
Noda  Earth, Planets and Space          (2021) 73:137  
https://doi.org/10.1186/s40623-021-01465-6

FULL PAPER

Dynamic earthquake sequence simulation 
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Abstract 

Dynamic earthquake sequence simulation is an important tool for investigating the behavior of a fault that hosts a 
series of earthquakes because it solves all interrelated stages in the earthquake cycle consistently, including nuclea-
tion, propagation and arrest of dynamic rupture, afterslip, locking, and interseismic stress accumulation. Numerically 
simulating and resolving these phenomena, which have different time and length scales, in a single framework is 
challenging. A spectral boundary integral equation method (SBIEM) that makes use of a fast Fourier transform is 
widely used because it reduces required computational costs, even though it can only be used for a planar fault. The 
conventional SBIEM has a periodic boundary condition as a result of the discretization of the wavenumber domain 
with a regular mesh; thus, to obtain an approximate solution for a fault in an infinite medium, it has been necessary 
to simulate a region much longer than the source distribution. Here, I propose a new SBIEM that is free from this 
artificial periodic boundary condition. In the proposed method, the periodic boundaries are removed by using a 
previously proposed method for the simulation of dynamic rupture. The integration kernel for the elastostatic effect, 
which reaches infinitely far from the source, is expressed analytically and replaces the one in the conventional SBIEM. 
The new method requires simulation of a region only twice as long as the source distribution, so the computational 
costs are significantly less than those required by the conventional SBIEM to simulate a fault in an infinite medium. 
The effect of the distance λ between the artificial periodic boundaries was investigated by comparing solutions for a 
typical problem setting between the conventional and proposed SBIEM. The result showed that the artificial peri-
odic boundaries cause overestimation of the recurrence interval that is proportional to λ−2. If λ is four times the fault 
length, the interval is overestimated by less than 1%. Thus, the artificial periodic boundaries have only a modest effect 
on the conclusions of previous studies.
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Introduction
The earthquake cycle involves many processes having dif-
ferent time and length scales, such as interseismic stress 
accumulation, nucleation and propagation of dynamic 
rupture, and postseismic deformation. In modeling each 
of these serial processes, the initial condition is essen-
tial for determining its outcome, which in turn gives the 
initial condition for the modeling of the following pro-
cess. Therefore, to investigate the behavior of a fault that 

accommodates repeating earthquakes, these processes 
must be simulated in a consistent manner within a single 
framework, without changing the governing equations 
artificially. Dynamic earthquake sequence simulation 
(e.g., Rice and Ben-Zion 1996; Lapusta et  al. 2000) ena-
bles us to numerically simulate the behavior of a fault 
embedded in a continuum such that both slow interseis-
mic processes and rapid coseismic processes, in which 
the inertial, wave-mediated effect matters, are taken 
into account. Dynamic earthquake sequence simulation 
has been used to investigate various important prob-
lems in earthquake physics, such as the effects of depth-
dependent frictional properties (e.g., Lapusta et al. 2000; 
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Shimamoto and Noda 2014), brittleness of the seismo-
genic part of a fault (e.g., Lapusta and Rice 2003; Chen 
and Lapusta 2009; Noda et al. 2013; Barbot 2019), drastic 
weakening of a fault at coseismic slip rate (e.g., Noda and 
Lapusta 2013), and off-fault viscous deformation (e.g., 
Miyake and Noda 2019).

Because dynamic earthquake sequence simulation is 
computationally intense, a spectral boundary integral 
equation method (SBIEM) is often used for the simula-
tion, even though the existing SBIEMs are applicable only 
to problems with simple geometry. In applying a bound-
ary integral equation method, only the boundaries where 
the traction needs to be evaluated and the sources of the 
stress change are distributed must be discretized. Thus, 
simulations having a greater on-fault resolution can be 
conducted with restricted computational resources, 
compared with methods based on discretization of the 
volume. In addition, the fast Fourier transform (FFT) 
algorithm can be used to reduce the computational cost 
of the spectral method.

Figure  1a schematically shows a typical problem. A 
simulated part of a fault governed by a rate- and state-
dependent friction law (Dieterich 1979; Ruina 1983) is 
loaded by background uniform slip rate Vpl . It has length 
L , typically has rate-strengthening and rate-weakening 
parts, and the slip difference from the uniform back-
ground level δ′ distributes within it. Earthquake ruptures 
occur in the rate-weakening patches. Although the spec-
tral method is very efficient, Fourier series representation 
of a Green’s function in an infinite elastic space cause 

periodic replication if the wavenumber domain is dis-
cretized by using regularly spaced grid points (Fig.  1b). 
To obtain a good approximation of fault behavior in an 
infinite medium, the distance � between the periodic 
boundaries should be much larger than the length L of 
the system of interest. For example, Lapusta et al. (2000) 
used � = 4L.

Cochard and Rice (1997) developed a novel method to 
remove the periodic boundary condition from an SBIEM 
for simulations of dynamic rupture. For slip δ distrib-
uted over a fault of length L, they prepared an additional 
zero-padded region of length L outside the source region. 
Thus, they expressed the distribution of the source as a 
Fourier series for a domain of length 2L, and derived an 
expression for the integration kernel in the wavenum-
ber domain that gave the stress change without peri-
odic replication, provided that the collocation point was 
within the source region. In the present study, a method 
for dynamic earthquake sequence simulation using a 
new SBIEM that partly incorporates their method is 
proposed.

