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Abstract 

Very low frequency (VLF) waves (about 3–30 kHz) in the Earth’s magnetosphere interact strongly with energetic elec‑
trons and are a key element in controlling dynamics of the Van Allen radiation belts. Bistatic very low frequency (VLF) 
transmission experiments have recently been conducted in the magnetosphere using the high-power VLF transmit‑
ter on the Air Force Research Laboratory’s Demonstration and Science Experiments (DSX) spacecraft and an electric 
field receiver onboard the Japan Aerospace Exploration Agency’s Arase (ERG) spacecraft. On 4 September 2019, the 
spacecraft came within 410 km of each other and were in geomagnetic alignment. During this time, VLF signals were 
successfully transmitted from DSX to Arase, marking the first successful reception of a space-to-space VLF signal. 
Arase measurements were consistent with field-aligned propagation as expected from linear cold plasma theory. 
Details of the transmission event and comparison to VLF propagation model predictions are presented. The capabil‑
ity to directly inject VLF waves into near-Earth space provides a new way to study the dynamics of the radiation belts, 
ushering in a new era of space experimentation.
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Introduction
The Demonstration and Science Experiments (DSX) 
spacecraft, operated by the Air Force Research Labo-
ratory, was launched on 25 June 2019 into Medium 
Earth Orbit (6000  km × 12,000  km × 42°) and operated 
through 31 May 2021. Outfitted with a very low fre-
quency (VLF) radio transmitter, receiver, and full suite 
of energetic charged particle sensors, DSX’s primary 
science objective is to explore the influence of in  situ 
VLF wave injection on energetic electrons in the Van 
Allen Radiation Belt (Scherbarth et al. 2009). It is well-
established that VLF (~ 3–30  kHz) and extremely low 
frequency (ELF, ~ 3  Hz–3  kHz) waves can drive radia-
tion belt electron accelerations and losses via resonant 
wave–particle interactions, including acceleration in 
the outer zone by ELF/VLF chorus, slot region losses 
from ELF plasmaspheric hiss, and slot region/outer 
zone losses from VLF waves generated by lightning or 
ground transmitters (Kennel and Petschek 1966; Lyons 
and Thorne 1973; Abel and Thorne 1998; Miyoshi et al. 
2003, 2015, 2021). Here and throughout this work, we 
use the definitions of VLF and ELF ranges from Barr 
et al. (2000). DSX represents the first space-based mis-
sion to study the relationship by controlled injection 
of tailored VLF signals (Inan et al. 2003 and references 
therein). Establishing the radiation efficiency of an 
in  situ VLF antenna is also an important step in esti-
mating the performance of proposed space-based VLF 
radiation belt remediation systems (Winter et al. 2004; 
Carlsten et al. 2019) intended to protect satellites from 
high-energy electron damage.

One key activity to this end is to perform transmis-
sions at times when the signal can be detected by a sep-
arate receiver in the far field, where near-field radiation 
efficiency and propagation phenomena determine the 
wave characteristics. In this bistatic mode the effects of 
top-side ionospheric or magnetospheric reflection are 
not present. Transmitting radio waves for the purposes 
of environmental observation has been performed in the 
past, including transmissions in the medium frequency 
band (300  kHz–3  MHz) between ISEE 1 and 2 (Har-
vey et  al. 1988) and from the IMAGE spacecraft to the 
WIND and CLUSTER spacecraft (Cummer et  al. 2003). 
These transmissions were in higher frequency bands 
where the requisite antenna length (at least in vacuo) is 
shorter than that required for VLF emission (3–30 kHz), 
and where propagation was nearly line-of-sight, i.e., at 
frequencies higher than the in situ plasma frequency and 
gyrofrequency. Two VLF transmission experiments were 
performed as part of the IMAGE mission (Song et  al. 
2007; Paznukhov et  al. 2010). While these two experi-
ments collected key engineering parameters, there was 
no confirmation that the waves propagated appreciably 
away from the satellite. Space-to-space VLF transmission 
was also previously attempted as part of the conjunction 
experiments between the Activny satellite and DE-1, but 
no signal was detected (Sonwalker et  al. 1994). IMAGE 
Radio Plasma Imager also conducted VLF radio sounding 
experiments (Sonwalker et  al. 2011) which received the 
echoes from the low-power whistler mode transmission. 
A novel aspect of DSX is that it utilizes a deployable rigid 
structure for the dipole antenna with a length of 81.6 m 
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and on-board tuning system which make high-driving-
voltage and high-power transmission in the VLF band 
possible.

