|tr(D2)|
,

(31)R =
v3v

T
3√
d3

.

(32)r = r1i + r2j + r3k + r4,

(33)s = s1i + s2j + s3k + s4,

(34)

q =r + εs

=(r1 + εs1)i + (r2 + εs2)j + (r3 + εs3)k + (r4 + εs4),

=qd1i + qd2j + qd3k + qd4
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where ε is a dual unit with the property ε2 = 0 and ε com-
mutes with quaternion units. 

(
qd1 qd2 qd3

)T is the vec-
tor part; qd4 is the scalar part.

The conjugate of q is defined as

where r∗ and s∗ are conjugates of r and s as follows:

p = u+ εv denotes a dual quaternion, and then the 
product of q and p is defined as

The norm of a dual quaternion is defined as

If �q� = 1 , q is named a unit dual quaternion. At this 
time, these conditions as follows exist:

The rigid transformation, including rotation and transla-
tion, can be represented by unit dual quaternion (Walker 
et al. 1991). The rotation matrix is represented by the unit 
quaternion r (e.g., Walker et al. 1991; Zeng and Yi 2011).

where

(35)q∗ = r∗ + εs∗,

(36)r∗ = −ir1 − jr2 − kr3 + r4,

(37)s∗ = −s1i − s2j − s3k + s4.

(38)pq = ur + ε(us + vr).

(39)�q� =
√
q∗q =

√
q2d1 + q2d2 + q2d3 + q2d4.

(40)rT r = 1,

(41)rT s = 0.

(42)
[
R 0

0T 1

]
= W(r)TQ(r),

(43)Q(r) =
[
r4I+ C(r) r

−rT r4

]
,

(44)W(r) =
[
r4I− C(r) r

−rT r4

]
,

(45)r =
[
r1 r2 r3

]T
,

(46)C(r) =




0 −r3 r2
r3 0 −r1
−r2 r1 0


.

Expanding Eq. (42), one obtains

Assume t is the pure imaginary quaternion composed of 
translation t , i.e.,

according to Walker et al. (1991),

Derivation and implementation of analytical dual 
quaternion algorithm

Introducing coordinate vector quaternions

the similarity 3D coordinate transformation model con-
sidering the error, i.e., Equation (4), is rewritten by dual 
quaternion as

subject to Eqs.  (40) and (41). In Eq.  (51), ei = [eTi 0]T 
is the transformation error quaternion. A Lagrangian 
extremum problem without constrains is constructed as

where β1 and β2 are two Lagrangian multipliers. Replac-
ing the expression of ei from Eq. (51) into error function 
ẽ and expanding the error function ẽ , according to Zeng 
et al. (2018), one gets

where

(47)R =
(
r24 − rT r

)
I+ 2

(
rrT + r4C(r)

)
.

(48)t = 1

2



tx
ty
tz
0


 = 1

2

�
t
0

�
,

(49)t = W (r)T s.

(50)poi =
[
poi
0

]
, pti =

[
pti
0

]
,

(51)pti = �W(r)TQ(r)poi + 2W (r)T s + ei,

(52)

min
r,s,�,β1,β2

{
ẽ =

n∑

i=1

αie
T
i ei + β1

(
rT r − 1

)
+ β2s

T r

}
,

(53)

ẽ = a+ b�
2 + 4cs

T
s − 2�r

T
Ar

− 4s
T
B r+ 4�s

T
C r+ β1

(
r
T
r − 1

)

+ β2s
T
r,

(54)a =
n∑

i=1

αip
tT
i pti ,



Page 7 of 16Zeng et al. Earth, Planets and Space          (2022) 74:170 	

The Lagrangian minimum in Eq. (52) exists if and only 
if the following conditions are satisfied:

The derivation of Eq.  (60) makes use of the property 
that A is a symmetric matrix. The property is proved in 
Zeng et al. (2018).

For skew symmetric matrixes B and C , the following 
property is proved in Zeng et al. (2018).