It turns out that calculation of the dynamic part of the 
integration kernel for a dynamic earthquake sequence sim-
ulation incorporating the formulation by Cochard and Rice 
(1997) using a velocity formulation (e.g., Rice and Ben-Zion 
1996; Lapusta et  al. 2000) requires evaluation of a two-
dimensional numerical integral. Because this calculation 
takes an unnecessarily long time, the method by Cochard 
and Rice (1997) is applied only to the static part of the 
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Fig. 1 a A schematic diagram of a typical problem solved with dynamic earthquake sequence simulation. A region with source of traction change 
(slip difference from a reference δ′ ) distributes in a region of length L , which is governed by a rate- and state-dependent friction law. b Spectral 
representation and discretization with a regular mesh in the wavenumber domain causes artificial periodic boundaries every � . Computational 
domains required in the present method and in the conventional method are indicated by dashed rectangles in a and b, respectively
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integration kernel, which has an infinitely long-range effect 
with a spatially compact source distribution.

Methodology
SBIEM for dynamic earthquake sequence simulation
A two-dimensional problem of a planar fault embedded in 
a linearly elastic infinite body is considered. The traction on 
the fault can be written as follows (Cochard and Madariaga 
1994; Geubelle and Rice 1995):

where x is the coordinate along the fault, t is time, τ is the 
traction on the fault, τ0 is the traction realized in a reference 
state (e.g., no relative motion, steady-state solution, or uni-
form slip rate), φ is the wave-mediated stress transfer due 
to previous fault motion relative to the reference, and η is a 
proportionality constant between instantaneous changes in 
τ and the rate of fault motion relative to the reference state 
V ′ . Calculation of φ requires spatio-temporal convolution. 
The last term on the right-hand side represents the imped-
ance effect, which is sometimes called radiation damping, 
and η depends on the mode of the rupture,

where ρ is the density and cs and cp are the S-wave speed 
and P-wave speed, respectively.

If the fault motion is suddenly stopped at time t , then 
the elastic waves propagate away from the fault and the 
static solution of the 2-dimensional problem is realized 
asymptotically. The traction change in this static solution 
is denoted as φst(t) , which can be expressed by the spatial 
convolution of a static Green’s function and the distribu-
tion of the relative displacement difference from the refer-
ence state at time t : δ′(x, t) . The dynamic part of φ , φdyn , is 
defined as follows (Rice and Ben-Zion 1996):

In the displacement formulation, φ , is expressed as

where G is a Green’s function representing the traction 
change due to spatio-temporally localized relative displace-
ment. Fourier transformation in terms of x leads to

(1)τ (x, t) = τ0(x, t)+ φ − ηV ′
(x, t) ,

(2)η =
{

ρcs/2 (Modes II and III)
ρcp/2 (Mode I)

,

(3)φdyn = φ − φst.

(4)

φ(x, t) =
t
∫

−∞
dt ′

∞
∫

−∞
dx′

[

G
(

x − x′, t − t ′
)

δ
′(x′, t ′

)]

,

(5)

∞
∫

−∞
φ(x, t)e−ikxdx = �(k , t) =

t
∫

−∞
K
(

t − t ′
)

D
(

k , t ′
)

dt ′

= −µcsk
2

2

t
∫

−∞
C
(∣

∣k
∣

∣cs
(

t − t ′
))

D
(

k , t ′
)

dt ′,

where i =
√
−1 , k is the angular wavenumber and µ 

is the shear modulus. K  is an integration kernel in the 
angular wavenumber domain in the displacement for-
mulation, and D is the Fourier transform of δ′:

C is a function appearing in the kernel and depends 
on the mode of the rupture, as described in Appendix 
(Geubelle and Rice 1995). It was calculated by poly-
nomial approximation (Morrissey and Geubelle 1997) 
and integrated numerically in previous studies (e.g., 
Lapusta et al. 2000). In the simulation code used in the 
present paper, it was calculated using special functions 
(see Appendix) implemented in the Python routine 
scipy.special. To extract the static term, integration by 
parts of Eq. (5) yields

where Ḋ is the Fourier transform of V ′ . It has been 
assumed that D(k , t) is zero at sufficiently small t . The 
first term on the right-hand side of Eq.  (7) represents 
the Fourier transform of φst,

After executing the integral, Eq. (8) can be written as

where Kst is the static kernel in the angular wavenum-
ber domain,

µ
′ depends on the direction of the relative displace-

ment: µ′ = µ in mode III problems, and µ′ = µ/(1− ν) 
in mode I and mode II problems, where ν is the Pois-
son’s ratio. The second term on the right-hand side in 
Eq. (7) represents the dynamic contribution,

where the dynamic kernel is

(6)D(k , t) =
∞
∫

−∞
δ
′
(x, t)e−ikxdx.

(7)

�(k , t) = −µcsk
2

2

[

t
∫

−∞
C
(∣

∣k
∣

∣cs
(

t − t ′
))

dt ′
]

D(k , t)

+µcsk
2

2

t
∫

−∞

[

t ′

∫
−∞

C
(∣

∣k
∣

∣cs
(

t − t ′′
))

dt ′′
]

Ḋ
(

k , t ′
)

dt ′ ,

(8)

∞
∫

−∞
φst(x, t)e

−ikxdx = �st(k , t) = − µcsk
2

2

[

t
∫

−∞
C
(
∣

∣k
∣

∣cs
(

t − t ′
))

dt ′
]

D(k , t).

(9)�st(k , t) = Kst(k)D(k , t),

(10)Kst(k) = −µ
′|k|
2 .