The DSX mission has attempted bistatic transmissions 
targeting several platforms which have the capability to 
receive signals in the VLF band, to include the Arase 
spacecraft operated by the Japan Aerospace Exploration 
Agency (JAXA). Arase has been performing magneto-
spheric observations since 2017 in a 460  km perigee, 
32,110  km apogee and 31° inclination geosynchronous 
transfer orbit (Miyoshi et  al. 2018a). In this paper, the 
first successful observation of a DSX VLF transmission 
by Arase is reported.

Instrumentation and data collection
DSX
The DSX spacecraft consists of a payload module affixed 
to one side of an ESPA (Evolved Expendable Launch 
Vehicle Secondary Payload Adapter) bus and an avion-
ics module on the opposite face as illustrated in Fig.  1a 
together with the spacecraft fixed coordinate frame. 
The primary VLF antenna has two 40  m booms used 
as an effective 81.6  m tip-to-tip dipole along the space-
craft Y-axis when the 1.6-m center gap is included. Dur-
ing the transmissions reported here, DSX maintained an 

orientation relative to the geomagnetic field as shown 
(with + Y perpendicular to B). VLF studies are con-
ducted with the Wave–Particles Interactions Experiment 
(WPIx) payload including a vector magnetometer built 
by the University of California at Los Angeles, an elec-
tron detector built by Boston University, a VLF broad-
band receiver (BBR) built by Stanford University and the 
Transmitter, Narrowband receiver, and Tuner (TNT) 
built by the University of Massachusetts at Lowell. The 
BBR is connected to orthogonal electric field antennas 
on the Y- and Z-booms (Fig. 1a) as well as to a three-axis 
flux-gate magnetometer built by NASA Goddard Space-
flight Center perched at the end of one of the Z-booms.

DSX performs VLF transmissions with the TNT which 
is composed of the two-element dipole antenna, cabling, 
a control unit and two sets of transmitters, receivers and 
tuning units (one for each antenna element). The instru-
ment was designed with knowledge gained from the RPI 
instrument on the IMAGE spacecraft (Reinisch et  al. 
2000). All transmitted signals are derived from a 16-MHz 
system clock. A digital transmitter system generates 
desired frequencies in a time-series of waveforms with 
5 V amplitude, then amplified to the transmitter driving 
voltage ranging from a few volts to more than 200 V. The 
transmitter is dynamically impedance matched to the 

Fig. 1  The DSX and Arase spacecraft and their fixed coordinate frames. A The DSX spacecraft consists of a payload module affixed to one side of 
an ESPA (Evolved Expendable Launch Vehicle Secondary Payload Adapter) bus and an avionics module on the opposite face. The VLF antenna has 
two 40 m booms used as an effective 80 m dipole along the spacecraft Y-axis. During transmission, DSX maintained an orientation relative to the 
geomagnetic field B as shown (with + Y perpendicular to B). B The Arase spacecraft has a full suite of particle and field instruments for observing 
the inner magnetosphere. While DSX is 3-axis stabilized, Arase spins about its Z-axis as indicated in Spinning-satellite Geometry Inertia (SGI) 
coordinates
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dipole polarized antenna feed points using a switched 
network of discrete inductors and capacitors with a total 
of 1024 different addressable values of net reactance. The 
narrow band receiver system passively records VLF elec-
tric field signals in 453 steps from 3 to 900 kHz with the 
reception bandwidth of 300 Hz.