Right multiplying Eq.  (61) by r , and considering 
Eq. (63), Eq. (64) and Eq. (65), one obtains

By Eq. (61), one obtains

(55)b =
n∑

i=1

αip
oT
i poi ,

(56)c =
n∑

i=1

αi,

(57)A =
n∑

i=1

αiW (poi )
TQ(pti ),

(58)B =
n∑

i=1

αiQ(pti ),

(59)C =
n∑

i=1

αiW (poi ),

(60)

δẽ

δr
= −4�rTA − 4sTB+ 4�sTC+ 2β1r

T + β2s
T = 0,

(61)
δẽ

δs
= 8csT − 4rTBT

+ 4�rTCT + β2r
T = 0,

(62)
δẽ

δ�
= 2b�− 2rTA r+ 4sTC r = 0,

(63)
δẽ

δβ1
= rT r − 1 = 0,

(64)
δẽ

δβ2
= sT r = 0.

(65)rTBr = 0, rTC r = 0.

(66)β2 = 0.

(67)s =
1

2c
(B− �C)r.

Substituting Eq. (67) into Eq. (62) and making arrange-
ments, one gets

Substituting Eq.  (67) into Eq.  (60) and considering 
Eq. (66), and making arrangements one gets

Introducing

Equation (69) is re-expressed as

It is obviously seen that β1 and r are the eigenvalue 
and eigenvector of F . Because A is symmetric and real, 
F is symmetric and real. Thus, F has four real eigenval-
ues and four orthogonal real eigenvectors. The next work 
is to find the solution of r and β1 from the eigenvectors 
and eigenvalues. The expression of error function e was 
derived in Zeng et al. (2018) as

It is shown that e gets its minimum if β1 is the largest 
eigenvalue of F . So solution of r is the eigenvector of F 
corresponding to its largest eigenvalue.

This paper will prove that the analytical solution exists 
and present an analytical algorithm as follows.

Expanding the formula of F in Eq. (70), one gets

BTC is a symmetric matrix, referring to the Appendix 
for the proof. BTB and CTC are constant matrixes as 
follows:

Further, Eq. (70) is rewritten as

(68)� =
rTAr − c−1rTBT

Cr

b− c−1rTCTCr
.

(69)
[
2�A +

1

c
(B− �C)T (B− �C)

]
r = β1r.

(70)F = 2�A +
1

c
(B− �C)T (B− �C),

(71)F r = β1r.

(72)e = a+ b�2 − β1,

(73)

F = 2�A +
1

c

(
B
T
B− �B

T
C− �C

T
B+ �

2
C
T
C

)
.

(74)

BTB =



�

n�

i=1

αix
t
i

�2

+
�

n�

i=1

αiy
t
i

�2

+
�

n�

i=1

αiz
t
i

�2

I4,

(75)

CTC =



�

n�

i=1

αix
o
i

�2

+
�

n�

i=1

αiy
o
i

�2

+
�

n�

i=1

αiz
o
i

�2

I4.
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Suppose that the eigenvalue and eigenvector decomposi-
tion of F is written as

where κ , µ are the eigenvalue and eigenvector decompo-
sition of F . Substituting Eq. (76) into Eq. (77), one gets

Substituting Eqs. (74) and (75) into Eq. (78) and making 
arrangements, one obtains

where

Introducing

(76)F = 2�

(
A −

1

c
B
T
C

)
+

1

c

(
B
T
B+ �

2
C
T
C

)
.

(77)Fµ = κµ,

(78)

2�

(
A −

1

c
B
T
C

)
µ+

1

c

(
B
T
B+ �

2
C
T
C

)
µ = κµ.

(79)
(
A −

1

c
B
T
C

)
µ =

1

2�

[
κ −

1

c

(
τ t + �

2τ o
)]

µ,

(80)

τ t =



�

n�

i=1

αix
t
i

�2

+
�

n�

i=1

αiy
t
i

�2

+
�

n�

i=1

αiz
t
i

�2

,

(81)

τ o =



�

n�

i=1

αix
o
i

�2

+
�

n�

i=1

αiy
o
i

�2

+
�

n�

i=1

αiz
o
i

�2

.