(11)

∞
∫

−∞
φdyn(x, t)e

−ikxdx = �dyn(k , t) =
t
∫

−∞
Kdyn

(

k , t − t ′
)

Ḋ
(

k , t ′
)

dt ′,

(12)Kdyn(k , t) =
µ|k|
2

∞
∫

|k|cst
C(s)ds.
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� can therefore be expressed as

As discussed by Rice and Ben-Zion (1996) and demon-
strated by Lapusta and Liu (2009), Kdyn decays to zero at 
large t − t ′ so that the effect of an old source becomes neg-
ligible. Therefore, we can truncate the time integration in 
Eq.  (13) by assuming a time window tw within which the 
inertial effect is fully accounted for:

This calculation only requires a history with a finite 
length and thus enables us to simulate a sequence of earth-
quakes with a finite amount of computer memory.

Removal of periodic boundaries by the method of Cochard 
and Rice (1997)
In the angular wavenumber domain, the spatial convolu-
tion becomes multiplication for each k . The use of a FFT 
reduces the computational cost and makes the SBIEM 
one of the most efficient methods for modeling of the 
fault behavior. However, discretization of the wavenum-
ber domain with a regular mesh with interval �k results in 
periodic boundaries at every � = 2π/�k (Fig. 1b). Cochard 
and Rice (1997) proposed a novel trick for removing the 
periodic boundary condition: for a function f  having non-
zero values only within [−L/2, L/2],

Because the discretization of k introduces a periodic 
boundary, Cochard and Rice (1997) kept the domain of k 
continuous, but they used a different spectral expression 
for δ′ . For δ′ with a non-zero value within a region of size 
L , [−L/2, L/2] , they zero-padded outside it and expressed δ′ 
as a Fourier series for a function defined in [−L, L],

where n is the integer for the number of waves in [−L, L] . 
By plugging Eq. (16) into Eq. (6) and using Eq. (15), D can 
be expressed as

for X ∈ [−L/2, L/2] . Inverse Fourier transformation of 
Eq. (5) with respect to k with Eq. (17) and evaluation of φ 
at x = X results in

(13)

�(k , t) = Kst(k)D(k , t)+
t
∫

−∞
Kdyn

(

k , t − t ′
)

Ḋ
(

k , t ′
)

dt ′.

(14)
�(k , t) ≈ �w(k , t; tw) = Kst(k)D(k , t)+

t
∫

t−tw

Kdyn

(

k , t − t ′
)

Ḋ
(

k , t ′
)

dt ′ .

(15)
∞
∫

−∞
f (x)dx =

X+L
∫

X−L
f (x)dx for X ∈ [−L/2, L/2] .

(16)δ
′
(x, t) =

∞
∑

n=−∞
Dn(t)e

2π inx/2L,

(17)

D(k , t) =
( ∞

∑

n=−∞
Dn(t)

2 sin (kL−nπ)
k−nπ/L

e2π inX/2L
)

e−ikX

where

Note that this expression is correct only for 
x ∈ [−L/2, L/2] . As pointed out by Cochard and Rice 
(1997), the kernel is identical to that with periodic 
boundaries when the delay time is small, that is, before 
the elastic waves from the periodic replication reach the 
region where the traction is evaluated.

To demonstrate their method, Cochard and Rice (1997) 
applied it to an antiplane problem of a crack under 
instantaneous loading. In the present study, this tech-
nique is applied to remove the periodic boundary condi-
tion in a dynamic earthquake sequence simulation for all 
modes.

Application to a dynamic earthquake sequence simulation
To apply the technique of Cochard and Rice (1997) to 
earthquake sequence simulation (e.g., Lapusta et  al. 
2000), the displacement formulation (Eq.  (19)) is con-
verted to a velocity formulation by conducting integra-
tion by parts:

where the superscript * indicates that the static and 
dynamic kernels are derived by using the formulation of 
Cochard and Rice (1997) and expressed in terms of C ′ as

and

respectively.
For mode III (antiplane) problems,

In this case, the integral in Eqs. (20) and (22) can be 
executed analytically as,

(18)φ(x, t) =
∞
∑

n=−∞
�n(t)e

2π inx/2L,

(19)�n(t) = −µcs
2

(

πn
L

)2 t
∫

−∞
C

′
n

(

t − t ′
)

Dn

(

t ′
)

dt ′ ,

(20)C
′
n(t) =

(−1)n

π

∞
∫

−∞
sin (kL)
k−nπ/L

C
(
∣

∣k
∣

∣cst
)

dk .

(21)

�n(t) = K ∗
st(n)Dn(t)+

t
∫

−∞
K ∗
dyn

(

n, t − t ′
)

Ḋn

(

t ′
)

dt ′,

(22)K ∗
st(n) = −µcs

2

(

πn
L

)2 ∞
∫
0
C

′
n(s)ds

(23)K ∗
dyn(n, t) =

µcs
2

(

πn
L

)2 ∞
∫
t
C

′
n(s)ds,

(24)C(T ) = CIII(T ) = J1(T )

T .

(25)K III∗
st (n) = −nµ

L Si(nπ) ,
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where Si is the sine-integral function

For the other rupture modes, we have only to modify 
the shear modulus depending on the Poisson’s ratio. 
Therefore, the static kernels for all modes are compactly 
expressed as

similarly to the case with a periodic boundary 
(Eq.  (10)). Because Si(∞) = π/2 , K ∗

st(n) approaches 
Kst(2πn/2L) when the wavenumber is large.