The TNT system can broadcast in two modes—high 
power and low power. In the high-power mode, the 
payload transmits tuned signals at 3–50  kHz with up 
to 5  kV at the antenna feed points. For the high-power 
transmissions the impedance-matching network can 
either (a) maintain a fixed internal reactance while the 
VLF transmitter scans through frequencies to select the 
one which optimizes power flow to the antenna (at the 
resonance frequency) or (b) adjust the reactance to opti-
mize the power flow at a fixed VLF transmit frequency. 
The dynamic impedance-matching maximizes power 
transfer from the TNT circuit to the dipole antenna as it 
encounters varying indices of refraction in the plasmas-
phere, radiation resistance and the reactance associated 
with local antenna–plasma interactions (Song et al. 2007; 
Paznukov et  al. 2010). Low-power transmission modes 
are used for local and remote sounding by utilizing a fre-
quency scan between 3 kHz and 3 MHz. For the sounding 
modes, the low-power antennas are not tuned. When the 
sounding frequency matches a local plasma characteristic 
frequency, resonance will occur and produce oscillations 
around the antenna. Such resonance relaxation sounding 
evaluates the local plasma frequency and gyrofrequency 
very accurately without altering underlying plasma prop-
erties. For frequencies which do not match a local reso-
nant frequency, the pulsed signal propagates away and 
will reflect at locations where the frequency does match 
the local cutoff frequency and produce a reflection echo 
back to the satellite. Pulse travel times measured as a 
function of frequency provide information which can 
enable reconstruction of far-field plasmaspheric and 
polar cap density profiles along the magnetic field, as 
demonstrated by experiments on the IMAGE satellite 
(Reinisch et al. 2001).

Arase
The Plasma Wave Experiment (PWE) aboard Arase meas-
ures electric and magnetic fields in the terrestrial inner 
magnetosphere (Kasahara et  al. 2018) and comprises 
four electric field antennas (Wire Probe Antenna; WPT) 
to measure electric field (Kasaba et  al. 2017), and a tri-
axial search coil magnetometer (MSC) to measure mag-
netic field (Ozaki et  al. 2018). The length of each WPT 
is 15 m, and four WPTs are deployed in the spin plane of 
Arase as shown in Fig. 1B. MSC is mounted on the tip of 
a 5-m-long mast which is deployed from the spacecraft 
body. The PWE consists of three receivers: the Electric 

Field Detector (EFD, Kasaba et  al. 2017), the Waveform 
Capture/Onboard Frequency Analyzer (WFC/OFA, Mat-
suda et al. 2018), and the High Frequency Analyzer (HFA, 
Kumamoto et  al. 2018). Using these three receivers, the 
PWE covers the frequency range from DC to 10 MHz for 
the electric field and from a few Hz to 100  kHz for the 
magnetic field.

The WFC/OFA measures electric and magnetic field 
in a frequency range from a few Hz to 20 kHz, with the 
WFC continuously sampling five components of the elec-
tric and magnetic field signals picked up by the PWE sen-
sors at a sampling frequency of 65.536  kHz for limited 
periods of time. Electric and magnetic field spectra are 
generated onboard by the OFA using a fast Fourier trans-
form with a nominal time resolution of 1 s. All OFA data 
are transferred to the ground. Waveforms observed by 
the WFC are stored once onto the onboard Mission Data 
Recorder and portions of the stored data are selected by 
telemetry commands and sent to ground. Since the WFC 
data represent uninterrupted high-resolution wave-
forms, that is what is used to observe DSX conjunction 
transmissions.

DSX–Arase conjunctions
The DSX mission planning tools use spatial ephemeri-
des for DSX and potential target spacecraft at a 1-min 
time resolution to identify two types of conjunctions: 
spatial and magnetic. Predicted spatial conjunctions 
are defined by physical separation between the two 
spacecraft of less than 2000  km, while predicted mag-
netic conjunctions are identified when the target space-
craft comes within 750  km in the transverse direction 
to the geomagnetic field line traced from DSX, though 
the distance along the magnetic field can be large. The 
DSX field line is traced using the International Geo-
magnetic Reference Field (IGRF) (Thébault et al. 2015) 
plus the Olson–Pfitzer quiet external field (Olson and 
Pfitzer 1974) both north and south from the predicted 
spacecraft location. Coordinated observations have 
been performed by the two satellite teams since August 
2019, with Arase observing in burst mode to detect 
the waveform when DSX operates a high-power trans-
mission. In the interval between 25 August 2019 and 
31 December 2020 there were 17 conjunction events 
where the DSX transmitter specifically targeted Arase 
(see Additional file 1 and 2). Of these, 16 were field line 
conjunctions with spacecraft separation distances rang-
ing from ~ 3040–24,225 km, and one has been a spatial 
conjunction with a separation distance of ~ 410 km. As 
described in the next section, a successful detection of 
the DSX signal by Arase occurred on 4 September 2019. 
This was the closest and only successful conjunction 
identified in data through the end of 2020.
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Results
On 4 September 2019 DSX performed a transmission 
from 05:40 UT to 06:20 UT, centered about a closest 
approach to Arase of ~ 410  km at ~ 06:00:43 UT with 
wave power concentrated at ~ 10  kHz—the “whistler 
mode” in the context of cold plasma theory. Figure  2 
shows the spatial configuration of this event as snapshots 
at A) 05:55 UT and B) 06:00 UT. The magnetic field meas-
ured by the vector magnetometer at 05:57:30 was ~ 3920 
nT and the plasma number density determined from the 
measured upper-hybrid resonance detected with the low-
power TNT sweep described above was ~ 390 cm−3.