(82)G =
(
A −

1

c
BTC

)
,

Equation (76) is rewritten as

Therefore, it is obviously seen that γ and µ are the eigen-
value and eigenvector of G . G is symmetric and real as 
F ; thus, G also has four couples of real eigenvalues and 
orthogonal real eigenvectors as F . Further, µ is the eigen-
vector of both G and F , and γ and κ are related linearly. 
When κ increases, γ increases. Although it is not possi-
ble to obtain the largest eigenvalue based on eigenvalue 
and eigenvector decomposition of F directly because of 
the ambiguity of � in F , it is feasible to compute the larg-
est eigenvalue and corresponding eigenvector based on 
eigenvalue and eigenvector decomposition of G . Then the 
largest eigenvalue of F is computed from Eq. (83) as

where γmax is the largest eigenvalue of G . And corre-
sponding eigenvector of F , i.e., r , is the eigenvector cor-
responding to largest eigenvalue of G.

At last, after r , s , � , and t are computed, the standard 
deviation of unit weight is estimated by

or

(83)γ =
1

2�

[
κ −

1

c

(
τ t + �

2τ o
)]

,

(84)Gµ = γµ.

(85)β1 = 2�γmax +
1

c

(
τ t + �

2τ o
)
,

(86)
σ = ±

√√√√√
n∑

i=1

αie
T
i ei

3n− 7
,

(87)σ = ±

√
a+ b�2 − β1

3n− 7
.

Table 1  The analytical dual quaternion algorithm of the weighted 3D coordinate transformation

Input: input 3D coordinates of control points and construct 3D coordinate vector quaternion by Eq. (50), and input the point-wise weight αi
Analytical computation:
Step 1. Compute a , b , c , A , B , C by Eq. (54) to Eq. (59)

Step 2. Compute G by Eq. (82), and perform the eigenvalue–eigenvector decomposition of G . γmax is set to the largest eigenvalue, and r  is set to the 
eigenvector corresponding to the largest eigenvalue

Step 3. Compute � by Eq. (68)

Step 4. Compute s by Eq. (67)

Step 5. Compute R by Eq. (47); furthermore, if rotation angles θx , θy , θz are needed, compute them by Eq. (16)

Step 6. Compute t  by Eq. (49) and then translation t by Eq. (48)

Step 7. Compute ei by Eq. (51) and then compute σ by Eq. (86). Or compute β1 by Eq. (85) and then compute σ by Eq. (87)

Output: output r  , s , � , t  , R , ( θx , θy , θz if needed), σ
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The analytical dual quaternion algorithm is summa-
rized in Table 1.

Experiments and discussion
Four numerical cases, including geodetic datum transfor-
mation, the registration of LIDAR point clouds, and two 
simulated cases, are studied. The former two cases are 
actual and chosen to investigate whether the presented 
algorithm is valid to transformation with point-wise 
weight and with small or big rotation angles. The latter 
two cases, i.e., simulated cases, are designed to test the 
performance of the presented algorithm on the aspects 
of stability with different distributions of control points 
(case I) and reliability with different noises and with dif-
ferent rotation angles (case II).

Geodetic datum transformation case
Usually the rotation angles in geodetic datum trans-
formation are small (less than 1°). The data in this case 
are from Grafarend and Awange (2003), and the rota-
tion angles are all less than 1″. The 3D coordinates of 
control points in both original system and target system 

are listed in Table  2. The point-wise weights of control 
points are listed in Table 3. The Analytical Dual Quater-
nion Algorithm (ADQA), Modified Procrustes Algorithm 
(MPA), and Orthonormal Matrix Algorithm (OMA) are 
employed to compute the transformation parameters. 
The computed unit dual quaternion by ADQA is listed 
in Table  4, and the computed transformation param-
eters and standard deviation of unit weight by the three 
algorithms are identical (the rounding errors are small 
enough to ignore, for instance, less than 0.000001″ for the 

Table 2  3D coordinates of control points

Station Name Original system (local system) (m) Target system (WGS-84 system) (m)

xo yo zo xt yt zt

Solitude 4,157,222.543 664,789.307 4,774,952.099 4,157,870.237 664,818.678 4,775,416.524

Buoch Zeil 4,149,043.336 688,836.443 4,778,632.188 4,149,691.049 688,865.785 4,779,096.588