Expressions for the dynamic kernel involve two-dimen-
sional integration (Eqs. (20) and (23)), which the author 
could not fully solve analytically. For mode III, K ∗

dyn(n, t) 
can be written using an integral expression for CIII 
(Cochard and Rice 1997) as

where

However, numerical integration of Eq.  (28) with the 
Python routine scipy.integrate.dblquad turned out to take 
an excessively long time. Cochard and Rice (1997) pro-
posed an advantageous way to evaluate the integral with 
respect to ψ1 for small cst/L(> 1) , by subtracting integral 
from ψ1 to π/2 from integral from 0 to π/2 . There may be 
an efficient way to calculate Eq. (28) and its counterparts 
in different modes, but here I propose an alternative 
method to remove the periodic boundary condition with-
out using Eq.  (23). In the present method, the dynamic 
kernel can be calculated without numerical integration if 
special functions in scipy.special are used (Appendix).

The fundamental idea of earthquake sequence simula-
tion is truncation of the temporal convolution by setting 
a time window tw (Eq. (14)),

φ , after truncation of the temporal convolution, can be 
written in two ways:

(26)Si(x) =
x
∫
0

sin (t)
t dt.

(27)K ∗
st(n) = −nµ′

L Si(nπ) ,

(28)

K III∗
dyn (n, t) =

µcs
π

(

πn
L

)2 ∞
∫
t

ψ1

∫
0
cos2 (ψ) cos

(

nπcss
L sin (ψ)

)

dψds,

(29)ψ1 =
{

π/2 cst/L ≤ 1
arcsin(L/cst) cst/L > 1

.

(30)

�wn(t; tw) = K ∗
st(n)Dn(t)+

t
∫

t−tw

K ∗
dyn

(

n, t − t ′
)

Ḋn

(

t ′
)

dt ′.

(31)

φ(x, t) ≈ φw(x, t; tw) = 1
2π

∞
∫

−∞
�w(k , t; tw)eikxdk

=
∞
∑

n=−∞
�wn(t; tw)e2π inx/2L.

Let φw be split into two parts.

where

is the static effect in φw due to sources before t − tw . 
Because the time derivative of D is Ḋ , the �φ can be writ-
ten as

Because the static stress change extends infinitely far 
from the source, it is important to use the technique by 
Cochard and Rice (1997) for its calculation. Therefore, 
for φpast the expression using K ∗

st in Eq.  (33) is adopted. 
For �φ , Eq. (34) is adopted to avoid direct evaluation of 
K ∗
dyn . After adding and subtracting the static contribu-

tions from the sources within the time window, φw can be 
written as

Note that the argument of Dn in the first term has 
changed from t − tw in Eq.  (33) to t . As mentioned ear-
lier, discretization of the inverse Fourier transform (inte-
gral with respect to k ) with a regular mesh causes 
artificial periodic boundaries every � . If � is set to a long 
enough value so that the elastic waves from replication 
do not reach [−L/2, L/2] within the time window tw , then 
the artificial periodic boundaries do not matter in the 
second term in Eq. (36). Because K ∗

dyn is not used and the 
static kernel K ∗

st is very simple in all modes, implementa-
tion of this method is rather straightforward for all 
modes.

The second term in Eq.  (36) is the full stress trans-
fer from a source within the time window �φ 
(Eq.  (34)). Following Eq.  (3), it can be decomposed as 
�φ = �φdyn +�φst , where �φdyn and �φst are contri-
butions of Kdyn and Kst . For a compact source, � φ has a 

(32)φw(x, t; tw) = φpast(x, t; tw)+�φ(x, t; tw),

(33)
φpast(x, t; tw) = 1

2π

∞
∫

−∞
Kst(k)D(k , t − tw)e

ikxdk

=
∞
∑

n=−∞
K ∗
st(n)Dn(t − tw)e

2π inx/2L

(34)
�φ(x, t; tw) = 1

2π

∞
∫

−∞
dkeikx

t
∫

t−tw

dt ′
[(

Kdyn

(

k , t − t ′
)

+ Kst(k)
)

Ḋ
(

k , t ′
)]

,

(35)
�φ(x, t; tw) =

∞
∑

n=−∞
e2π inx/2L

t
∫

t−tw

dt ′
[(

K ∗
dyn

(

n, t − t ′
)

+ K ∗
st(n)

)

Ḋn

(

t ′
)

]

.

(36)

φw(x, t; tw) =
∞
∑

n=−∞
K ∗
st(n)Dn(t)e

2π inx/2L

+ 1
2π

∞
∫

−∞
dk

t
∫

t−tw

dt ′
[(

Kdyn

(

k , t − t ′
)

+ Kst(k)
)

Ḋ
(

k , t ′
)

eikx
]

−
∞
∑

n=−∞

t
∫

t−tw

dt ′
[

K ∗
st(n)Ḋn

(

t ′
)

e2π inx/2L
]

.
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causality cone so that �φ = 0 outside it. Because the �φst 
reaches infinitely far from the source, �φdyn = −�φst 
outside the causality cone. If the inverse Fourier transfor-
mation is executed with a regular mesh in the wavenum-
ber domain, �φdyn has the effect of periodic replication 
outside the causality cone. Therefore, an apparently rea-
sonable formulation

cannot remove the effect of the artificial periodic 
boundaries.

Numerical implementation
The basic numerical procedure is the same as that 
used by Noda and Lapusta (2010). A rate- and state-
dependent friction law is considered, and the adap-
tive time-stepper developed by Lapusta et  al. (2000) is 
used. The minimum timestep �tmin is defined during 
which the S-wave travels a fraction of the grid interval, 
and the time step is constrained to be an integral mul-
tiple of �tmin . The time integral in Eq. (36) is calculated 
using the mid-point rule. Therefore, evaluation of the 
dynamic kernel is needed only at discrete delay times 
{0.5�tmin, 1.5�tmin, 2.5�tmin, 3.5�tmin, . . . } , which 
are calculated before the main part of the simulation 
and stored in memory. A second-order predictor–cor-
rector method is adopted as the time-marching scheme. 
For details, please see Lapusta et al. (2000) and Noda and 
Lapusta (2010).