Distinct electric field signatures that are qualitatively 
different from natural emissions or other known artifi-
cial sources (e.g., Barr et al. 2000) were recorded by the 
Arase PWE/WFC instrument (Fig.  3) between 05:57:15 
and 05:57:30 UT according to the Arase spacecraft time. 
Here, L is the McIlwain L derived from the IGRF provided 
from the Arase Level-2 orbit files (Miyoshi et al. 2018b). 
At this time the spatial separation of DSX and Arase 
was ~ 1100  km, with both spacecraft located near the 
same geomagnetic field line (the transverse distance from 
the DSX field line to Arase was ~ 130 km and the distance 
along the DSX field line to the point of closest approach 
to Arase was ~ 1100  km), in agreement with established 
theory that whistler waves in the magnetosphere propa-
gate primarily along magnetic field lines (Helliwell 1965). 
The entire period of signal reception spanned 05:57:06 to 
05:58:39 UT, with closest approach of Arase to the DSX 

Fig. 2  Spatial configuration of DSX–Arase transmission event at A 
05:57:48 UT, closest approach of Arase to the DSX magnetic field line, 
and B 06:00:42 UT, closest spatial approach of Arase and DSX. DSX 
location and direction of motion are indicated by the black dot and 
dotted arrow, respectively, and the same for Arase are indicated in 
red. Geomagnetic field lines are shown as black dashed lines. Direct 
VLF ray paths are shown in blue

Fig. 3  Electric field observations from the PWE/WFC instrument aboard Arase. The two panels correspond to the two electric field components 
aligned with the WPT axes shown in Fig. 1B. These spectral data were derived from time-series waveform data and employed a frequency resolution 
of 16 Hz. The magenta boxes indicate the strongest signal received during the event
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field line occurring at ~ 05:57:50 UT with ~ 112  km dis-
tance. Note that the closest spatial approach by the two 
spacecraft was at ~ 06:00:43 UT at ~ 410  km separation, 
but the distance between Arase and the DSX field line 
had increased to ~ 390  km. The precise timing of trans-
mission and reception has relatively large uncertainty due 
to spacecraft clock drifts. The timing difference between 
the two spacecraft is within ~ 2 s.

The spatiotemporal and spectral characteristics of the 
observations in Fig.  3 agree with the operations of the 
transmitter. Figure  4 illustrates the DSX waveform dur-
ing the conjunction with an enlarged sequence showing 
the Arase data from Fig.  3. TNT first scanned through 
the covered frequency range with a large frequency 
steps—50 steps at 350 Hz each (shown as short magenta 
dashes in Fig. 4A; only a subset of actual frequency steps 
are shown for clarity). From the measured antenna volt-
ages, an approximate tuned frequency was identified. 

TNT then performs an intermediate-step (50 steps with 
150 Hz each) and a fine-step (50 steps with 50 Hz each) 
frequency scan about the approximate tuned frequency. 
From these three frequency scans (each 1  s long) TNT 
locked in the final tuned frequency at 9.91 kHz for a long 
pulse (0.25 s) high-power transmission. Shades of brown 
color are used to indicate varying TNT power at differ-
ent frequencies in the sweeps: transmissions are stronger 
in the vicinity of the resonance frequency. The whole 
transmission cycle repeats every 7  s. Relative timing of 
the measured spacecraft signal in Fig. 4 is in close agree-
ment with the DSX waveform and the spectral features 
conform, providing strong evidence that this signal from 
DSX was detected by Arase. A total of 3 such transmis-
sion cycles in sequence were detected by Arase over the 
40 min high-power transmission period.