Hohenneuffen 4,172,803.511 690,340.078 4,758,129.701 4,173,451.354 690,369.375 4,758,594.075

Kuehlenberg 4,177,148.376 642,997.635 4,760,764.800 4,177,796.064 643,026.700 4,761,228.899

Ex Mergelaec 4,137,012.190 671,808.029 4,791,128.215 4,137,659.549 671,837.337 4,791,592.531

Ex Hof Asperg 4,146,292.729 666,952.887 4,783,859.856 4,146,940.228 666,982.151 4,784,324.099

Ex Kaisersbach 4,138,759.902 702,670.738 4,785,552.196 4,139,407.506 702,700.227 4,786,016.645

Table 3  Point-wise weights

Station Name Solitude Buoch Zeil Hohenneuffen Kuehlenberg Ex Mergelaec Ex Hof Asperg Ex Kaisersbach

Weight 2.170137 2.097755 2.208968 2.201671 2.182928 2.268808 2.643404

Table 4  Computed dual quaternion by ADQA

Quaternion r s

Value 0.000002418528 320.920158312595

− 0.000002172181 34.237708673610

− 0.000002389849 208.107012357002

0.999999999992 − 0.000204439773

Table 5  Calculated transformation parameters by ADQA, MPA, 
and OMA

Rotation matrix

R 1.0000000000 0.0000047797  − 0.0000043444

 − 0.0000047797 1.0000000000  − 0.0000048370

0.0000043443 0.0000048371 1.0000000000

Rotation angles (″)

 θx  − 0.997716

 θy   0.896085

 θz      0.985885

Translation (m)

 tx 641.8395

 ty 68.4729

 tz 416.2156

Scale

λ 1.000005611

Standard deviation 
of unit weight (m)

σ 0.1140
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rotation angle) and listed in Table 5. Thus, the presented 
algorithm ADQA is valid for the case with small rotation 
angles and point-wise weights.

LiDAR point cloud registration case
Usually the rotation angles in LiDAR Point Cloud Reg-
istration are big. The data in this case are chosen from 
Wang et  al. (2014). 18 common points are extracted 
from two neighboring LIDAR point clouds and listed in 
Table 6. The point-wise weights of all points are set to 1 in 
this case. In other words, the weights of all points are not 
taken into account. The computed unit dual quaternion 
by ADQA is given in Table 7, and the computed transfor-
mation parameters and standard deviation of unit weight 
by ADQA, MPA, and OMA are identical (the rounding 
errors are small enough to ignore) and listed in Table 8. 
Therefore, the presented algorithm ADQA is valid for the 
case with big rotation angles.

Simulated case I
This case is designed to test the stability of the presented 
algorithm, ADQA, and compare with MPA and OMA. 
The data are from Zeng (2015). The data are simulated as 
follows. Six sets of common points in the original system 

Table 6  Common points extracted from two neighboring LIDAR point clouds

Point no. Unregistered station in the original system (m) Reference station in the target system (m)