The region of non-zero slip [−L/2, L/2] is discretized 
by using N  regularly spaced grid points at intervals of 
�x = L/N  . The full space [−L, L] has 2N  grid points. 
Accordingly, the summation of the infinite series in 
Eq. (36) is truncated from −N + 1 to N  , and the Fourier 
series Dn and Ḋn are calculated with FFT from arrays of δ′ 
and V ′ of length 2N .

To calculate the second term on the right-hand side of 
Eq.  (36) using Ḋn , the integration kernel in the spectral 
domain is prepared in the following way:

• A slightly longer region than [0, L+ ctw] is considered 
and discretized by grid points with the same interval 
�x = L/N  , where c = cs for an antiplane problem 
and c = cp for an inplane problem.

• A spatio-temporally isolated unit source of V ′ (in 
which only one grid point has a unit relative displace-
ment rate for only one time step) is assumed and the 
corresponding φ ( φaux ) is calculated using the spec-
tral method by Lapusta et al. (2000).

(37)
φw(x, t; tw) =

∞
∑

n=−∞
K ∗
st(n)Dn(t)e

2π inx/2L

+ 1
2π

∞
∫

−∞
dk

t
∫

t−tw

dt ′
[

Kdyn

(

k , t − t ′
)

Ḋ
(

k , t ′
)

eikx
]

• φaux for the relative location from 0 to �x(N − 1) is 
extracted, and a 2N-long array including the stress 
change at the relative location from −�x(N − 1) to 
�x(N − 1) is constructed by assuming symmetry.

• The FFT of the 2N-long array gives the spectral inte-
gration kernel in the second term in Eq. (36).

The second and the third terms in Eq. (36) can be cal-
culated at once by subtracting K ∗

st(n)�tmin from the inte-
gration kernel for the second term. In the conventional 
SBIEM, the system size � must be taken long enough 
to avoid the effect of periodic replication in �φ . The 
extraction of the part of φaux that matters in simulation 
of the fault of length L enables us to remove the periodic 
boundary without increasing the system size.

The proposed method has some major advantages com-
pared with the previous SBIEM in earthquake sequence 
simulation: there is no effect of an artificial periodic 
boundary condition, and the new method is more effi-
cient. The length of the calculated domain is 2L , and 
the number of grid points in the spatial and wavenum-
ber coordinates is 2N  . In the simulation by Lapusta et al. 
(2000), for example, a region with size 4L is used, and 
thus 4N  grid points are considered to reduce the effect 
of the artificial periodic boundaries. Therefore, with the 
new method, the memory requirement is reduced by a 
factor of about 2. Because the time-marching scheme is 
the same, the smaller number of grid points directly leads 
to less calculation and shorter CPU time per time step. 
The integration kernel is calculated before the main part 
of the simulation, and the additional calculation cost of 
the preparation of the kernel is not significant.

Verification and evaluation of the effect of periodic 
boundaries
Problem setting
To verify the proposed method and to evaluate the effect 
of periodic boundaries, a rather simple test problem is 
solved with the new method and with the conventional 
method (Lapusta et  al. 2000; Noda and Lapusta 2010), 
and then the results are compared. In the description of 
the problem below, scales of stress and speed are given 
because parameters such as the shear modulus, the 
S-wave speed, and the plate convergence rate are rela-
tively well constrained for many rocks and major plate 
boundaries. The length scale can be selected as another 
independent dimension. Because of the broad size-distri-
bution range of earthquakes, the length scale of interest 
depends on the specific problem being addressed. Here, 
L = 2 km was selected only for presentational purposes. 
For a longer or shorter fault, the solution does not change 
if the parameters and variables with the dimension of 
length are appropriately scaled. For example, for a longer 
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fault L = 20 km , length and time (= length × speed) (e.g., 
x , δ′ , t ) should be multiplied by 10.

Here, an antiplane problem for an elastic medium with 
µ = 30 GPa and cs = 3000 m/s is considered. A sequence 
of earthquakes on a planar fault with a long-term slip rate 
of Vpl = 10−9 m/s is simulated. As the reference, the sit-
uation of a uniform slip rate Vpl over the entire fault is 
selected so that τ0 is independent of t , because a uniform 
slip on an infinite planar fault causes no stress change. 
The actual slip rate V  is given by

The fault is governed by the aging law, a rate- and state-
dependent friction law (Dieterich 1979; Ruina 1983):

where A and B represent the amplitudes of the direct 
effect and evolution effect, respectively, θ is the state vari-
able, and dc is the characteristic slip of the state evolu-
tion. The initial value of θ is set at 10dc/Vpl . Distributions 
of A , B , and dc are plotted in Fig. 2. The mirror symmetry 
is broken by assuming a gradient of B to avoid simulation 
near an unstable symmetric solution; B is given by mul-
tiplying a linear function by an infinitely differentiable 
smoothed boxcar function (e.g., Noda and Lapusta 2010). 
The fault is rate weakening (A < B) in its central part, 
the length of which is about 1 km. There, A = 1.2 MPa , 
B ≈ 1.6 MPa , and dc = 1 mm , which yields A/B ≈ 0.75 
and a nucleation size of 191 m (Rubin and Ampuero 
2005), about one-fifth the length of the rate-weakening 
region. The length scale of the cohesive zone �0 (Lapusta 
and Liu 2009) is about 16.6 m , and �x = 5 m is used in 
the simulations. The minimum time step and the time 
window for the inertial effect are set to �tmin = 0.5�x/cs 
and tw = 3L/cs , respectively.