The measurements are qualitatively consistent with 
results from the baseline DSX wave injection and 

Fig. 4  Comparison of the DSX transmission pattern with Arase observations. A Representation of the transmission pattern as executed by the 
TNT instrument (see text for explanation). B An enlarged sequence of PWE/WFC measurements corresponding to the magenta boxes in Fig. 3. The 
comparison shows strong agreement of the tell-tale signature
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propagation model based on VLF ray-tracing—a compu-
tationally efficient geometric optics approach amenable 
to anisotropic media that works well when the wave-
length of interest is larger than the scale of variations 
in the medium. This condition is generally valid for the 
DSX orbit. Raytracing starts with a model to estimate the 
propagating wave vectors and Poynting flux injected into 
the magnetosphere from an in  situ dipole antenna. The 
model employs the stationary phase, far-field approxima-
tion to obtain a solution to the Green’s function for the 
electric and magnetic fields driven by the antenna cur-
rent in the limit of cold-plasma linear response theory 
(Mittra and Deschamps 1963; Ginet 2020). Estimates of 
the wave vectors and Poynting flux are output on the sur-
face of a sphere of constant radius (100 km) assuming a 
homogeneous plasma. Variations in the background den-
sity and magnetic field on the surface are then accounted 
for by adjusting the wave vectors using local density 
and magnetic field conditions constrained so that the 
adjusted wave vector is in the plane of the magnetic field 
and original wave vector. At this time, the predictions of 
Poynting flux amplitude are only relative. The antenna 
performance is still being evaluated and consistent val-
ues for the antenna impedance and current required for 
quantitative flux estimates are not yet available.

Initial conditions on the sphere are then fed into the mag-
netospheric ray-tracing model (Starks et al. 2008) to produce 
estimates of the ray paths and Poynting flux as a function of 
location and group delay. The model includes divergence, 
focusing and damping effects and represents the Earth’s 
magnetic field by a tilted offset dipole model based on the 
first eight Gauss coefficients from IGRF. The ambient plasma 
environment is given by a multi-species diffusive equilibrium 
density model described in Sect. 2.3 of Starks et al. (2008). 
No field-aligned ducts are included in the ray-tracing.

VLF ray paths for the DSX–Arase conjunction pre-
dicted by the baseline propagation model described 
above are shown in Fig.  2. Energy propagating directly 
from DSX to Arase is shown in blue. Arase begins inter-
secting the direct wave power around this time, in agree-
ment with observations. These paths serve as a qualitative 
guide for interpreting spacecraft data; detailed model/
data comparison is ongoing and when complete should 
provide more quantitative information on the properties 
of the emitted VLF waves (e.g., Sonwalker et al. 2001).

Conclusions
This result represents the first reported successful bistatic 
space-to-space transmission of VLF waves in the magne-
tosphere. It establishes the ability of an in situ antenna to 
transmit VLF wave power into the far field with poten-
tial applications for controlled studies of wave–par-
ticle interactions and radiation belt remediation. The 

spatial location and temporal variation of the electric 
fields measured by Arase are consistent with the radia-
tion pattern expected from cold plasma theory, i.e., a 
narrow cone along the magnetic field, and clearly incon-
sistent with a standard dipole radiation pattern in vacuo.

Of the 17 DSX–Arase conjunction transmission attempts 
through the end of 2020, only one appears to be success-
ful. This is likely due to the proximity of the satellites during 
the 04 September 2019 event together with the very nar-
row radiation cone and anisotropic nature of VLF propaga-
tion in the magnetosphere. However, DSX has conducted 
a large number of successful sounding experiments where 
TNT transmitted pulses which have undergone magneto-
spheric reflection (Kimura 1966), returned to the spacecraft 
and were detected by the BBR. Conjunction and sound-
ing experiments continued through the end of mission on 
31 May 2021. Together with ongoing analysis of the TNT 
transmitter impedance, the BBR response and the VLF 
propagation model, the data are expected to provide a 
quantitative understanding of the dipole antenna far-field 
injection efficiency and subsequent propagation effects.
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