xo yo zo xt yt zt

1 − 49.007 54.453 0.978 − 91.406 53.344 8.320

2 − 47.365 54.435 − 6.242 − 91.297 53.222 0.916

3 − 36.514 13.733 3.642 − 60.158 24.280 8.948

4 − 34.881 13.859 − 3.608 − 60.135 24.278 1.521

5 − 53.378 − 25.872 − 4.187 − 56.298 − 19.186 5.700

6 − 7.324 − 32.695 − 1.389 − 13.269 − 2.677 − 1.444

7 9.587 − 19.650 2.449 − 4.666 17.245 − 1.605

8 − 36.532 − 0.319 21.980 − 49.939 14.297 27.119

9 − 39.932 − 1.307 19.965 − 52.769 11.523 25.906

10 − 67.051 − 8.834 15.017 − 72.929 − 8.630 27.146

11 − 54.124 − 40.688 13.216 − 46.500 − 30.291 23.078

12 − 51.943 − 30.962 − 3.965 − 52.581 − 22.934 5.676

13 − 57.712 − 23.376 8.397 − 58.972 − 17.511 18.862

14 − 59.650 − 32.625 12.037 − 55.429 − 26.155 23.077

15 − 59.512 − 32.705 12.071 − 55.313 − 26.131 23.039

16 − 41.466 18.246 21.085 − 63.467 27.962 26.981

17 − 39.133 10.234 20.247 − 57.673 22.069 25.782

18 − 29.781 − 0.026 − 8.062 − 49.687 14.083 − 3.666

Table 7  Computed dual quaternion by ADQA

Quaternion r s

Value − 0.036681390787 − 7.197133335638

0.103091603067 17.077717584215

0.253305902396 − 1.733260783702

0.961177775835 − 1.649564727641

Table 8  Calculated transformation parameters by ADQA, MPA, 
and OMA

Rotation matrix

R 0.8504164824 − 0.4945070945 0.1795954899

0.4793809210 0.8689811908 0.1227420983

− 0.2167619411 − 0.0182872521 0.9760531939

Rotation angles (°)

 θx 1.0733634149

 θy − 12.5189170709

 θz − 29.4100148194

Translation (m)

 tx − 22.9656

 ty 29.3962

 tz − 2.2652

Scale

 λ 1.000385442

Standard devia-
tion of unit weight 
(m)

 σ 0.0301
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are given in Table 9 firstly. For Set 1, common points are 
distributed in 3D space. For Sets 2 to 4, common points 
are distributed in 2D space. For Sets 5 and 6, common 
points are distributed in 1D space. Then true transfor-
mation parameters are disigned to suit big rotation angle 
and listed in Table 10. At last, the simulative true coordi-
antes of control points in the target system are computed 
by Eq. (1) and listed in Table 11. ADQA, MPA, and OMA 
are employed to compute the transformation parameters. 
The results of Set 1 to Set 4 by ADQA, MPA, and OMA 
are identical and listed in Table 12. For Set 5 and Set 6, 
the results by ADQA, MPA, and OMA are different and 
listed in Table 13. It is obviously seen that for Set 1 to Set 
4, i.e., 3D or 2D space, the three algorithms are valid to 
compute the correct transformation parameters. And for 
Set 5 and Set 6, i.e., 1D space, the three algorithms are 
valid to compute all correct translation and scale param-
eters, however, only 0–2 correct rotation angles. Thus, 
ADQA is stable when all common points (at least three) 
are located in 2D or 3D space, however, become unstable 

when all common points are located in 1D space (i.e., 
on a line). In order to compute 7 parameters correctly 
all common points (at least three) should be distributed 
in 2D or 3D space. In other words, all common points 
should not be distributed on a line; otherwise only 4–6 of 
the 7 parameters can be computed correctly.

Simulated case II
In this case two schemes are designed to test the reliabil-
ity of ADQA with different noises (Scheme  1) and with 
different rotation angles (Scheme 2). The settings of two 
schemes are listed in Table 14.

For Scheme 1, the coordinates of control points in the 
target system are computed by the given coordinates of 
control points in the original system and fixed transfor-
mation parameters. In order to simulate the errors of 
control points in the original system and in the target 
system, normal distributed noises N(0, σ0

2) are produced 
and added into the coordinates. The standard devia-
tion σ0 is varied in the zone [0.0001  m, 0.01  m] with a 