Effects of artificial periodic boundaries
Figure  3 shows the simulation results without periodic 
boundaries (Fig.  3a) and with periodic boundaries at 
intervals of � = 2L (Fig.  3b) and � = 10L (Fig.  3c). The 
coseismic period is defined by using 0.1 m/s as the spa-
tially maximum slip rate threshold, and the fault behav-
ior is simulated till the end of the fifth earthquake. In this 
example, the case with � = 10L looks quite similar to the 
case without periodic boundaries (Fig. 3a, c).

The case with � = 2L has larger coseismic slip and 
thus longer recurrence intervals and a longer simulated 
time. In addition, the creep fronts penetrate into the 

(38)V = Vpl + V ′ .

(39)τ = τ0 + A log
(

V
Vpl

)

+ B log
(

Vplθ

dc

)

,

(40)dθ
dt = 1− V θ

dc
,

rate-weakening patch more significantly. In the third 
earthquake, dynamic rupture starts not by regular nucle-
ation but by coalescence of creep fronts at the center of 
the patch, which is known to occur when the brittleness 
of a rate-weakening patch is low (e.g., Chen and Lapusta 
2009). Such irregular nucleation takes place only with 
� = 2L as long as studied. Nucleation always occurred in 
the right part of the rate-weakening patch for � ≥ 3L.

As a measure of the effect of the artificial periodic 
boundaries, the interval between the fourth and the fifth 
earthquakes is focused on. In the case without periodic 
boundaries, this interval is T∞ = 3.24 × 108 s . In the 
cases with periodic boundaries, the interval T�/L is longer 
than T∞ and depends on �/L . Figure 4 shows the effect of 
artificial extension of the recurrence interval as a func-
tion of �/L . The normalized extension 

(

T�/L − T∞
)

/T∞ 
decreases with increasing �/L approximately following 
(�/L)−2 . This result is consistent with stress perturbation 
due to a dislocation pair at a distance. The convergence 
of 
(

T�/L − T∞
)

/T∞ towards zero indicates that the pro-
posed method appropriately produces the limit solution 
of an infinitely large � obtained by the previous method.

The effect of the artificial periodic boundaries depends 
on the setting of the problem. Its comprehensive evalu-
ation for different problem settings or different sets of 
specific parameters is outside the scope of this study. 
However, the values of the physical properties in the test 
problem are typical of those used in previous studies (e.g., 
Lapusta et al. 2000). Therefore, it is possible to obtain a 
rough sense of the likely effect of using artificial periodic 
boundaries in those previous studies from Fig. 4. The case 
without periodic boundaries uses the same amount of 
computational resources as the case with � = 2L , which 
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Fig. 2 Distributions of the frictional properties along the fault in the 
test problem used to verify the proposed method. A and B are the 
amplitudes of the direct effect and evolution effect, respectively, and 
dc is the characteristic slip of the state evolution
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yields a recurrence interval longer by 3.6%. The case with 
� = 4L , which was adopted by Lapusta et al. (2000), over-
estimates T∞ by a little less than 1% (0.71%). To decrease 

the overestimation to less than 1‰, � > 10L is required, 
but that would cost significantly more than the proposed 
method. The longer recurrence interval for shorter � is 
likely caused by smaller loading rate to the seismogenic 
fault patch due to more dense periodic replications of 
the locked patch. Even with � = 2L , the overestimation is 
not significant compared with the variability and uncer-
tainty of the recurrence intervals of large earthquakes. 
Therefore, the use of artificial periodic boundaries would 
probably have a negligible effect on the conclusions of 
previous studies.

Discussion and conclusion
In this paper, a new SBIEM method for simulation of 
dynamic earthquake sequence that is free from the 
periodic boundary condition is proposed. The new 
method differs from the conventional method (e.g., 
Lapusta et al. 2000) with respect to system size and the 
integration kernel.

With the conventional method, the artificial peri-
odic boundary interval � is taken to be long (e.g., 4L 
in Lapusta et al. 2000) to reduce the effect of periodic 
replication. For a potential non-zero source region of 

Without periodic boundaries λ = 2L λ = 10L

x (km) x (km)x (km)
0 001 11–1 –1–1
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um
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ip
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)
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(a) (c)(b)

Every 107 s Every 10–2 s (coseismic)
Fig. 3 Simulation results for a sequence of five earthquakes a without periodic boundaries, b � = 2L , and c � = 10L , where L = 2 km . Blue and red 
lines indicate distribution of slip every 107 s and 10−2 s during earthquakes, respectively. The case in a was calculated using the proposed method, 
and those in b and c were calculated by the method of Noda and Lapusta (2010)

lo
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T λ
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∞
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∞
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log10(λ/L)
1.210.80.60.4
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Fig. 4 Artificial extension of the earthquake recurrence interval due 
to periodic boundaries normalized by the case without periodic 
boundaries. The intervals between the fourth and fifth earthquakes 
were used. The black points connected by black lines are simulated 
points, and the dashed line indicates dependency of (λ/L)−2
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length L , the new method requires a system size no 
longer than 2L . Because this length is shorter than the 
typical system size in previous studies, it saves compu-
tational costs.

In the new method, the full wave-mediated stress 
transfer in the recent history within the time window 
t ′ ≥ t − tw is calculated by the conventional method 
to avoid numerical evaluation of a 2-dimensional inte-
gration. The integration kernel is calculated using an 
auxiliary long domain with realization of a discre-
tized isolated source. Because of the truncation of 
the temporal integral and the existence of a causality 
cone in the elastodynamics, the use of a sufficiently 
long auxiliary domain effectively removes the effect 
of an artificial periodic boundary. The static effect 
extends infinitely far from the source and thus requires 
removal of the artificial periodic boundaries by the 
technique proposed by Cochard and Rice (1997). This 
technique causes an integral in the static kernel that 
can be executed analytically. The new SBIEM is read-
ily applicable to 2-dimensional problems of all rupture 
modes. As pointed out by Cochard and Rice (1997), 
the new method can be used even for 3-dimensional 
problems with a flat fault, because such problems can 
be formulated by the superposition of 2-dimensional 
problems (Lapusta and Liu 2009).

To verify the proposed method and to evaluate the 
effect of artificial periodic boundaries, a simple test 
problem of an earthquake sequence was solved using 
both the proposed method and the conventional 
method with various � . The physical parameters of the 
problem were set to typical values so that the result 
would be relevant to many previous models. The artifi-
cial periodic boundary increases coseismic slip and the 
recurrence interval of earthquakes. Even with � = 4L , 
the recurrence interval is overestimated by only about 
1%. This effect is so minor that the conclusions of the 
previous studies are not affected. In addition, small 
� causes long penetration of the creep front before 
nucleation.

If a problem without a periodic boundary condition 
is considered, the present method is advantageous 
over the conventional method not only with respect to 
the quality of the solution, but also with respect to the 
computational cost.

Appendix
The kernel in the angular wavenumber domain was 
derived by Geubelle and Rice (1995). The function C 
(Eq. (5)) for all modes are as follows:

where α is the ratio of the P-wave speed to the S-wave 
speed, α = cp/cs . J0 and J1 are Bessel functions of the 
first kind, and T  is the nondimensional delay time. W is 
expressed by using the integral of CIII as

In previous studies, these functions were calculated 
by using polynomial approximations and integrated 
numerically (e.g., Morrissey and Geubelle 1997). In the 
present study, they are calculated using Struve func-
tions H0 and H1 in the Python library (scipy.special). A 
key formula (e.g., Watson 1944) is

where ξ is an integration variable.
Firstly, integral of J0 can be expressed by using 

dJ0(ξ)/dξ = −J1(ξ) as

Secondly, integral of J1(ξ)/ξ is considered. A recur-
rence relation of Bessel function

and derivative of J1

lead to

By adding and subtracting ξ J1(ξ),

(A1)
CI(T ) = α

3 J1(αT )

αT
+ 4T [W(T )−W(αT )]+

[

4α − α
3
]

J0(αT )− 4J0(T ) ,

(A2)CII(T ) = J1(T )

T
+ 4T [W(αT )−W(T )]− 4αJ0(αT )+ 3J0(T ) ,

(A3)CIII(T ) = J1(T )

T
,

(A4)W (T ) = 1−
T
∫
0
CIII

(

T ′)dT ′ .

(A5)

T
∫
0
ξ J1(ξ)dξ = π

2 T (H0(T ) J1(T )−H1(T ) J0(T )) ,

(A6)

T
∫
0
J0(ξ)dξ = [ξ J0(ξ)]

T
0 +

T
∫
0
ξ J1(ξ)dξ = T J0(T )+

T
∫
0
ξ J1(ξ)dξ .

(A7)2
ξ
J1(ξ) = J0(ξ)+ J2(ξ)

(A8)d
dξ J1(ξ) =

1
2 (J0(ξ)− J2(ξ))

(A9)J1(ξ)
ξ

= J0(ξ)− d
dξ J1(ξ) .
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Thus,

W(T ) can be calculated easily from this result. Finally, 
integral of ξW(ξ) is expressed by integration by parts as

Therefore, all integrals of Eqs. (A1–A3) can be calcu-
lated from J0 , J1 , H0 , and H1.

Abbreviations
FFT: Fast Fourier transformation; SBIEM: Spectral Boundary Integral Equation 
Method.

Acknowledgements
The English in this manuscript was carefully corrected by two native-English 
speaking, professional editors, both with extensive research editing experi-
ence before original submission. The author thanks Dr. Kame and three anony-
mous reviewers for useful comments in improving the manuscript.

Authors’ contributions
HN developed the present method, coded the simulation code, analyzed the 
result, and composed the original draft. All authors read and approved the 
final manuscript.

Funding
The present study was supported by the Ministry of Education, Culture, Sports, 
Science and Technology (MEXT) of Japan, under its The Second Earthquake 
and Volcano Hazards Observation and Research Program (Earthquake and 
Volcano Hazard Reduction Research) and by MEXT/JSPS KAKENHI Grant 
Number 19K04038.

Availability of data and materials
No observation data are used in this paper. The simulation code used in this 
paper is available on a reasonable request to the author.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The author does not have any competing interest.

Received: 10 March 2021   Accepted: 19 June 2021

References
Barbot S (2019) Slow-slip, slow earthquakes, period-two cycles, full and partial 

ruptures, and deterministic chaos in a single asperity fault. Tectonophys 
768:228171. https:// doi. org/ 10. 1016/j. tecto. 2019. 228171

(A10)
J1(ξ)
ξ

= J0(ξ)− ξ J1(ξ)− d
dξ J1(ξ)+ ξ J1(ξ)

= d
dξ (ξ J0(ξ))−

d
dξ J1(ξ)+ ξ J1(ξ) .

(A11)
T
∫
0

J1(ξ)
ξ

dξ = T J0(T )− J1(T )+
T
∫
0
ξ J1(ξ)dξ .

(A12)
T
∫
0
ξW(ξ)dξ = 1

2T
2W (T )+ 1

2

T
∫
0
ξ J1(ξ)dξ .