Table 9  Simulative true coordinates of control points in the original system

Point number Set 1 (m): 3D space Set 2 (m): 2D space Set 3 (m): 2D space

xo yo zo xo yo zo xo yo zo

1 10.000 30.000 5.000 10.000 30.000 5.000 10.000 30.000 57.000

2 20.000 30.000 12.500 20.000 30.000 12.500 20.000 30.000 67.000

3 30.000 30.000 15.000 30.000 30.000 15.000 30.000 30.000 77.000

4 10.000 20.000 9.500 10.000 20.000 42.000

5 20.000 20.000 11.000 20.000 20.000 52.000

6 30.000 20.000 10.000 30.000 20.000 62.000

7 10.000 10.000 14.500 10.000 10.000 27.000

8 20.000 10.000 4.500 20.000 10.000 37.000

9 30.000 10.000 4.000 30.000 10.000 47.000

Point number Set 4(m): 2D space Set5 (m): 1D space Set 6 (m): 1D space

xo yo zo xo yo zo xo yo zo

1 10.000 30.000 15.000 10.000 10.000 10.000 10.000 0.000 0.000

2 20.000 30.000 15.000 20.000 20.000 20.000 20.000 0.000 0.000

3 30.000 30.000 15.000 30.000 30.000 30.000 30.000 0.000 0.000

4 10.000 20.000 15.000 40.000 40.000 40.000

5 20.000 20.000 15.000 50.000 50.000 50.000

6 30.000 20.000 15.000 60.000 60.000 60.000

7 10.000 10.000 15.000 70.000 70.000 70.000

8 20.000 10.000 15.000 80.000 80.000 80.000

9 30.000 10.000 15.000 90.000 90.000 90.000

Table 10  Simulative true values of transformation parameters

tx (m) ty (m) tz (m) θx (°) θy (°) θz (°) λ

30 30 10 71 78 73 1.000016
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constant interval 0.0001 m, so there are 100 different val-
ues of σ0. For each value of σ0, the noises are produced 
and added 100 times, and the transfomation parameters 
are computed 100 times. The average computed trans-
fomation parameters of 100 times and the error regard-
ing to true transformation parameters are computed 
based on Monte Carlo simulation method. The results 
by ADQA, MPA, and OMA are the same and depicted 
in Fig. 1. It is seen from Fig. 1 that the errors of transfor-
maiton parameters and standard deviation of unit weight 
σ all keep a trend of overall increase with the increase of 

σ0. From the view point of improving the transformation 
accuracy, high accurate control points (with small errors 
in the coordinates) should be chosen.

For Scheme 2, the coordinates of control points in the 
target system are computed by the given coordinates 
of control points in the original system, fixed scale and 
translations, and varied rotation angles θ0. θ0 is varied in 
the zone [1°, 85°] with a constant interval 1°, so there are 
85 different values of θ0. In order to simulate the errors of 
control points in the original system and in the target sys-
tem, normal distributed noises N(0, 0.0012) are produced 
and added into the coordinates. For each value of θ0, the 
noises are produced and added 100 times, and the trans-
fomation parameters are computed 100 times. The aver-
age computed transfomation parameters of 100 times 
and the error regarding to true transformation param-
eters are computed based on Monte Carlo simulation 
method. The results by ADQA, MPA, and OMA are the 
same and depicted in Fig.  2. Figure  2 indicates that the 
errors of transformaiton parameters and standard devia-
tion of unit weight σ all keep a trend of overall increase 
with the increase of θ0. From the view point of improving 
the transformation accuracy, it is preferred to decrease 
the rotation angles as much as possible.

Table 11  Simulative true coordinates of control points in the target system

Point number Set 1 (m): 3D space Set 2 (m): 2D space Set 3 (m): 2D space

xt yt zt xt yt zt xt yt zt

1 52.116 7.239 14.222 52.116 7.239 14.222 94.294 37.450 17.742

2 58.807 9.608 24.512 58.807 9.608 24.512 103.013 41.272 28.201

3 61.443 9.072 34.463 61.443 9.072 34.463 111.732 45.093 38.659

4 49.949 17.746 16.493 76.310 36.628 18.693

5 51.773 16.629 26.376 85.029 40.450 29.151

6 51.570 14.060 36.090 93.748 44.271 39.610

7 48.187 28.543 18.797 58.325 35.806 19.643

8 40.683 20.745 27.902 67.044 39.627 30.102

9 40.886 18.466 37.650 75.763 43.449 40.560

Point number Set 4(m): 2D space Set5 (m): 1D space Set 6 (m): 1D space

xt yt zt xt yt zt xt yt zt

1 60.227 13.048 14.899 44.537 25.929 18.493 30.608 28.012 19.782

2 60.835 11.060 24.681 59.073 21.858 26.985 31.216 26.023 29.563

3 61.443 9.072 34.463 73.610 17.787 35.478 31.824 24.035 39.345

4 54.410 20.941 16.865 88.146 13.716 43.971

5 55.017 18.953 26.647 102.683 9.645 52.463

6 55.625 16.965 36.429 117.219 5.573 60.956

7 48.592 28.834 18.831 131.756 1.502 69.449

8 49.200 26.846 28.613 146.292  − 2.569 77.941

9 49.808 24.857 38.394 160.829  − 6.640 86.434

Table 12  Computed transformation parameters for Set 1 to Set 
4 by ADQA, MPA, and OMA