Chen T, Lapusta N (2009) Scaling of small repeating earthquakes explained by 
interaction of seismic and aseismic slip in a rate and state fault model. J 
Geophys Res 114:B01311. https:// doi. org/ 10. 1029/ 2008J B0057 49

Cochard A, Madariaga R (1994) Dynamic faulting under rate-dependent 
friction. Pure Appl Geophys 142(3–4):419–445. https:// doi. org/ 10. 1007/ 
BF008 76049

Cochard A, Rice JR (1997) A spectral method for numerical elastodynamic 
fracture analysis without spatial replication of the rupture event. J Mech 
Phys Sol 45:1393–1418

Dieterich JH (1979) Modeling of rock friction: 1. Experimental results and 
constitutive equations. J Geophys Res 84:2161–2168. https:// doi. org/ 10. 
1029/ JB084 iB05p 02161

Geubelle PH, Rice JR (1995) A spectral method for three-dimensional elastody-
namic fracture problems. J Mech Phys Sol 43(11):1791–1824. https:// doi. 
org/ 10. 1016/ 0022- 5096(95) 00043-I

Lapusta N, Liu Y (2009) Three-dimensional boundary integral modeling of 
spontaneous earthquake sequences and aseismic slip. J Geophys Res 
114:B09303. https:// doi. org/ 10. 1029/ 2008J B0059 34

Lapusta N, Rice JR (2003) Nucleation and early seismic propagation of 
small and large events in a crustal earthquake model. J Geophys Res 
108(B4):2205. https:// doi. org/ 10. 1029/ 2001J B0007 93

Lapusta N, Rice JR, Ben-Zion Y, Zheng G (2000) Elastodynamic analysis for slow 
tectonic loading with spontaneous rupture episodes on faults with rate- 
and state-dependent friction. J Geophys Res 105:23765–23789. https:// 
doi. org/ 10. 1029/ 2000J B9002 50

Miyake Y, Noda H (2019) Fully dynamic earthquake sequence simulation 
of a fault in a viscoelastic medium using a spectral boundary integral 
equation method: does interseismic stress relaxation promote aseis-
mic transients? Earth Planets Space 71:137. https:// doi. org/ 10. 1186/ 
s40623- 019- 1113-8

Morrissey JW, Geubelle PH (1997) A numerical scheme for mode III dynamic 
fracture problems. Int J Numer Methods Eng 40:1181–1196

Noda H, Lapusta N (2010) 3D earthquake sequence simulations with evolving 
temperature and pore pressure due to shear heating: effect of heteroge-
neous hydraulic diffusivity. J Geophys Res 115:B12314. https:// doi. org/ 10. 
1029/ 2010J B0077 80

Noda H, Lapusta N (2013) Stable creeping fault segments can become 
destructive as a result of dynamic weakening. Nature 493:518–521. 
https:// doi. org/ 10. 1038/ natur e11703

Noda H, Nakatani M, Hori T (2013) Large nucleation before large earthquakes 
is sometimes skipped due to cascade-up—Implications from a rate 
and state simulation of faults with hierarchical asperities. J Geophys Res 
118:2924–2952. https:// doi. org/ 10. 1002/ jgrb. 50211

Rice JR, Ben-Zion Y (1996) Slip complexity in earthquake fault models. Proc 
Natl Acad Sci USA 93:3811–3818

Rubin AM, Ampuero JP (2005) Earthquake nucleation on (aging) rate and state 
faults. J Geophys Res 110:B11312. https:// doi. org/ 10. 1029/ 2005J B0036 86

Ruina A (1983) Slip instability and state variable friction laws. J Geophys Res 
88:10359–10370. https:// doi. org/ 10. 1029/ JB088 iB12p 10359

Shimamoto T, Noda H (2014) A friction to flow constitutive law and its applica-
tion to a 2-D modeling of earthquakes. J Geophys Res 119(11):8089–
8106. https:// doi. org/ 10. 1002/ 2014J B0111 70

Watson GN (1944) A treatise on the theory of Bessel functions, 2nd edn. Cam-
bridge University Press, London

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.tecto.2019.228171
https://doi.org/10.1029/2008JB005749
https://doi.org/10.1007/BF00876049
https://doi.org/10.1007/BF00876049
https://doi.org/10.1029/JB084iB05p02161
https://doi.org/10.1029/JB084iB05p02161
https://doi.org/10.1016/0022-5096(95)00043-I
https://doi.org/10.1016/0022-5096(95)00043-I
https://doi.org/10.1029/2008JB005934
https://doi.org/10.1029/2001JB000793
https://doi.org/10.1029/2000JB900250
https://doi.org/10.1029/2000JB900250
https://doi.org/10.1186/s40623-019-1113-8
https://doi.org/10.1186/s40623-019-1113-8
https://doi.org/10.1029/2010JB007780
https://doi.org/10.1029/2010JB007780
https://doi.org/10.1038/nature11703
https://doi.org/10.1002/jgrb.50211
https://doi.org/10.1029/2005JB003686
https://doi.org/10.1029/JB088iB12p10359
https://doi.org/10.1002/2014JB011170

	Dynamic earthquake sequence simulation with a SBIEM without periodic boundaries
	Abstract 
	Introduction
	Methodology
	SBIEM for dynamic earthquake sequence simulation
	Removal of periodic boundaries by the method of Cochard and Rice (1997)
	Application to a dynamic earthquake sequence simulation
	Numerical implementation

	Verification and evaluation of the effect of periodic boundaries
	Problem setting
	Effects of artificial periodic boundaries

	Discussion and conclusion
	Acknowledgements
	References