Parameters Set 1 Set 2 Set 3 Set 4

tx (m) 30.000215 29.997125 29.999564 29.999778

ty (m) 30.000014 29.999418 30.000156 30.000191

tz (m) 9.999992 10.000804 9.999562 9.999647

θx (°) 70.998025 70.994443 70.999494 71.000802

θy (°) 77.999873 77.996704 77.999588 78.000742

θz (°) 73.001648 73.000253 73.000571 72.999769

λ 1.000012 1.000049 1.000025 1.000028

σ (m) 0.000315 0.000197 0.000313 0.000294
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Conclusions
The rigid transformation, including rotation and transla-
tion, can be described by a unit dual quaternion. Based 
on this good property of unit dual quaternion the point-
wise weighted 3D coordinate transformation is formu-
lated. The model constructed, i.e., Equation  (48), is not 
differential as traditional ones, like MPA and OMA, uti-
lize C̃ to centralize the model and eliminate the three 
translations. The Analytical Dual Quaternion Algorithm 
(ADQA) of the point-wise weighted 3D coordinate trans-
formation is derived step by step and summed up.

Four numerical experiments involving two real 
world cases, namely, geodetic datum transformation 
and LIDAR point cloud registration, and two simula-
tive cases are demonstrated. The results show that the 
presented algorithm, i.e., ADQA, as well as MPA and 
OMA, is valid for the transformation with point-wise 
and no matter how big the rotation angles are. Mean-
while, the results also indicate that in order to recover 
all parameters the distribution of common points 
should be in 3D or 2D space. In other words, all com-
mon points should not on a line. From the perspec-
tive of improving the transformation accuracy, high 

accurate control points (with small errors in the coordi-
nates) should be chosen, and it is preferred to decrease 
the rotation angles as much as possible.

Appendix Proof of symmetric property of matrix 
B
T
C

Equations (58) and (59) are rewritten, respectively, as

thus,

where Nij 
(
i, j = 1, 2, 3, 4

)
 is the element of N in the ith 

row and jth column listed as
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Table 13  Computed transformation parameters for Set 5 to Set 6 by ADQA, MPA, and OMA

Parameters Set 5 Set 6

ADQA MPA OMA ADQA MPA OMA

tx (m) 30.000278 30.000278 30.000278 30.000000 30.000000 30.000000

ty (m) 30.000389 30.000389 30.000389 30.000333 30.000333 30.000333

tz (m) 10.000083 10.000083 10.000083 10.000333 10.000333 10.000333

θx (°) 55.330072  − 54.854782  − 45.000000  − 61.858215  − 61.858215 Unsolved

θy (°) 41.175912  − 24.651859 16.444350 77.998588 77.998588 77.998588

θz (°) − 51.523256 6.418995 15.645706 72.998563 72.998563 72.998563

λ 1.000016 1.000016 1.000016 1.000008 1.000008 1.000008

σ (m) 0.000296 0.000296 0.000296 0.000407 0.000407 0.000407

Table 14  The settings of two test schemes

Parameters Scheme 1 Scheme 2

Coordinates of control points in 
the original system

Set 1 in Table 9 Set 1 in Table 9

λ 1.000016 1.000016

tx (m) 30 30

ty (m) 30 30

tz (m) 10 10

θx (°) 50 θ0

θy (°) 30 θ0

θz (°) 80 θ0

Noise N(0, σ0
2) N(0, 0.0012)
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Fig. 1  The errors of computed transformation parameters and standard deviation of unit weight caused by different normal distributed random 
nosies N(0, σ 2

0
 ). Each x axis value represents the different σ0 in meters. Each y axis value represents different accuracy index values: (a) error of 

rotation angle, in degrees. (b) Error of translation, in meters. (c) error of scale, in no unit. (d) σ in meters
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Therefore, BTC is a symmetric matrix.
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